Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Sci Adv ; 10(26): eadn5229, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924414

RESUMO

There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.


Assuntos
Tecido Adiposo Branco , Quimiocina CCL22 , Metabolismo Energético , Linfonodos , Macrófagos , Termogênese , Quimiocina CCL22/metabolismo , Animais , Macrófagos/metabolismo , Camundongos , Humanos , Linfonodos/metabolismo , Tecido Adiposo Branco/metabolismo , Masculino , Receptores CCR4/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Eosinófilos/metabolismo , Feminino , Adipócitos Bege/metabolismo
2.
J Cancer Res Clin Oncol ; 150(6): 325, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38914802

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) is a critical global health concern, with existing treatments benefiting only a minority of patients. Recent findings implicate the chemokine ligand 17 (CCL17) and its receptor CCR4 as pivotal players in the tumor microenvironment (TME) of various cancers. This investigation aims to delineate the roles of CCL17 and CCR4 in modulating the tumor's immune landscape, assessing their potential as therapeutic interventions and prognostic markers in HCC. METHODS: 873 HCC patients post-radical surgery from 2008 to 2012 at Zhongshan Hospital, Fudan University were retrospectively examined. These individuals were stratified into a training cohort (n = 354) and a validation cohort (n = 519). Through immunohistochemical analysis on HCC tissue arrays, the expressions of CCL17, CCR4, CD73, CD47, HHLA2, and PD-L1 were quantified. Survival metrics were analyzed using the Cox model, and a prognostic nomogram was devised via R software. RESULTS: The investigation confirmed the presence of CCL17 and CCR4 within the cancerous and stromal compartments of HCC tissues, associating their heightened expression with adverse clinical markers and survival outcomes. Notably, the interplay between CD73 and CCR4 expression in tumor stroma highlighted a novel cellular entity, CCR4 + CD73 + stromal cells, impacting overall and relapse-free survival. A prognostic nomogram amalgamating these immunological markers and clinical variables was established, offering refined prognostic insights and aiding in the management of HCC. The findings suggest that reduced CCR4 and CCR4 + CD73 + cell prevalence may forecast improved outcomes post-TACE. CONCLUSION: This comprehensive evaluation of CCR4, CCL17, and associated markers introduces a nuanced understanding of the HCC immunological milieu, proposing CCR4 + CD73 + stromal cells as critical to HCC pathogenesis and patient stratification.


Assuntos
5'-Nucleotidase , Biomarcadores Tumorais , Carcinoma Hepatocelular , Quimiocina CCL17 , Proteínas Ligadas por GPI , Neoplasias Hepáticas , Receptores CCR4 , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/imunologia , Quimiocina CCL17/metabolismo , Feminino , Masculino , Prognóstico , Receptores CCR4/metabolismo , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , 5'-Nucleotidase/metabolismo , Estudos Retrospectivos , Microambiente Tumoral/imunologia , Proteínas Ligadas por GPI/metabolismo , Idoso , Adulto
3.
Sci Rep ; 14(1): 10201, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702399

RESUMO

The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.


Assuntos
Movimento Celular , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , AVC Isquêmico , Receptores CCR4 , Linfócitos T Reguladores , Animais , Receptores CCR4/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , AVC Isquêmico/imunologia , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Microglia/metabolismo , Microglia/imunologia , Masculino , Camundongos Endogâmicos C57BL , Quimiocinas/metabolismo
4.
Blood Adv ; 8(10): 2384-2397, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38489234

RESUMO

ABSTRACT: Sézary syndrome (SS) is an aggressive leukemic expansion of skin-derived malignant CD4+ T cells. Drug monotherapy often results in disease relapse because of the heterogenous nature of malignant CD4+ T cells, but how therapies can be optimally combined remains unclear because of limitations in understanding the disease pathogenesis. We identified immunologic transitions that interlink mycosis fungoides with SS using single-cell transcriptome analysis in parallel with high-throughput T-cell receptor sequencing. Nascent peripheral CD4+ T cells acquired a distinct profile of transcription factors and trafficking receptors that gave rise to antigenically mature Sézary cells. The emergence of malignant CD4+ T cells coincided with the accumulation of dysfunctional monocytes with impaired fragment crystallizable γ-dependent phagocytosis, decreased responsiveness to cytokine stimulation, and limited repertoire of intercellular interactions with Sézary cells. Type I interferon supplementation when combined with a monoclonal antibody targeting the chemokine receptor type 4 (CCR4), unleashed monocyte induced phagocytosis and eradication of Sézary cells in vitro. In turn, coadministration of interferon-α with the US Food and Drug Administration-approved anti-CCR4 antibody, mogamulizumab, in patients with SS induced marked depletion of peripheral malignant CD4+ T cells. Importantly, residual CD4+ T cells after Sézary cell ablation lacked any immunologic shifts. These findings collectively unveil an auxiliary role for augmenting monocytic activity during mogamulizumab therapy in the treatment of SS and underscore the importance of targeted combination therapy in this disease.


