Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353904

RESUMO

The parathyroid hormone receptor 2 (PTH2R) is a class B1 G protein-coupled receptor (GPCR) involved in the regulation of calcium transport, nociception mediation, and wound healing. Naturally occurring mutations in PTH2R were reported to cause hereditary diseases, including syndromic short stature. Here, we report the cryogenic electron microscopy structure of PTH2R bound to its endogenous ligand, tuberoinfundibular peptide (TIP39), and a heterotrimeric Gs protein at a global resolution of 2.8 Å. The structure reveals that TIP39 adopts a unique loop conformation at the N terminus and deeply inserts into the orthosteric ligand-binding pocket in the transmembrane domain. Molecular dynamics simulation and site-directed mutagenesis studies uncover the basis of ligand specificity relative to three PTH2R agonists, TIP39, PTH, and PTH-related peptide. We also compare the action of TIP39 with an antagonist lacking six residues from the peptide N terminus, TIP(7-39), which underscores the indispensable role of the N terminus of TIP39 in PTH2R activation. Additionally, we unveil that a disease-associated mutation G258D significantly diminished cAMP accumulation induced by TIP39. Together, these results not only provide structural insights into ligand specificity and receptor activation of class B1 GPCRs but also offer a foundation to systematically rationalize the available pharmacological data to develop therapies for various disorders associated with PTH2R.


Assuntos
Receptor Tipo 2 de Hormônio Paratireóideo/química , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , AMP Cíclico/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Conformação Proteica , Receptor Tipo 2 de Hormônio Paratireóideo/genética
2.
Ther Apher Dial ; 24(3): 285-289, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31423747

RESUMO

Depression as measured by the kidney disease quality of life (KDQOL) form is known to be an independent risk factor for mortality dialysis patients. Excess parathyroid hormone (PTH) has long been associated with neuropsychiatric disturbances. Those psychiatric complications are currently attributed to hypercalcemia with very little evidence; however, with the discovery of the parathyroid hormone 2 receptor (PTH2R) in the brain which can be activated by PTH, PTH2R might indicate a direct effect of PTH. As secondary and tertiary hyperparathyroidism is common in dialysis patients where the serum calcium is low or normal, we chose to investigate a possible relationship between PTH levels and depression in dialysis patients. This was a matched pair observational study with 10 patients with intact PTH values above 1000 pg/mL who were matched with 10 patients who had PTH values less than 400 pg/mL for the presence of diabetes, years on dialysis, duration of dialysis time, Kt/V, hemoglobin, and 25 OH vitamin D levels, as well as intravenous iron and erythropoietin administration. The Kidney Disease Quality of Life questionnaire (KDQOL-36) scores and patient Health Questionnaire scores were analyzed during that time. All variables underwent tests for normality and matched pair t-test. All subscales of the KDQOL-36 were worse in the high PTH group with the effect on daily life reaching P = 0.01 and the burden of disease and symptoms both reaching P = 0.02. PTH and PTH2R may be appropriate targets for investigations to improve the quality of life in hemodialysis patients.


Assuntos
Depressão , Hiperparatireoidismo Secundário , Falência Renal Crônica , Hormônio Paratireóideo/sangue , Qualidade de Vida , Diálise Renal/métodos , Correlação de Dados , Efeitos Psicossociais da Doença , Depressão/diagnóstico , Depressão/etiologia , Depressão/metabolismo , Duração da Terapia , Feminino , Humanos , Hiperparatireoidismo Secundário/diagnóstico , Hiperparatireoidismo Secundário/etiologia , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/psicologia , Falência Renal Crônica/terapia , Masculino , Análise por Pareamento , Pessoa de Meia-Idade , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Estados Unidos/epidemiologia
3.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4125-4131, 2018 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-30486541

RESUMO

Drynariae Rhizoma has great significance in the clinical practice of osteoporosis treatment. Based on the perspective of integrative pharmacology, the study explored the mechanism of action of Drynariae Rhizoma in the treatment of osteoporosis. Six active components in Drynariae Rhizoma were obtained, mainly including glycosides and sterols. Taking the median of 2 times of "node connectivity" as the card value, the core node of the Chinese medicine target disease gene interaction network was selected. Based on this, three topological structural eigenvalues, such as "node connectivity" "node tightness" and "node connectivity" were calculated, thereby screening out four core targets of Drynariae Rhizoma treatment for osteoporosis, including thyroid parathyroid hormone 1 receptor (PTH1R), parathyroid hormone 2 receptor (PTH2R), calcitonin receptor gene (CALCR), and SPTBN1 gene (SPTBN1). Based on the gene ontology database GO and KEGG pathway database, the molecular function, intracellular localization, and biological reactions and pathways of proteins encoded by drug target genes were determined. Combined with enrichment calculation, it is predicted that osteoporosis may play a role in biosynthetic processes, such as circulatory system, nervous system, energy metabolism, prolactin signal pathway, GnRH signaling pathway, neurotrophic factor signaling pathway and other pathway. The conclusion of this study is certain with the existing research results, and the new target and new pathway could also be used as a theoretical basis for the further verification of osteoporosis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Osteoporose/tratamento farmacológico , Polypodiaceae/química , Humanos , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Receptores da Calcitonina/metabolismo , Rizoma/química , Espectrina/metabolismo
4.
Exp Dermatol ; 26(9): 792-797, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28094886

