Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
1.
Int Immunopharmacol ; 136: 112369, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38824903

RESUMO

Estrogen and related receptors have been shown to have a significant impact on human development, reproduction, metabolism and immune regulation and to play a critical role in tumor development and treatment. Traditionally, the nuclear estrogen receptors (nERs) ERα and ERß have been thought to be involved in mediating the estrogenic effects. However, our group and others have previously demonstrated that the G protein-coupled estrogen receptor (GPER) is the third independent ER, and estrogen signaling mediated by GPER is known to play an important role in normal physiology and a variety of abnormal diseases. Interestingly, recent studies have progressively revealed GPER involvement in the maintenance of the normal immune system, abnormal immune diseases, and inflammatory lesions, which may be of significant clinical value primarily in the immunotherapy of tumors. In this article, we review current advances in GPER-related immunomodulators and provide a theoretical basis and potential clinical targets to ameliorate immune-related diseases and immunotherapy for tumors.


Assuntos
Neoplasias , Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/imunologia , Receptores de Estrogênio/metabolismo , Animais , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Transdução de Sinais , Estrogênios/metabolismo
2.
Nat Commun ; 15(1): 5255, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898050

RESUMO

GPRC5D is an atypical Class C orphan G protein-coupled receptor. Its high expression on the surface of multiple myeloma cells has rendered it an attractive target for therapeutic interventions, including monoclonal antibodies, CAR-T cells, and T-cell engagers. Despite its therapeutic potential, the insufficient understanding regarding of the receptor's structure and antibody recognition mechanism has impeded the progress of effective therapeutic development. Here, we present the structure of GPRC5D in complex with a preclinical-stage single-chain antibody (scFv). Our structural analysis reveals that the GPRC5D presents a close resemblance to the typical Class C GPCRs in the transmembrane region. We identify a distinct head-to-head homodimer arrangement and interface mainly involving TM4, setting it apart from other Class C homo- or hetero-dimers. Furthermore, we elucidate the binding site engaging a sizable extracellular domain on GPRC5D for scFv recognition. These insights not only unveil the distinctive dimer organization of this unconventional Class C GPCR but also hold the potential to advance drug development targeting GPRC5D for the treatment of multiple myeloma.


Assuntos
Mieloma Múltiplo , Multimerização Proteica , Receptores Acoplados a Proteínas G , Anticorpos de Cadeia Única , Humanos , Mieloma Múltiplo/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Ligação Proteica , Sítios de Ligação , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química
4.
Curr Med Sci ; 44(3): 475-484, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748372

RESUMO

Proton-activated G protein-coupled receptors (GPCRs), initially discovered by Ludwig in 2003, are widely distributed in various tissues. These receptors have been found to modulate the immune system in several inflammatory diseases, including inflammatory bowel disease, atopic dermatitis, and asthma. Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH. This detection triggers downstream signaling pathways within the cells, ultimately influencing the function of immune cells. In this review, we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions.


Assuntos
Imunomodulação , Inflamação , Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Humanos , Inflamação/metabolismo , Inflamação/imunologia , Animais , Prótons , Asma/imunologia , Asma/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Concentração de Íons de Hidrogênio
5.
Sci Signal ; 17(837): eadq4734, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771919

RESUMO

Antibody fragments can act as pharmacological tools to modulate the functions of G protein-coupled receptors.


Assuntos
Receptores Acoplados a Proteínas G , Anticorpos de Domínio Único , Anticorpos de Domínio Único/imunologia , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/imunologia , Animais
6.
Curr Opin Allergy Clin Immunol ; 24(4): 195-202, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38814742

RESUMO

PURPOSE OF REVIEW: Patients with mast cell disorders frequently experience symptoms from excessive mediator release like histamine and tryptase, ranging from mild flushing to severe anaphylactic responses. Hypersensitivity reactions (HRs) to drugs are a major cause of anaphylaxis in these patients, who often worry about triggering mast cell degranulation when taking medications. The aim of this review is to explore the complex interactions between mast cell disorders and drug HRs, focusing on the clinical challenges of managing these conditions effectively to enhance understanding and guide safer clinical practices. RECENT FINDINGS: Among the drugs most commonly associated with hypersensitivity reactions in patients with mast cell disorders are non-steroidal anti-inflammatory drugs, antibiotics, and perioperative agents. Recent studies have highlighted the role of Mas-related G-protein coupled receptor member X2 (MRGPRX2) - a receptor involved in non-immunoglobulin E mediated mast cell degranulation - in exacerbating HRs. Investigations reveal varied drug tolerance among patients, underscoring the need for individual risk assessments. SUMMARY: Tailored diagnostic approaches are crucial for confirming drug allergies and assessing tolerance in patients with mastocytosis, preventing unnecessary medication avoidance and ensuring safety before acute situations arise.