Assuntos
Interferon Tipo I , Monócitos , Receptores CCR4 , Síndrome de Sézary , Humanos , Síndrome de Sézary/tratamento farmacológico , Síndrome de Sézary/imunologia , Monócitos/metabolismo , Monócitos/imunologia , Interferon Tipo I/metabolismo , Receptores CCR4/antagonistas & inibidores , Receptores CCR4/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
6.
Nat Struct Mol Biol ; 31(5): 826-834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374449

RESUMO

Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.


Assuntos
Poli A , Estabilidade de RNA , RNA Mensageiro , Humanos , Cinética , Poli A/metabolismo , Poli A/química , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/química , Adenosina/metabolismo , Receptores CCR4/metabolismo , Receptores CCR4/genética , Exorribonucleases/metabolismo , Exorribonucleases/química , RNA Nucleotidiltransferases
8.
Int Immunopharmacol ; 130: 111712, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38377858

RESUMO

Cutaneous drug reactions (CDRs) are common drug-induced allergic reactions that cause severe consequences in HIV/AIDS patients. The CCL17/CCR4 axis is involved in the immune mechanism of allergic diseases, but its role in the CDRs has not been determined. Here, we aimed to determine the role of the CCL17/CCR4 axis and the underlying mechanism involved in CDRs. In this study, the serum cytokine levels in patients with CDR and healthy controls were measured. The CCL17-triggered allergic profile was screened via a PCR array. Apoptosis of keratinocytes cocultured with CCL17-stimulated Th2 cells was analyzed by flow cytometry. An NVP-induced rat CDR model was established, and dynamic inflammatory factor levels and Th2 cells in the peripheral blood of the rats were measured. Rat skin lesions and signaling pathways in Th2 cells were also analyzed. We showed that the serum CCL17 level was significantly upregulated in CDR patients (P = 0.0077), and the Th2 cell subgroup was also significantly elevated in the CDR rats. The CCL17/CCR4 axis induces Th2 cells to release IL-4 and IL-13 via the ERK/STAT3 pathway. The CCR4 antagonist compound 47 can alleviate rash symptoms resulting from NVP-induced drug eruption, Th2 cell subgroup, IL-4, and IL-13 and inhibit keratinocyte apoptosis. Taken together, these findings indicate that the CCL17/CCR4 axis mediates CDR via the ERK/STAT3 pathway in Th2 cells and type 2 cytokine-induced keratinocyte apoptosis.


Assuntos
Interleucina-13 , Células Th2 , Humanos , Ratos , Animais , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Citocinas/metabolismo , Transdução de Sinais , Receptores CCR4/metabolismo , Quimiocina CCL17/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
EMBO Rep ; 24(12): e56327, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37846490

RESUMO

Unlike most RNA and DNA viruses that broadly stimulate mRNA decay and interfere with host gene expression, human cytomegalovirus (HCMV) extensively remodels the host translatome without producing an mRNA decay enzyme. By performing a targeted loss-of-function screen in primary human fibroblasts, we here identify the host CCR4-NOT deadenylase complex members CNOT1 and CNOT3 as unexpected pro-viral host factors that selectively regulate HCMV reproduction. We find that the scaffold subunit CNOT1 is specifically required for late viral gene expression and genome-wide host responses in CCR4-NOT-disrupted cells. By profiling poly(A)-tail lengths of individual HCMV and host mRNAs using nanopore direct RNA sequencing, we reveal poly(A)-tails of viral messages to be markedly longer than those of cellular mRNAs and significantly less sensitive to CCR4-NOT disruption. Our data establish that mRNA deadenylation by host CCR4-NOT is critical for productive HCMV replication and define a new mechanism whereby herpesvirus infection subverts cellular mRNA metabolism to remodel the gene expression landscape of the infected cell. Moreover, we expose an unanticipated host factor with potential to become a therapeutic anti-HCMV target.