RESUMO

Darier disease (DD) is a genetic skin disease that is associated with mutations in the ATP2A2 gene encoding the type 2 sarco/endoplasmic reticulum (ER) Ca2+ - ATPase (SERCA2). Mutations of this gene result in alterations of calcium homoeostasis, abnormal epidermal adhesion and dyskeratosis. Silencing of ATP2A2 in monolayer cell culture of keratinocytes reduces desmoplakin expression at the borders of cells and impacts cell adhesion. Here, we report establishment of a three-dimensional (3D) epidermal model of DD and use this model to evaluate peptide therapy with tuberoinfundibular peptide of 39 residues (TIP39) to normalize calcium transport. Gene silencing of ATP2A2 in keratinocytes grown in a 3D model resulted in dyskeratosis, partial parakeratosis and suprabasal clefts that resembled the histological changes seen in skin biopsies from patients with DD. TIP39, a peptide recently identified as a regulator of keratinocyte calcium transport, was then applied to this ATP2A2-silenced 3D epidermal model. In normal keratinocytes, TIP39 increased [Ca2+ ]i through the inositol trisphosphate (IP3) receptor pathway and stimulated differentiation. In monolayer ATP2A2-silenced keratinocytes, although TIP39 increased cytosolic calcium from the ER, the response was incomplete compared with its control. TIP39 was observed to reduce intercellular clefts of the gene-silenced epidermal model but did not significantly upregulate keratinocyte differentiation genes such as keratin 10 and filaggrin. These findings indicate that TIP39 is a modulator of ER calcium signalling and may be used as a potential strategy for improving aspects of DD.


Assuntos
Cálcio/metabolismo , Doença de Darier/metabolismo , Neuropeptídeos/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Epiderme/metabolismo , Proteínas Filagrinas , Humanos , Queratinócitos/metabolismo
5.
Biochem Pharmacol ; 127: 71-81, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012961

RESUMO

TIP39 ("tuberoinfundibular peptide of 39 residues") acts via the parathyroid hormone 2 receptor, PTH2, a Family B G protein-coupled receptor (GPCR). Despite the importance of GPCRs in human physiology and pharmacotherapy, little is known about the molecular details of the TIP39-PTH2 interaction. To address this, we utilised the different pharmacological profiles of TIP39 and PTH(1-34) at PTH2 and its related receptor PTH1: TIP39 being an agonist at the former but an antagonist at the latter, while PTH(1-34) activates both. A total of 23 site-directed mutations of PTH2, in which residues were substituted to the equivalent in PTH1, were made and pharmacologically screened for agonist activity. Follow-up mutations were analysed by radioligand binding and cAMP assays. A model of the TIP39-PTH2 complex was built and analysed using molecular dynamics. Only Tyr318-Ile displayed reduced TIP39 potency, despite having increased PTH(1-34) potency, and further mutagenesis and analysis at this site demonstrated that this was due to reduced TIP39 affinity at Tyr318-Ile (pIC50=6.01±0.03) compared with wild type (pIC50=7.81±0.03). The hydroxyl group of the Tyr-318's side chain was shown to be important for TIP39 binding, with the Tyr318-Phe mutant displaying 13-fold lower affinity and 35-fold lower potency compared with wild type. TIP39 truncated by up to 5 residues at the N-terminus was still sensitive to the mutations at Tyr-318, suggesting that it interacts with a region within TIP39(6-39). Molecular modelling and molecular dynamics simulations suggest that the selectivity is based on an interaction between the Tyr-318 hydroxyl group with the carboxylate side chain of Asp-7 of the peptide.


Assuntos
Neuropeptídeos/farmacologia , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutação , Neuropeptídeos/química , Neuropeptídeos/genética , Estrutura Secundária de Proteína , Ensaio Radioligante , Receptor Tipo 1 de Hormônio Paratireóideo/química , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/agonistas , Receptor Tipo 2 de Hormônio Paratireóideo/química , Tirosina/química , Tirosina/genética
6.
J Invest Dermatol ; 136(7): 1449-1459, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27000502