Assuntos
Hipersensibilidade a Drogas , Mastócitos , Receptores Acoplados a Proteínas G , Humanos , Mastócitos/imunologia , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade a Drogas/imunologia , Hipersensibilidade a Drogas/terapia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Anafilaxia/imunologia , Anafilaxia/diagnóstico , Receptores de Neuropeptídeos/imunologia , Receptores de Neuropeptídeos/metabolismo , Degranulação Celular/imunologia , Mastocitose/imunologia , Mastocitose/diagnóstico , Anti-Inflamatórios não Esteroides/efeitos adversos , Animais , Antibacterianos/efeitos adversos , Proteínas do Tecido Nervoso
7.
J Immunol ; 212(10): 1531-1539, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38506555

RESUMO

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet counts primarily due to antiplatelet autoantibodies. Anti-D is a donor-derived polyclonal Ab against the rhesus D Ag on erythrocytes used to treat ITP. Unfortunately, adverse inflammatory/hypersensitivity reactions and a Food and Drug Administration-issued black box warning have limited its clinical use. This underscores the imperative to understand the inflammatory pathway associated with anti-erythrocyte Ab-based therapies. TER119 is an erythrocyte-specific Ab with anti-D-like therapeutic activity in murine ITP, while also exhibiting a distinct inflammatory signature involving production of CCL2, CCL5, and CXCL9 but not IFN-γ. Therefore, TER119 has been used to elucidate the potential mechanism underlying the adverse inflammatory activity associated with anti-erythrocyte Ab therapy in murine ITP. Prior work has demonstrated that TER119 administration is associated with a dramatic decrease in body temperature and inflammatory cytokine/chemokine production. The work presented in the current study demonstrates that inhibiting the highly inflammatory platelet-activating factor (PAF) pathway with PAF receptor antagonists prevents TER119-driven changes in body temperature and inhibits the production of the CCL2, CCL5, and CXCL9 inflammatory cytokines in CD-1 mice. Phagocytic cells and a functional TER119 Fc region were found to be necessary for TER119-induced body temperature changes and increases in CXCL9 and CCL2. Taken together, this work reveals the novel requirement of the PAF pathway in causing adverse inflammatory activity associated with anti-erythrocyte Ab therapy in a murine model and provides a strategy of mitigating these potential reactions without altering therapeutic activity.


Assuntos
Quimiocina CCL2 , Eritrócitos , Inflamação , Fator de Ativação de Plaquetas , Glicoproteínas da Membrana de Plaquetas , Púrpura Trombocitopênica Idiopática , Animais , Camundongos , Fator de Ativação de Plaquetas/imunologia , Púrpura Trombocitopênica Idiopática/imunologia , Púrpura Trombocitopênica Idiopática/tratamento farmacológico , Eritrócitos/imunologia , Inflamação/imunologia , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Glicoproteínas da Membrana de Plaquetas/imunologia , Quimiocina CCL2/imunologia , Quimiocina CCL5/imunologia , Quimiocina CXCL9/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais/imunologia , Camundongos Endogâmicos C57BL , Autoanticorpos/imunologia , Modelos Animais de Doenças
9.
Immunity ; 57(1): 28-39, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198852

RESUMO

The discovery of Mas-related G protein-coupled receptors (Mrgprs) has opened a compelling chapter in our understanding of immunity and sensory biology. This family of receptors, with their unique expression and diverse ligands, has emerged as key players in inflammatory states and hold the potential to alleviate human diseases. This review will focus on the members of this receptor family expressed on immune cells and how they govern immune and neuro-immune pathways underlying various physiological and pathological states. Immune cell-specific Mrgprs have been shown to control a variety of manifestations, including adverse drug reactions, inflammatory conditions, bacterial immunity, and the sensing of environmental exposures like allergens and irritants.