Assuntos
Infecções por Herpesviridae , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR4/genética , Receptores CCR4/metabolismo
10.
Commun Biol ; 6(1): 739, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460791

RESUMO

NOT1, NOT10, and NOT11 form a conserved module in the CCR4-NOT complex, critical for post-transcriptional regulation in eukaryotes, but how this module contributes to the functions of the CCR4-NOT remains poorly understood. Here, we present cryo-EM structures of human and chicken NOT1:NOT10:NOT11 ternary complexes to sub-3 Å resolution, revealing an evolutionarily conserved, flexible structure. Through biochemical dissection studies, which include the Drosophila orthologs, we show that the module assembly is hierarchical, with NOT11 binding to NOT10, which then organizes it for binding to NOT1. A short proline-rich motif in NOT11 stabilizes the entire module assembly.


Assuntos
Ribonucleases , Fatores de Transcrição , Humanos , Ligação Proteica , Receptores CCR4/metabolismo , Ribonucleases/química , Fatores de Transcrição/metabolismo
11.
mBio ; 14(2): e0019623, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37017529

RESUMO

In response to the host environment, the human pathogen Cryptococcus neoformans must rapidly reprogram its translatome from one which promotes growth to one which is responsive to host stress. In this study, we investigate the two events which comprise translatome reprogramming: the removal of abundant, pro-growth mRNAs from the translating pool, and the regulated entry of stress-responsive mRNAs into the translating pool. Removal of pro-growth mRNAs from the translating pool is controlled primarily by two regulatory mechanisms, repression of translation initiation via Gcn2, and decay mediated by Ccr4. We determined that translatome reprogramming in response to oxidative stress requires both Gcn2 and Ccr4, whereas the response to temperature requires only Ccr4. Additionally, we assessed ribosome collision in response to host-relevant stress and found that collided ribosomes accumulated during temperature stress but not during oxidative stress. The phosphorylation of eIF2α that occurred as a result of translational stress led us to investigate the induction of the integrated stress response (ISR). We found that eIF2α phosphorylation varied in response to the type and magnitude of stress, yet all tested conditions induced translation of the ISR transcription factor Gcn4. However, Gcn4 translation did not necessarily result in canonical Gcn4-dependent transcription. Finally, we define the ISR regulon in response to oxidative stress. In conclusion, this study begins to reveal the translational regulation in response to host-relevant stressors in an environmental fungus which is capable of adapting to the environment inside the human host. IMPORTANCE Cryptococcus neoformans is a human pathogen capable of causing devastating infections. It must rapidly adapt to changing environments as it leaves its niche in the soil and enters the human lung. Previous work has demonstrated a need to reprogram gene expression at the level of translation to promote stress adaptation. In this work, we investigate the contributions and interplay of the major mechanisms that regulate entry of new mRNAs into the pool (translation initiation) and the clearance of unneeded mRNAs from the pool (mRNA decay). One result of this reprogramming is the induction of the integrated stress response (ISR) regulon. Surprisingly, all stresses tested led to the production of the ISR transcription factor Gcn4, but not necessarily to transcription of ISR target genes. Furthermore, stresses result in differential levels of ribosome collisions, but these are not necessarily predictive of initiation repression as has been suggested in the model yeast.


Assuntos
Criptococose , Cryptococcus neoformans , Proteínas de Saccharomyces cerevisiae , Humanos , Cryptococcus neoformans/metabolismo , Ribossomos/metabolismo , Fosforilação , Estresse Oxidativo , Criptococose/microbiologia , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Biossíntese de Proteínas , Receptores CCR4/genética , Receptores CCR4/metabolismo , Ribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Serina-Treonina Quinases/genética
12.
Blood Adv ; 7(14): 3416-3430, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058474