RESUMO

Genes related to the parathyroid hormone (PTH) influence cutaneous immune defense and development, but the full functions of the PTH family in cutaneous biology remain incompletely understood. In this study, we examined the expression and potential functions of the PTH second receptor (PTH2R) and its ligand, the tuberoinfundibular peptide of 39 residues (TIP39), in the skin. TIP39 and PTH2R mRNA and protein were detectable in both human and mouse skin, and in cultured keratinocytes and adipocytes. TIP39 was observed in the basal layer of human skin, whereas PTH2R was detected in the spinous to granular layer. The subcellular localization of TIP39 in keratinocytes changed during calcium-induced differentiation and shifted to colocalize with PTH2R at the membrane. The addition of recombinant TIP39 to normal human keratinocytes in culture induced an increase in intercellular calcium and triggered aspects of terminal differentiation including decreased keratin-14 and increased involucrin expression. Consistent with these observations, PTH2R(-/-) mice were observed to have increased epidermal thickness. In summary, identification of TIP39 and its receptor in the epidermis reveals an additional PTH family member that is expressed in the skin and may influence keratinocyte function.


Assuntos
Cálcio/metabolismo , Diferenciação Celular , Queratinócitos/citologia , Neuropeptídeos/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Adipócitos/citologia , Animais , Retículo Endoplasmático , Proteínas Filagrinas , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Queratina-14/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Pele/metabolismo
7.
Cell Signal ; 28(3): 204-213, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724218

RESUMO

Parathyroid hormone (PTH) is secreted from the parathyroid glands in response to low plasma calcium levels. Besides its classical actions on bone and kidney, PTH may have other important effects, including metabolic effects, as suggested for instance by increased prevalence of insulin resistance and type 2 diabetes in patients with primary hyperparathyroidism. Moreover, secondary hyperparathyroidism may contribute to the metabolic derangements that characterize states of vitamin D deficiency. PTH has been shown to induce adipose tissue lipolysis, but the details of the lipolytic action of PTH have not been described. Here we used primary mouse adipocytes to show that intact PTH (1-84) as well as the N-terminal fragment (1-37) acutely stimulated lipolysis in a dose-dependent manner, whereas the C-terminal fragment (38-84) was without lipolytic effect. The lipolytic action of PTH was paralleled by phosphorylation of known protein kinase A (PKA) substrates, i.e. hormone-sensitive lipase (HSL) and perilipin. The phosphorylation of HSL in response to PTH occurred at the known PKA sites S563 and S660, but not at the non-PKA site S565. PTH-induced lipolysis, as well as phosphorylation of HSL at S563 and S660, was blocked by both the PKA-inhibitor H89 and the adenylate cyclase inhibitor MDL-12330A, whereas inhibitors of extracellular-regulated kinase (ERK), protein kinase B (PKB), AMP-activated protein kinase (AMPK) and Ca(2+)/calmodulin-dependent protein kinase (CaMK) had little or no effect. Inhibition of phosphodiesterase 4 (PDE4) strongly potentiated the lipolytic action of PTH, whereas inhibition of PDE3 had no effect. Our results show that the lipolytic action of PTH is mediated by the PKA signaling pathway with no or minor contribution of other signaling pathways and, furthermore, that the lipolytic action of PTH is limited by simultaneous activation of PDE4. Knowledge of the signaling pathways involved in the lipolytic action of PTH is important for our understanding of how metabolic derangements develop in states of hyperparathyroidism, including vitamin D deficiency.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Lipólise/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Esterol Esterase/metabolismo , Inibidores de Adenilil Ciclases/farmacologia , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Iminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Perilipina-1 , Inibidores da Fosfodiesterase 4/farmacologia , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
J Bone Miner Metab ; 33(1): 9-15, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24378925

RESUMO

In the elderly, degenerative changes in the lumbar spine are common, contributing to falsely elevated bone mineral density (BMD) values. The parathyroid hormone (PTH) system plays an important role in the regulation of bone turnover and we explore the hypothesis that polymorphisms (SNPs) within genes in this pathway (PTH, PTHLH, PTH1R and PTH2R) contribute to degenerative manifestations of the spine in elderly women. The study included 1,004 Swedish women aged 75 years from the population-based OPRA cohort who attended follow-up at 5 and 10 years. Lumbar spine BMD was assessed by dual energy X-ray absorptiometry (DXA) and each individual vertebra was evaluated visually on the DXA image for apparent degenerative manifestations. Six SNPs in PTH and 3 SNPs each in PTH1R, PTH2R and PTHLH were analysed. Among women with degenerative manifestations at the lumbar spine, there was an over-representation at baseline of those carrying the PTH2R SNP rs897083 A-allele (p = 0.0021; odds ratio 1.5 95 % CI 1.2-2.0) and across the duration of follow-up (p = 0.0008). No association was observed between degenerative manifestations and variation in the other genes. None of the PTH hormone system genes were associated with vertebral fracture. Variation in the PTH2R gene (Chr2q34, rs897083) may contribute to the age-associated degenerative manifestations that develop at the lumbar spine.