Assuntos
Imunidade , Receptores Acoplados a Proteínas G , Humanos , Exposição Ambiental , Receptores Acoplados a Proteínas G/imunologia
10.
Nat Cancer ; 4(11): 1536-1543, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37653140

RESUMO

Bispecific antibodies targeting GPRC5D demonstrated promising efficacy in multiple myeloma, but acquired resistance usually occurs within a few months. Using a single-nucleus multi-omic strategy in three patients from the MYRACLE cohort (ClinicalTrials.gov registration: NCT03807128 ), we identified two resistance mechanisms, by bi-allelic genetic inactivation of GPRC5D or by long-range epigenetic silencing of its promoter and enhancer regions. Molecular profiling of target genes may help to guide the choice of immunotherapy and early detection of resistance in multiple myeloma.


Assuntos
Anticorpos Biespecíficos , Mieloma Múltiplo , Humanos , Anticorpos Biespecíficos/uso terapêutico , Epigênese Genética , Imunoterapia/métodos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Linfócitos T
11.
World J Surg Oncol ; 20(1): 382, 2022 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36464675

RESUMO

BACKGROUND: CD97 is the most widely expressed G protein-coupled receptor in the epidermal growth factor seven-span transmembrane family. It plays a vital role in cell adhesion, migration, and cell connection regulation. We explored the role of CD97 in hepatocellular carcinoma (HCC). METHODS: We evaluated CD97 mRNA expression in HCC using TNMplot and the Gene Expression Omnibus database. The clinical prognostic significance of CD97 in HCC patients was evaluated by gene expression profiling interactive analysis, the Kaplan-Meier plotter, and the UALCAN database. The Tumor Immune Estimation Resource (TIMER) and CIBERSORT databases were used to analyze the relationships among CD97, genes positively related with CD97, and tumor-infiltrating immune cells. RESULTS: CD97 was highly expressed in HCC tissues and was associated with an adverse prognosis. CD97 and genes positively related with CD97 were positively correlated with the abundance of tumor-infiltrating immune cells and strongly correlated with tumor-infiltrating macrophages (all r ≥ 0.513, P < 0.001). CD97 was positively correlated with M2 macrophage and tumor-associated macrophage markers (both r ≥ 0.464, P < 0.001). CD97 was found to be an immune-related gene in HCC and positively correlated with the TOX, PD-L1, PD-L2, CTLA4, and PD-1 immune checkpoint genes. CD97 copy number alterations affect the level of immune cell infiltration and mRNA expression. CONCLUSIONS: CD97 can be used as a potential molecular marker of prognosis in HCC, which is associated with immune cell infiltration.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores Acoplados a Proteínas G , Humanos , Biomarcadores , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Macrófagos Associados a Tumor/imunologia , Bases de Dados Factuais
12.
N Engl J Med ; 387(24): 2232-2244, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36507686

RESUMO

BACKGROUND: G protein-coupled receptor, family C, group 5, member D (GPRC5D) is an orphan receptor expressed in malignant plasma cells. Talquetamab, a bispecific antibody against CD3 and GPRC5D, redirects T cells to mediate killing of GPRC5D-expressing myeloma cells. METHODS: In a phase 1 study, we evaluated talquetamab administered intravenously weekly or every other week (in doses from 0.5 to 180 µg per kilogram of body weight) or subcutaneously weekly, every other week, or monthly (5 to 1600 µg per kilogram) in patients who had heavily pretreated relapsed or refractory multiple myeloma that had progressed with established therapies (a median of six previous lines of therapy) or who could not receive these therapies without unacceptable side effects. The primary end points - the frequency and type of dose-limiting toxic effects (study part 1 only), adverse events, and laboratory abnormalities - were assessed in order to select the recommended doses for a phase 2 study. RESULTS: At the data-cutoff date, 232 patients had received talquetamab (102 intravenously and 130 subcutaneously). At the two subcutaneous doses recommended for a phase 2 study (405 µg per kilogram weekly [30 patients] and 800 µg per kilogram every other week [44 patients]), common adverse events were cytokine release syndrome (in 77% and 80% of the patients, respectively), skin-related events (in 67% and 70%), and dysgeusia (in 63% and 57%); all but one cytokine release syndrome event were of grade 1 or 2. One dose-limiting toxic effect of grade 3 rash was reported in a patient who had received talquetamab at the 800-µg dose level. At median follow-ups of 11.7 months (in patients who had received talquetamab at the 405-µg dose level) and 4.2 months (in those who had received it at the 800-µg dose level), the percentages of patients with a response were 70% (95% confidence interval [CI], 51 to 85) and 64% (95% CI, 48 to 78), respectively. The median duration of response was 10.2 months and 7.8 months, respectively. CONCLUSIONS: Cytokine release syndrome, skin-related events, and dysgeusia were common with talquetamab treatment but were primarily low-grade. Talquetamab induced a substantial response among patients with heavily pretreated relapsed or refractory multiple myeloma. (Funded by Janssen Research and Development; MonumenTAL-1 ClinicalTrials.gov number, NCT03399799.).