RESUMO

A challenge when targeting T-cell lymphoma with chimeric antigen receptor (CAR) T-cell therapy is that target antigens are often shared between T cells and tumor cells, resulting in fratricide between CAR T cells and on-target cytotoxicity on normal T cells. CC chemokine receptor 4 (CCR4) is highly expressed in many mature T-cell malignancies, such as adult T-cell leukemia/lymphoma (ATLL) and cutaneous T-cell lymphoma (CTCL), and has a unique expression profile in normal T cells. CCR4 is predominantly expressed by type-2 and type-17 helper T cells (Th2 and Th17) and regulatory T cells (Treg), but it is rarely expressed by other T helper (Th) subsets and CD8+ cells. Although fratricide in CAR T cells is generally thought to be detrimental to anticancer functions, in this study, we demonstrated that anti-CCR4 CAR T cells specifically depleted Th2 and Tregs, while sparing CD8+ and Th1 T cells. Moreover, fratricide increased the percentage of CAR+ T cells in the final product. CCR4-CAR T cells were characterized by high transduction efficiency, robust T-cell expansion, and rapid fratricidal depletion of CCR4-positive T cells during CAR transduction and expansion. Furthermore, mogamulizumab-based CCR4-CAR T cells induced superior antitumor efficacy and long-term remission in mice engrafted with human T-cell lymphoma cells. In summary, CCR4-depleted anti-CCR4 CAR T cells are enriched in Th1 and CD8+ T cells and exhibit high antitumor efficacy against CCR4-expressing T-cell malignancies.


Assuntos
Linfoma Cutâneo de Células T , Linfoma de Células T Periférico , Linfoma de Células T , Neoplasias Cutâneas , Adulto , Humanos , Animais , Camundongos , Receptores CCR4/metabolismo , Linfócitos T Reguladores
13.
Int Immunopharmacol ; 118: 110078, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001380

RESUMO

BACKGROUND: Chemokines are critical players in the local immune responses to tumors. CCL17 (thymus and activation-regulated chemokine, TARC) and CCL22 (macrophage-derived chemokine, MDC) can attract CCR4-bearing cells involving the immune landscape of cancer. However, their direct roles and functional states in tumors remain largely unclear. METHODS: We analyzed the lymphoma-related scRNA-seq and bulk RNA-seq datasets and identified the CCL17/CCL22-CCR4 axis as the unique participant of the tumor microenvironment. Then we edited the A20 lymphoma cell line to express CCL17 and CCL22 and assessed their function using three mouse models (Balb/C mouse, Nude mouse, and NSG mouse). In addition, we retrospectively checked the relationship between the CCL17/CCL22-CCR4 axis and the survival rates of cancer patients. RESULTS: The active CCL17/CCL22-CCR4 axis is a distinctive feature of the Hodgkin lymphoma microenvironment. CCR4 is widely expressed in immune cells but highly exists on the surface of NK, NKT, and Treg cells. The tumor model of Balb/C mice showed that CCL17 acts as an anti-tumor chemokine mediated by activated T cell response. In addition, the tumor model of Nude mice showed that CCL17 recruits NK cells for inhibiting lymphoma growth and enhances the NK-cDC1 interaction for resisting IL4i1-mediated immunosuppression. Interestingly, CCL17-mediated antitumor immune responses depend on lymphoid lineages but not mainly myeloid ones. Furthermore, we found CCL17/CCL22-CCR4 axis cannot be regarded as biomarkers of poor prognosis in most cancer types from the TCGA database. CONCLUSION: We provided direct evidence of antitumor functions of CCL17 mediated by the recruitment of conventional T cells, NKT cells, and NK cells. Clinical survival outcomes of target gene (CCL17, CCL22, and CCR4) expression also identified that CCL17/CCL22-CCR4 axis is not a marker of poor prognosis.


Assuntos
Quimiocina CCL17 , Quimiocinas , Humanos , Camundongos , Animais , Quimiocina CCL17/genética , Quimiocina CCL17/metabolismo , Camundongos Nus , Estudos Retrospectivos , Linfócitos/metabolismo , Receptores CCR4/genética , Receptores CCR4/metabolismo , L-Aminoácido Oxidase
14.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834542