Assuntos
Regulação da Expressão Gênica , Vértebras Lombares/patologia , Polimorfismo de Nucleotídeo Único , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Absorciometria de Fóton , Idoso , Envelhecimento , Alelos , Densidade Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Estudos de Coortes , Feminino , Genótipo , Homozigoto , Humanos , Osteoporose Pós-Menopausa/genética , Proteína Relacionada ao Hormônio Paratireóideo/genética , Pós-Menopausa , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Fraturas da Coluna Vertebral/genética , Suécia
9.
Proc Natl Acad Sci U S A ; 110(32): 13156-61, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878240

RESUMO

Nociceptive information is modulated by a large number of endogenous signaling agents that change over the course of recovery from injury. This plasticity makes understanding regulatory mechanisms involved in descending inhibition of pain scientifically and clinically important. Neurons that synthesize the neuropeptide TIP39 project to many areas that modulate nociceptive information. These areas are enriched in its receptor, the parathyroid hormone 2 receptor (PTH2R). We previously found that TIP39 affects several acute nociceptive responses, leading us to now investigate its potential role in chronic pain. Following nerve injury, both PTH2R and TIP39 knockout mice developed less tactile and thermal hypersensitivity than controls and returned to baseline sensory thresholds faster. Effects of hindpaw inflammatory injury were similarly decreased in knockout mice. Blockade of α-2 adrenergic receptors increased the tactile and thermal sensitivity of apparently recovered knockout mice, returning it to levels of neuropathic controls. Mice with locus coeruleus (LC) area injection of lentivirus encoding a secreted PTH2R antagonist had a rapid, α-2 reversible, apparent recovery from neuropathic injury similar to the knockout mice. Ablation of LC area glutamatergic neurons led to local PTH2R-ir loss, and barley lectin was transferred from local glutamatergic neurons to GABA interneurons that surround the LC. These results suggest that TIP39 signaling modulates sensory thresholds via effects on glutamatergic transmission to brainstem GABAergic interneurons that innervate noradrenergic neurons. TIP39's normal role may be to inhibit release of hypoalgesic amounts of norepinephrine during chronic pain. The neuropeptide may help maintain central sensitization, which could serve to enhance guarding behavior.


Assuntos
Inflamação/fisiopatologia , Neuralgia/fisiopatologia , Neuropeptídeos/fisiologia , Receptor Tipo 2 de Hormônio Paratireóideo/fisiologia , Animais , Feminino , Neurônios GABAérgicos/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Ácido Glutâmico/metabolismo , Membro Posterior/patologia , Membro Posterior/fisiopatologia , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Inflamação/genética , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neuralgia/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Medição da Dor , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
10.
Am J Physiol Endocrinol Metab ; 303(12): E1489-501, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23092913

RESUMO

The human parathyroid hormone type 2 receptor (PTH2R) is activated by PTH and by tuberoinfundibular peptide of 39 residues (TIP39), the latter likely acting as its natural ligand. Although the receptor is expressed at highest levels in the nervous system, we have observed that both PTH2R and TIP39 are expressed in the newborn mouse growth plate, with the receptor localizing in the resting zone and the ligand TIP39 localizing exclusively in prehypertrophic and hypertrophic chondrocytes. To address the role of PTH2R in postnatal skeletal growth and development, Col2a1-hPTH2R (PTH2R-Tg) transgenic mice were generated. The mice were viable and of nearly normal size at birth. Expression of the transgene in the growth plate was limited to chondrocytes. We found that chondrocyte proliferation was decreased, as determined by in vivo BrdU labeling of proliferating chondrocytes and CDK4 and p21 expression in the growth plate of Col2a1-hPTH2R transgenic mice. Similarly, the differentiation and maturation of chondrocytes was delayed, as characterized by decreased Sox9 expression and weaker immunostaining for the chondrocyte differentiation markers collagen type II and type X and proteoglycans. As well, there was altered expression of Gdf5, Wdr5, and ß-catenin, factors implicated in chondrocyte maturation, proliferation, and differentiation.These effects impacted on the process of endochondral ossification, resulting in delayed formation of the secondary ossification center, and diminished trabecular bone volume. The findings substantiate a role for PTH2R signaling in postnatal growth plate development and subsequent bone mass acquisition.


Assuntos
Doenças do Desenvolvimento Ósseo/metabolismo , Osso e Ossos/metabolismo , Condrócitos/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Doenças do Desenvolvimento Ósseo/patologia , Osso e Ossos/patologia , Diferenciação Celular , Proliferação de Células , Condrócitos/patologia , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Lâmina de Crescimento/metabolismo , Lâmina de Crescimento/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Oncogênica p21(ras)/metabolismo , Otosclerose/metabolismo , Otosclerose/patologia , Receptor Tipo 2 de Hormônio Paratireóideo/biossíntese , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Fatores de Transcrição SOX9/metabolismo , Via de Sinalização Wnt
11.
Am J Physiol Renal Physiol ; 303(8): F1157-65, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22896038