Assuntos
Anticorpos Biespecíficos , Complexo CD3 , Mieloma Múltiplo , Receptores Acoplados a Proteínas G , Linfócitos T , Humanos , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/efeitos adversos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Síndrome da Liberação de Citocina/induzido quimicamente , Síndrome da Liberação de Citocina/etiologia , Disgeusia/induzido quimicamente , Disgeusia/etiologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Recidiva Local de Neoplasia/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Complexo CD3/antagonistas & inibidores , Complexo CD3/imunologia , Administração Intravenosa , Injeções Subcutâneas , Dermatopatias/induzido quimicamente , Dermatopatias/etiologia
13.
Mol Med Rep ; 26(3)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35856408

RESUMO

Sepsis serves as a leading cause of admission to and death of patients in the intensive care unit (ICU) and is described as a systemic inflammatory response syndrome caused by abnormal host response to infection. Adipose­derived mesenchymal stem cells (ADSCs) have exhibited reliable and promising clinical application potential in multiple disorders. However, the function and the mechanism of ADSCs in sepsis remain elusive. In the present study, the crucial inhibitory effect of ADSC­derived hydroxy­carboxylic acid receptor 1 (HCAR1) on sepsis was identified. Reverse transcription quantitative­PCR determined that the mRNA expression of HCAR1 was reduced while the mRNA expression of Toll­like receptor 4 (TLR4), major histocompatibility complex class II (MHC II), NOD­like receptor family pyrin domain containing 3 (NLRP3), and the levels of interleukin­1ß (IL­1ß), tumor necrosis factor­α (TNF­α), interleukin­10 (IL­10), and interleukin­18 (IL­18) were enhanced in the peripheral blood of patients with sepsis. The expression of HCAR1 was negatively correlated with TLR4 (r=­0.666), MHC II (r=­0.587), and NLRP3 (r=­0.621) expression and the expression of TLR4 was positively correlated with NLRP3 (r=0.641), IL­1ß (r=0.666), TNF­α (r=0.606), and IL­18 (r=0.624) levels in the samples. Receiver operating characteristic (ROC) curve analysis revealed that the area under the ROC curve (AUC) of HCAR1, TLR4, MHC II and NLRP3 mRNA expression was 0.830, 0.853, 0.735 and 0.945, respectively, in which NLRP3 exhibited the highest diagnostic value, and the AUC values of IL­1ß, IL­18, TNF­α, and IL­10 were 0.751, 0.841, 0.924 and 0.729, respectively, in which TNF­α exhibited the highest diagnostic value. A sepsis rat model was established by injecting lipopolysaccharide (LPS) and the rats were randomly divided into 5 groups, including a normal control group (NC group; n=6), a sepsis model group (LPS group; n=6), an ADSC transplantation group (L + M group; n=6), a combined HCAR1 receptor agonist group [L + HCAR1 inducer (Gi) + M group; n=6], and a combined HCAR1 receptor inhibitor group [L + HCAR1 blocker (Gk) + M group; n=6]. Hematoxylin and eosin staining determined that ADSCs attenuated the lung injury of septic rats and ADSC­derived HCAR1 enhanced the effect of ADSCs. The expression of HCAR1, TLR4, MHC II, NLRP3, IL­1ß, IL­18 and TNF­α levels were suppressed by ADSCs and the effect was further induced by ADSC­derived HCAR1. However, ADSC­derived HCAR1 induced the levels of anti­inflammatory factor IL­10. The negative correlation of HCAR1 expression with TLR4, MHC II, and NLRP3 expression in the peripheral blood and lung tissues of the rats was then identified. It is thus concluded that ADSC­derived HCAR1 regulates immune response in the attenuation of sepsis. ADSC­derived HCAR1 may be a promising therapeutic strategy for sepsis.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Receptores Acoplados a Proteínas G , Sepse , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Animais , Imunidade , Interleucina-10/imunologia , Interleucina-18/imunologia , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , RNA Mensageiro/metabolismo , Ratos , Receptores Acoplados a Proteínas G/imunologia , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
14.
Nat Commun ; 13(1): 4046, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831277

