Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 7058, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36411280

RESUMO

Muscle regeneration requires the coordination of muscle stem cells, mesenchymal fibro-adipogenic progenitors (FAPs), and macrophages. How macrophages regulate the paracrine secretion of FAPs during the recovery process remains elusive. Herein, we systemically investigated the communication between CD206+ M2-like macrophages and FAPs during the recovery process using a transgenic mouse model. Depletion of CD206+ M2-like macrophages or deletion of CD206+ M2-like macrophages-specific TGF-ß1 gene induces myogenesis and muscle regeneration. We show that depletion of CD206+ M2-like macrophages activates FAPs and activated FAPs secrete follistatin, a promyogenic factor, thereby boosting the recovery process. Conversely, deletion of the FAP-specific follistatin gene results in impaired muscle stem cell function, enhanced fibrosis, and delayed muscle regeneration. Mechanistically, CD206+ M2-like macrophages inhibit the secretion of FAP-derived follistatin via TGF-ß signaling. Here we show that CD206+ M2-like macrophages constitute a microenvironment for FAPs and may regulate the myogenic potential of muscle stem/satellite cells.


Assuntos
Adipogenia , Folistatina , Animais , Camundongos , Macrófagos , Camundongos Transgênicos , Músculos , Receptor de Manose/imunologia
2.
Front Immunol ; 12: 765034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721436

RESUMO

The mannose receptor is a member of the C-type lectin (CLEC) family, which can bind and internalize a variety of endogenous and pathogen-associated ligands. Because of these properties, its role in endocytosis as well as antigen processing and presentation has been studied intensively. Recently, it became clear that the mannose receptor can directly influence the activation of various immune cells. Cell-bound mannose receptor expressed by antigen-presenting cells was indeed shown to drive activated T cells towards a tolerogenic phenotype. On the other hand, serum concentrations of a soluble form of the mannose receptor have been reported to be increased in patients suffering from a variety of inflammatory diseases and to correlate with severity of disease. Interestingly, we recently demonstrated that the soluble mannose receptor directly promotes macrophage proinflammatory activation and trigger metaflammation. In this review, we highlight the role of the mannose receptor and other CLECs in regulating the activation of immune cells and in shaping inflammatory responses.


Assuntos
Inflamação/imunologia , Receptor de Manose/imunologia , Receptores de Superfície Celular/imunologia , Biomarcadores , Humanos
3.
Signal Transduct Target Ther ; 6(1): 357, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34667145

RESUMO

Macrophages are among the most abundant immune cells in colorectal cancer (CRC). Re-educating tumor-associated macrophages (TAMs) to switch from protumoral to anti-tumoral activity is an attractive treatment strategy that warrants further investigation. However, little is known about the key pathway that is activated in TAMs. In this study, infitrating CD206+ TAMs in CRC were sorted and subjected to RNA-seq analysis. Differentially expressed genes were found to be enriched in unfolded protein response/endoplasmic reticulum stress response processes, and XBP1 splicing/activation was specifically observed in TAMs. XBP1 activation in TAMs promoted the growth and metastasis of CRC. Ablation of XBP1 inhibited the expression of the pro-tumor cytokine signature of TAMs, including IL-6, VEGFA, and IL-4. Simultaneously, XBP1 depletion could directly inhibit the expression of SIRPα and THBS1, thereby blocking "don't eat me" recognition signals and enhancing phagocytosis. Therapeutic XBP1 gene editing using AAV2-sgXBP1 enhanced the anti-tumor activity. Together, XBP1 activation in TAMs drives CRC progression by elevating pro-tumor cytokine expression and secretion, as well as inhibiting macrophage phagocytosis. Targeting XBP1 signaling in TAMs may be a potential strategy for CRC therapy.


Assuntos
Antígenos de Diferenciação/genética , Neoplasias Colorretais/genética , Receptores Imunológicos/genética , Trombospondinas/genética , Macrófagos Associados a Tumor/transplante , Proteína 1 de Ligação a X-Box/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Estresse do Retículo Endoplasmático/genética , Feminino , Regulação Neoplásica da Expressão Gênica/imunologia , Células HCT116 , Xenoenxertos , Humanos , Interleucina-4 , Interleucina-6/genética , Masculino , Receptor de Manose/imunologia , Camundongos , Pessoa de Meia-Idade , Fagocitose , RNA-Seq , Macrófagos Associados a Tumor/imunologia , Resposta a Proteínas não Dobradas/genética , Fator A de Crescimento do Endotélio Vascular/genética , Proteína 1 de Ligação a X-Box/antagonistas & inibidores , Proteína 1 de Ligação a X-Box/imunologia
4.
Adv Sci (Weinh) ; 8(10): 2004574, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34026453

RESUMO

Tumor-associated macrophages (TAMs) promote the immune suppressive microenvironment inside tumors and are, therefore, considered as a promising target for the next generation of cancer immunotherapies. To repolarize their phenotype into a tumoricidal state, the Toll-like receptor 7/8 agonist imidazoquinoline IMDQ is site-specifically and quantitatively coupled to single chain antibody fragments, so-called nanobodies, targeting the macrophage mannose receptor (MMR) on TAMs. Intravenous injection of these conjugates result in a tumor- and cell-specific delivery of IMDQ into MMRhigh TAMs, causing a significant decline in tumor growth. This is accompanied by a repolarization of TAMs towards a pro-inflammatory phenotype and an increase in anti-tumor T cell responses. Therefore, the therapeutic benefit of such nanobody-drug conjugates may pave the road towards effective macrophage re-educating cancer immunotherapies.


Assuntos
Imidazóis/química , Neoplasias Pulmonares/tratamento farmacológico , Receptor de Manose/imunologia , Quinolinas/química , Anticorpos de Domínio Único/imunologia , Macrófagos Associados a Tumor/imunologia , Animais , Modelos Animais de Doenças , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Glicoproteínas de Membrana/agonistas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Receptor 6 Toll-Like/agonistas , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...