RESUMO

Parathyroid hormone (PTH) is positively coupled to the generation of cAMP via its actions on the PTH1R and PTH2R receptors. Renin secretion from juxtaglomerular (JG) cells is stimulated by elevated intracellular cAMP, and every stimulus that increases renin secretion is thought to do so via increasing cAMP. Thus we hypothesized that PTH increases renin release from primary cultures of mouse JG cells by elevating intracellular cAMP via the PTH1R receptor. We found PTH1R, but not PTH2R, mRNA expressed in JG cells. While PTH increased JG cell cAMP content from (log(10) means ± SE) 3.27 ± 0.06 to 3.92 ± 0.12 fmol/mg protein (P < 0.001), it did not affect renin release. The PTH1R-specific agonist, parathyroid hormone-related protein (PTHrP), also increased JG cell cAMP from 3.13 ± 0.09 to 3.93 ± 0.09 fmol/mg protein (P < 0.001), again without effect on renin release. PTH2R receptor agonists had no effect on cAMP or renin release. PTHrP increased cAMP in the presence of both low and high extracellular calcium from 3.31 ± 0.17 to 3.83 ± 0.20 fmol/mg protein (P < 0.01) and from 3.29 ± 0.18 to 3.63 ± 0.22 fmol/mg protein (P < 0.05), respectively, with no effect on renin release. PTHrP increased JG cell cAMP in the presence of adenylyl cyclase-V inhibition from 2.85 ± 0.17 to 3.44 ± 0.14 fmol/mg protein (P < 0.001) without affecting renin release. As a positive control, forskolin increased JG cell cAMP from 3.39 ± 0.13 to 4.48 ± 0.07 fmol/mg protein (P < 0.01) and renin release from 2.96 ± 0.10 to 3.29 ± 0.08 ng ANG I·mg prot(-1)·h(-1) (P < 0.01). Thus PTH increases JG cell cAMP via non-calcium-sensitive adenylate cyclases without affecting renin release. These data suggest compartmentalization of cAMP signaling in JG cells.


Assuntos
AMP Cíclico/metabolismo , Sistema Justaglomerular/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Renina/metabolismo , Animais , Células Cultivadas , Sistema Justaglomerular/citologia , Sistema Justaglomerular/metabolismo , Camundongos , Hormônio Paratireóideo/metabolismo
12.
Regul Pept ; 171(1-3): 35-42, 2011 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-21756942

RESUMO

Recent data suggests that chronic renal failure and hyperparathyroidism are associated with sympathetic overactivity. Since peptide hormones are known to modulate norepinephrine (NE) release by activating prejunctional receptors, this study investigates whether parathyroid hormone fragment (1-34) (hPTH(1-34)) increases neuronal NE release in human heart and kidney. Using specific PTH-receptor agonists and antagonists, this study furthermore highlights functional differences between PTH1 and PTH2 receptors. Human atrial and renal tissues were incubated with [(3)H]-NE and superfused. Three electrical stimulations (5Hz, 1min) induced a stable [(3)H]-NE release which was taken as an index of endogenous NE release. RT-PCR with specific primers for PTH1- and PTH2-receptor was performed in heart and kidney. hPTH(1-34) (0.01-0.1µmol/L) and a stable analog of its second messenger cAMP (8-bromo-cAMP) increased [(3)H]-NE release in human atria. This facilitatory effect of PTH was also observed in human renal cortex. The PTH1-receptor antagonist (D-Trp(12), Tyr(34))-pTH-(7-34) (0.5µmol/L) abolished the effect of hPTH(1-34). This data was verified using isolated perfused mouse kidneys. Tuberoinfundibular peptide of 39 residues (TIP-39) (0.1nmol/L-0.1µmol/L) decreased [(3)H]-NE release in atria. PTH1- and PTH2-receptor expressions were demonstrated in human heart and kidney. Moreover, a splice variant of the PTH2-receptor was detected in human kidney. In conclusion, PTH is able to facilitate NE release in human atria and renal cortex by activation of PTH1-receptors. The highly increased PTH levels that can be observed in chronic renal failure might be one contributor for the elevated sympathetic nerve activity and the associated cardiovascular mortality in patients with end stage renal disease.


Assuntos
Coração/metabolismo , Rim/metabolismo , Neuropeptídeos/metabolismo , Norepinefrina/metabolismo , Hormônio Paratireóideo/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Cocaína/administração & dosagem , Cocaína/farmacologia , Corticosterona/administração & dosagem , Corticosterona/farmacologia , Humanos , Falência Renal Crônica/etiologia , Camundongos , Pessoa de Meia-Idade , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptor Tipo 1 de Hormônio Paratireóideo/antagonistas & inibidores , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Receptor Tipo 2 de Hormônio Paratireóideo/agonistas , Receptor Tipo 2 de Hormônio Paratireóideo/antagonistas & inibidores , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Transmissão Sináptica/fisiologia
13.
J Neuroendocrinol ; 23(7): 612-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21535248