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease affecting synovial joints where different CD4+ T cell subsets may contribute to pathology. Here, we perform single cell sequencing on synovial CD4+ T cells from anti-citrullinated protein antibodies (ACPA)+ and ACPA- RA patients and identify two peripheral helper T cell (TPH) states and a cytotoxic CD4+ T cell subset. We show that the adhesion G-protein coupled receptor 56 (GPR56) delineates synovial CXCL13high TPH CD4+ T cells expressing LAG-3 and the tissue-resident memory receptors CXCR6 and CD69. In ACPA- SF, TPH cells display lower levels of GPR56 and LAG-3. Further, most expanded T cell clones in the joint are within CXCL13high TPH CD4+ T cells. Finally, RNA-velocity analyses suggest a common differentiation pathway between the two TPH clusters and effector CD4+ T cells. Our study provides comprehensive immunoprofiling of the synovial CD4+ T cell subsets in ACPA+ and ACPA- RA.


Assuntos
Artrite Reumatoide , Receptores Acoplados a Proteínas G , Linfócitos T Auxiliares-Indutores , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Humanos , Articulações/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/patologia
16.
EBioMedicine ; 80: 104060, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35588628

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) has complex genetic and environmental aspects, and free fatty acid receptors (FFARs) may bridge genetic and dietary aspects. FFAR4 is highly expressed in the intestine and acts primarily as the receptor of long-chain fatty acids, which are major components of the human diet. It is unclear what role, if any, FFAR4 may play in IBD. METHODS: Mouse and human colitis samples, mice with complete FFAR4 knockout, intestine-specific FFAR4 knockout and FFAR4 overexpression and cell culture were used. RNA-sequencing analysis and flow cytometry were performed to examine the mechanisms. FINDINGS: The results showed that FFAR4 expression was upregulated in colitis tissues and that the loss of intestinal FFAR4 ameliorated colitis, whereas intestinal FFAR4 overexpression exacerbated the disease. We identified intestinal epithelial cell deletion of FFAR4 by upregulating ZBED6, which in turn induced L33 transcription, and L33 elevated Treg cell numbers, ameliorating colitis. INTERPRETATION: FFAR4 deletion attenuates colitis by modulating Treg cells via the ZBED6-IL33 pathway. FUNDING: National Natural Science Foundation of China, Innovation and Application Project of Medical and Public Health Technology of Wuxi Science and Technology, Fundamental Research Funds for the Central Universities and the Fund of Wuxi Healthcare Commission.


Assuntos
Colite , Interleucina-33 , Receptores Acoplados a Proteínas G , Proteínas Repressoras , Linfócitos T Reguladores , Animais , Colite/imunologia , Colite/metabolismo , Humanos , Interleucina-33/imunologia , Interleucina-33/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Linfócitos T Reguladores/imunologia
17.
FASEB J ; 36(5): e22322, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429062

RESUMO

Emerging evidence suggests that signaling through the C3a anaphylatoxin receptor (C3aR) protects against various inflammation-related diseases. However, the role of C3aR in psoriasis remains unknown. The purpose of this study was to investigate the possible protective role of C3aR in psoriasis and to explore the underlying molecular mechanisms. We initially found that the psoriatic epidermis exhibited significantly decreased C3aR expression. C3aR showed protective roles in mouse models of imiquimod (IMQ)- and interleukin-23-induced psoriasis. Furthermore, increased epidermal thickness and keratin 6 (K6), K16, and K17 expression occurred in the ears and backs of C3aR-/- mice. Pharmacological treatment with a C3aR agonist ameliorated IMQ-induced psoriasiform lesions in mice and decreased the expression of K6, K16, and K17. Additionally, the signal transducer and activator of transcription 3 (STAT3) pathway participated in the protective function of C3aR. More importantly, the expression levels of K6, K16, and K17 in keratinocytes were all restored in HaCaT cells transfected with a C3aR-overexpression plasmid after treating them with colivelin (a STAT3 activator). Our findings demonstrate that C3aR protects against the development of psoriasis and suggest that C3aR confers protection by negatively regulating K6, K16, and K17 expression in a STAT3-dependent manner, thus inhibiting keratinocyte proliferation and helping reverse the pathogenesis of psoriasis.


Assuntos
Queratinócitos , Queratinas , Psoríase , Receptores Acoplados a Proteínas G , Anafilatoxinas , Animais , Proliferação de Células , Modelos Animais de Doenças , Queratina-16/imunologia , Queratina-17/imunologia , Queratina-6/imunologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Queratinas/imunologia , Camundongos , Psoríase/tratamento farmacológico , Psoríase/imunologia , Psoríase/patologia , Receptores Acoplados a Proteínas G/imunologia , Pele/metabolismo
18.
Nat Commun ; 13(1): 1220, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264564

RESUMO

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Receptores Acoplados a Proteínas G/imunologia , Sistema Renina-Angiotensina/imunologia , Autoanticorpos/sangue , Autoimunidade , Biomarcadores/sangue , COVID-19/sangue , COVID-19/classificação , Estudos Transversais , Feminino , Humanos , Aprendizado de Máquina , Masculino , Análise Multivariada , Receptor Tipo 1 de Angiotensina/imunologia , Receptores CXCR3/imunologia , SARS-CoV-2 , Índice de Gravidade de Doença
19.
Nat Commun ; 13(1): 97, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013216

RESUMO

For many solid tumors, immune checkpoint blockade therapy has become first line treatment, yet a large proportion of patients with immunologically cold tumors do not benefit due to the paucity of tumor infiltrating lymphocytes. Here we show that the orphan G Protein-Coupled Receptor 182 (GPR182) contributes to immunotherapy resistance in cancer via scavenging chemokines that are important for lymphocyte recruitment to tumors. GPR182 is primarily upregulated in melanoma-associated lymphatic endothelial cells (LECs) during tumorigenesis, and this atypical chemokine receptor endocytoses chemokines promiscuously. In GPR182-deficient mice, T cell infiltration into transplanted melanomas increases, leading to enhanced effector T cell function and improved antitumor immunity. Ablation of GPR182 leads to increased intratumoral concentrations of multiple chemokines and thereby sensitizes poorly immunogenic tumors to immune checkpoint blockade and adoptive cellular therapies. CXCR3 blockade reverses the improved antitumor immunity and T cell infiltration characteristic of GPR182-deficient mice. Our study thus identifies GPR182 as an upstream regulator of the CXCL9/CXCL10/CXCR3 axis that limits antitumor immunity and as a potential therapeutic target in immunologically cold tumors.


Assuntos
Quimiocina CXCL10/genética , Quimiocina CXCL9/genética , Melanoma Experimental/genética , Melanoma/genética , Receptores CXCR3/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias Cutâneas/genética , Animais , Movimento Celular , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/mortalidade , Melanoma/terapia , Melanoma Experimental/imunologia , Melanoma Experimental/mortalidade , Melanoma Experimental/terapia , Camundongos , Camundongos Knockout , Ligação Proteica , Receptores CXCR3/imunologia , Receptores Acoplados a Proteínas G/imunologia , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/terapia , Análise de Sobrevida , Linfócitos T Citotóxicos/citologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/transplante , Carga Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
20.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784295

RESUMO

Bitter taste receptors (taste 2 receptors, TAS2Rs) serve as warning sensors in the lingual system against the ingestion of potentially poisonous food. Here, we investigated the functional role of TAS2Rs in the human gut and focused on their potential to trigger an additional host defense pathway in the intestine. Human jejunal crypts, especially those from individuals with obesity, responded to bitter agonists by inducing the release of antimicrobial peptides (α-defensin 5 and regenerating islet-derived protein 3 α [REG3A]) but also regulated the expression of other innate immune factors (mucins, chemokines) that affected E. coli growth. We found that the effect of aloin on E. coli growth and on the release of the mucus glycoprotein CLCA1, identified via proteomics, was affected by TAS2R43 deletion polymorphisms and thus confirmed a role for TAS2R43. RNA-Seq revealed that denatonium benzoate induced an NRF2-mediated nutrient stress response and an unfolded protein response that increased the expression of the mitokine GDF15 but also ADM2 and LDLR, genes that are involved in anorectic signaling and lipid homeostasis. In conclusion, TAS2Rs in the intestine constitute a promising target for treating diseases that involve disturbances in the innate immune system and body weight control. TAS2R polymorphisms may be valuable genetic markers to predict therapeutic responses.


Assuntos
Imunidade Inata , Mucosa Intestinal/imunologia , Obesidade/imunologia , Receptores Acoplados a Proteínas G/imunologia , Fator 15 de Diferenciação de Crescimento/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Associadas a Pancreatite/imunologia , Hormônios Peptídicos/imunologia , RNA-Seq , Receptores de LDL/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...