RESUMO

During the lactation period, mothers have a variety of adaptive changes in brain physiology and behaviour that allow them to properly raise their pups. The exact circuitries and mechanisms responsible for these changes are not fully understood. Recent evidence suggests that the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39) and its receptor, the parathyroid hormone 2 receptor (PTH2-R), contribute to these mechanisms. To further investigate this idea, we evaluated the growth rate of pups from dams with a genetically inactivated PTH2-R (PTH2-R-KO), as well as maternal behavioural and neuroendocrine parameters. We observed that PTH2-R-KO-reared pups had a slowed growth rate. This was associated with a reduced volume of milk yielded by PTH2-R-KO dams after 30-min suckling compared to wild-type (WT) dams when pups were returned after 5 h of separation. Our data suggest a reduced sensitivity of PTH2-R-KO dams to pup stimulation. We also observed a significant reduction in suckling-induced c-Fos expression in the paraventricular hypothalamic nucleus and signs of lower prolactin levels in the PTH2-R-KO dams. Our data suggest that the reduced growth rate of PTH2-R-KO-reared pups was likely the result of alterations in the milk-production pathway rather than modifications in behaviour. Although PTH2-R-KO dams showed increased anxiety in the elevated zero-maze test, no differences from WT dams in maternal behaviour were observed. Taken together, our findings suggest the involvement of the TIP39/PTH2-R system in the pathways involved in the successful development of the pups.


Assuntos
Crescimento e Desenvolvimento/genética , Mães , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Animais , Animais Recém-Nascidos , Animais Lactentes , Ansiedade/genética , Tamanho Corporal/genética , Feminino , Crescimento e Desenvolvimento/fisiologia , Lactação/genética , Lactação/fisiologia , Masculino , Comportamento Materno/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/metabolismo , Neuropeptídeos/fisiologia , Gravidez , Prolactina/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/fisiologia
14.
J Comp Neurol ; 518(21): 4375-94, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20853513

RESUMO

Neurons in the subparafascicular area at the caudal border of the thalamus that contain the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39) densely innervate several hypothalamic areas, including the paraventricular nucleus (PVN). These areas contain a matching distribution of TIP39's receptor, the parathyroid hormone receptor 2 (PTH2R). Frequent PTH2R coexpression with a vesicular glutamate transporter (VGlut2) suggests that TIP39 could presynaptically regulate glutamate release. By using immunohistochemistry we found CRH-ir neurons surrounded by PTH2R-ir fibers and TIP39-ir axonal projections in the PVN area of the mouse brain. Labeling hypothalamic neuroendocrine neurons by peripheral injection of fluorogold in PTH2R-lacZ knock-in mice showed that most PTH2Rs are on PVN and peri-PVN interneurons and not on neuroendocrine cells. Double fluorescent in situ hybridization revealed a high level of coexpression between PTH2R and VGlut2 mRNA by cells located in the PVN and nearby brain areas. Local TIP39 infusion (100 pmol) robustly increased pCREB-ir in the PVN and adjacent perinuclear zone. It also increased plasma corticosterone and decreased plasma prolactin. These effects of TIP39 on pCREB-ir, corticosterone, and prolactin were abolished by coinfusion of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonopentanoic acid (AP-5; 30 pmol each) and were absent in PTH2R knockout mice. Basal plasma corticosterone was slightly decreased in TIP39 knockout mice just before onset of their active phase. The present data indicate that the TIP39 ligand/PTH2 receptor system provides facilitatory regulation of the hypothalamic-pituitary-adrenal axis via hypothalamic glutamatergic neurons and that it may regulate other neuroendocrine systems by a similar mechanism.


Assuntos
Ácido Glutâmico/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Sistema Hipófise-Suprarrenal/metabolismo , Animais , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Neuropeptídeos/genética , Receptor Tipo 2 de Hormônio Paratireóideo/genética , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
15.
J Neurochem ; 112(2): 521-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19891737

RESUMO

We have previously demonstrated that parathyroid hormone 2 (PTH2) receptors are expressed in dorsal root ganglion (DRG) neurons and that its endogenous agonist tuberoinfundibular peptide of 39 residues (TIP39) causes nociceptive paw flexor responses after intraplantar administration. Here we found that the PTH2 receptor is selectively localized on myelinated A-, but not unmyelinated C-fibers using immunohistochemical labeling, based on PTH2 receptor expression on antibody N52-positive medium/large-sized DRG neurons, but not on TRPV1, substance P, P2X(3) receptor or isolectin B4-binding protein-positive small-sized DRG neurons. Pharmacological studies showed that TIP39-induced nociceptive responses were mediated by activation of G(s) and cAMP-dependent protein kinase. We also found that nociceptive responses induced by TIP39- or the cAMP analog 8-bromo-cAMP were significantly greater following partial sciatic nerve injury induced neuropathic pain, without changes in PTH2 receptor expression. Together these data suggest that activation of PTH2 receptors stimulates nociceptive A-fiber through G(s)-cAMP-dependent protein kinase signaling, and this pathway has elevated sensitization following nerve injury.


Assuntos
Fibras Nervosas Mielinizadas/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Ciática/patologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Capsaicina/farmacologia , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Gânglios Espinais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ácido Glutâmico/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuropeptídeos/farmacologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Medição da Dor/métodos , Piperidinas/farmacologia , Receptor Tipo 2 de Hormônio Paratireóideo/deficiência , Reflexo/efeitos dos fármacos , Ciática/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
16.
Neuroscience ; 162(1): 128-47, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19401215

RESUMO

Parathyroid hormone receptor 2 (PTH2R) and its ligand, tuberoinfundibular peptide of 39 residues (TIP39) constitute a neuromodulator system implicated in endocrine and nociceptive regulation. We now describe the presence and distribution of the PTH2R and TIP39 in the brain of primates using a range of tissues and ages from macaque and human brain. In situ hybridization histochemistry of TIP39 mRNA, studied in young macaque brain, due to its possible decline beyond late postnatal ages, was present only in the thalamic subparafascicular area and the pontine medial paralemniscal nucleus. In contrast, in situ hybridization histochemistry in macaque identified high levels of PTH2R expression in the central amygdaloid nucleus, medial preoptic area, hypothalamic paraventricular and periventricular nuclei, medial geniculate, and the pontine tegmentum. PTH2R mRNA was also detected in several human brain areas by RT-PCR. The distribution of PTH2R-immunoreactive fibers in human, determined by immunocytochemistry, was similar to that in rodents, including dense fiber networks in the medial preoptic area, hypothalamic paraventricular, periventricular and infundibular (arcuate) nuclei, lateral hypothalamic area, median eminence, thalamic paraventricular nucleus, periaqueductal gray, lateral parabrachial nucleus, nucleus of the solitary tract, sensory trigeminal nuclei, medullary dorsal reticular nucleus, and dorsal horn of the spinal cord. Co-localization suggested that PTH2R fibers are glutamatergic, and that TIP39 may directly influence hypophysiotropic somatostatin containing and indirectly influence corticotropin releasing-hormone containing neurons. The results demonstrate that TIP39 and the PTH2R are expressed in the brain of primates in locations that suggest involvement in regulation of fear, anxiety, reproductive behaviors, release of pituitary hormones, and nociception.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Neuropeptídeos/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Criança , Hormônio Liberador da Corticotropina/metabolismo , Feminino , Humanos , Macaca mulatta , Masculino , Pessoa de Meia-Idade , Neurônios/metabolismo , Somatostatina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
17.
J Comp Neurol ; 502(4): 563-83, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17394159

RESUMO

Tuberoinfundibular peptide of 39 residues (TIP39) was identified as a potent parathyroid hormone 2 receptor (PTH2R) agonist. Existing anatomical data also support the suggestion that TIP39 is the PTH2R's endogenous ligand, but a comprehensive comparison of TIP39 and PTH2R distributions has not been performed. In the present study, we compared the distributions of TIP39 and PTH2R on adjacent mouse brain sections. In addition, we determined the locations of PTH2R-expressing cell bodies by in situ hybridization histochemistry and by labeling beta-galactosidase driven by the PTH2R promoter in knockin mice. An excellent correlation was found between the distributions of TIP39-containing fibers and PTH2R-containing cell bodies and fibers throughout the brain. TIP39 and the PTH2R are abundant in medial prefrontal, insular, and ectorhinal cortices, the lateral septal nucleus, the bed nucleus of the stria terminalis, the fundus striati, the amygdala, the ventral subiculum, the hypothalamus, midline and intralaminar thalamic nuclei, the medial geniculate body, the periaqueductal gray, the ventral tegmental area, the superior and inferior colliculi, the parabrachial nuclei, the locus coeruleus, subcoeruleus and periolivary areas, and the nucleus of the solitary tract. Furthermore, even the subregional distribution of TIP39- and PTH2R-immunoreactive fibers in these regions showed remarkable similarities, providing anatomical evidence that TIP39 may act on the PTH2R. Based on these observations and on previous pharmacological data, we propose that TIP39 is an endogenous ligand of the PTH2R and that they form a neuromodulator system, which is optimally positioned to regulate limbic, endocrine, and auditory brain functions. Published 2007 Wiley-Liss, Inc.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Encéfalo/anatomia & histologia , Mapeamento Encefálico , Feminino , Genes Reporter , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Transgênicos , Vias Neurais/anatomia & histologia , Vias Neurais/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/genética
18.
J Comp Neurol ; 498(3): 375-89, 2006 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16871538

RESUMO

Tuberoinfundibular peptide of 39 residues (TIP39) is a selective agonist of the parathyroid hormone 2 (PTH2) receptor. The topographical distributions of TIP39 and the PTH2 receptor in the brain, described for young male rats, suggested that TIP39 has limbic and endocrine functions. In the present study, we investigated the expression of TIP39 and the PTH2 receptor in male and female rat brain during postnatal development by means of in situ hybridization histochemistry, quantitative RT-PCR, and immunocytochemistry. TIP39's distribution and expression levels are similar in young female and male brains. TIP39 mRNA levels peak at postnatal day 14 and subsequently decline both in the subparafascicular area and in the medial paralemniscal nucleus, the two major sites where TIP39 is synthesized. A greater developmental decrease in TIP39 expression in males leads to greater levels in older females than older males. The decrease is partially reversed by prepubertal but not postpubertal gonadectomy. TIP39 peptide levels in cell bodies change in parallel with mRNA levels, whereas TIP39 appears and disappears somewhat later in nerve fibers. In addition, TIP39 peptide levels are also sexually dimorphic in older rats. In contrast, PTH2 receptor expression in the brain does not decrease during puberty and is not sexually dimorphic even in old animals. The appearance of TIP39 during early, and decline during late, postnatal development together with the gender-dependent levels in mature animals suggests that TIP39 may play a role in sexual maturation or gender-specific functions.


Assuntos
Envelhecimento/fisiologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Neuropeptídeos/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Caracteres Sexuais , Animais , Animais Recém-Nascidos , Encéfalo/anatomia & histologia , Regulação para Baixo/fisiologia , Feminino , Gônadas/metabolismo , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Diferenciação Sexual/fisiologia , Comportamento Sexual Animal/fisiologia
19.
Neurochem Res ; 31(2): 227-36, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16570212

RESUMO

This study reports the distribution of parathyroid hormone 2 receptor (PTH2R)-immunoreactive fibers in the hypothalamus using fluorescent amplification immunocytochemistry. The pattern of immunolabeling is strikingly similar to that of tuberoinfundibular peptide of 39 residues (TIP39), a peptide recently purified from bovine hypothalamus and proposed to be a ligand of the PTH2R based on pharmacological data. To investigate the anatomical basis of suggestions that TIP39 affects the secretion of several hypophysiotropic hormones we performed double-labeling studies and found that only somatostatin fibers contain PTH2R in the median eminence, which suggests that somatostatin release could be directly regulated via the PTH2R. However, several hypothalamic nuclei projecting to the median eminence contain a high density of both TIP39 and PTH2R fibers and terminals. We report here, that the PTH2R terminals also contain vesicular glutamate transporter-2, and suggest that TIP39 terminals are ideally positioned to modulate glutamatergic influences on hypophysiotropic neurons.


Assuntos
Hipotálamo/metabolismo , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Animais , Imuno-Histoquímica , Masculino , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
20.
Biochim Biophys Acta ; 1714(1): 1-10, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16023614

RESUMO

The membrane interaction of tuberoinfundibular peptide of 39 residues (TIP39), which selectively activates the parathyroid hormone 2 (PTH2) receptor (PTH2-R), has been studied by fluorescence and NMR spectroscopic techniques. Membrane binding would be the first step of a potential membrane-bound activation pathway which has been discussed for a number of neuropeptides and G-protein coupled receptors (GPCRs). Here, the orientation of TIP39 on the surface of membrane mimicking dodecyl-phosphocholine (DPC) micelles was monitored by Photo-CIDNP (chemically-induced dynamic nuclear polarization) NMR which indicates that both Trp25 and Tyr29 face the membrane surface. However, the PTH2 receptor is located in the hypothalamus membrane, for which a more realistic model is required. Therefore, liposomes containing different mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS) and cholesterol were used for fluorescence and solid-state NMR spectroscopy. Fluorescence spectroscopy showed that a large proportion of TIP39 added to these liposomes binds to the membrane surface. Proton-decoupled 31P-MAS NMR is used to investigate the potential role of individual lipid headgroups in peptide binding. Significant line-broadening in POPC/cholesterol and POPC/POPS liposomes upon TIP39 association supports a surface binding model and indicates an interaction which is slightly mediated by the presence of POPS and cholesterol. Furthermore, smoothed order parameter profiles obtained from 2H powder spectra of liposomes containing POPC-d31 as bulk lipid in addition to POPS and cholesterol show that TIP39 does not penetrate beyond the headgroup region. Spectra of similar bilayers with POPS-d31 show a small increase in segmental chain order parameters which is interpreted as a small but specific interaction between the peptide and POPS. Our data demonstrate that TIP39 belongs to a class of signaling peptides that associate weakly with the membrane surface but do not proceed to insert into the membrane hydrophobic compartment.


Assuntos
Membranas Artificiais , Neuropeptídeos/química , Animais , Bovinos , Colesterol/química , Micelas , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidilserinas/química , Receptor Tipo 2 de Hormônio Paratireóideo/metabolismo , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...