RESUMO

Natural killer (NK) cells are a subset of lymphocytes that offer great potential for cancer immunotherapy due to their natural anti-tumor activity and the possibility to safely transplant cells from healthy donors to patients in a clinical setting. However, the efficacy of cell-based immunotherapies using both T and NK cells is often limited by a poor infiltration of immune cells into solid tumors. Importantly, regulatory immune cell subsets are frequently recruited to tumor sites. In this study, we overexpressed two chemokine receptors, CCR4 and CCR2B, that are naturally found on T regulatory cells and tumor-resident monocytes, respectively, on NK cells. Using the NK cell line NK-92 as well as primary NK cells from peripheral blood, we show that genetically engineered NK cells can be efficiently redirected using chemokine receptors from different immune cell lineages and migrate towards chemokines such as CCL22 or CCL2, without impairing the natural effector functions. This approach has the potential to enhance the therapeutic effect of immunotherapies in solid tumors by directing genetically engineered donor NK cells to tumor sites. As a future therapeutic option, the natural anti-tumor activity of NK cells at the tumor sites can be increased by co-expression of chemokine receptors with chimeric antigen receptors (CAR) or T cell receptors (TCR) on NK cells can be performed in the future.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CCR4/metabolismo , Receptores de Quimiocinas/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Receptores CCR2
15.
Sci Rep ; 12(1): 21678, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522365

RESUMO

Regulatory T-cells (Tregs) play a major role in suppressing anti-tumor immune responses. Mogamulizumab, an anti-CC chemokine receptor type 4 (CCR4) monoclonal antibody, depletes effector Tregs (eTregs). However, the clinical efficacy of mogamulizumab was limited in phase Ia/Ib studies for solid tumors (NCT01929486); the finding suggests that mogamulizumab may also deplete beneficial CCR4+CD8+ T-cells in patients. Therefore, we focused on CTLs and aimed to identify a way to protect CCR4+ CTLs. Here, we evaluated the association of CCR4 expression in cytotoxic T-lymphocytes (CTLs) with antigen and cytokine stimulations and kinase inhibition using cytomegalovirus antigen instead of tumor antigen. CCR4 expression in CTLs was induced by antigen stimulation (mean 3.14-29.0%), enhanced by transforming growth factor-ß1 (TGF-ß1) (mean 29.0-51.2%), and downregulated by trametinib with (mean 51.2-11.4%) or without TGF-ß1 treatment (mean 29.0-6.98%). Phosphorylation of ERK in CD8+ T-cells was suppressed by trametinib. Regarding the effect on immunological function of CTL, trametinib reduced cytokine production but not affected cytotoxicity. Importantly, trametinib alleviated CTL reduction by anti-CCR4 antibody without affecting eTreg depletion because CCR4 expression in eTregs was not downregulated. In conclusion, combination therapy with trametinib may improve the clinical efficacy of mogamulizumab.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Linfócitos T Reguladores , Fator de Crescimento Transformador beta1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T Citotóxicos/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Receptores CCR4/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo
16.
Genes Cells ; 27(9): 579-585, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35822830

RESUMO

GW182 family proteins are a key component of microRNA-protein complex eliciting translational repression and/or degradation of microRNA-targets. The microRNAs in complex with Argonaute proteins bind to target mRNAs, and GW182 proteins are recruited by association with Argonaute proteins. The GW182 protein acts as a scaffold that links the Argonaute protein to silencing machineries including the CCR4-NOT complex which accelerates deadenylation and inhibits translation. The carboxyl-terminal effector domain of GW182 protein, also called the silencing domain, has been shown to bind to the subunits of the CCR4-NOT complex, the CNOT1 and the CNOT9. Here we show that a small region within the amino-terminal Argonaute-binding domain of human GW182/TNRC6A can associate with the CCR4-NOT complex. This region resides between the two Argonaute-binding sites and contains reiterated GW/WG-motifs. Alanine mutation experiments showed that multiple tryptophan residues are required for the association with the CCR4-NOT complex. Furthermore, co-expression and immunoprecipitation assays suggested that the CNOT9 subunit of the CCR4-NOT complex is a possible binding partner of this region. Our work, taken together with previous studies, indicates that the human GW182 protein contains multiple binding interfaces to the CCR4-NOT complex.


Assuntos
Proteínas Argonautas , Autoantígenos , MicroRNAs , Proteínas de Ligação a RNA , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Autoantígenos/química , Autoantígenos/genética , Autoantígenos/metabolismo , Sítios de Ligação , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores CCR4/genética , Receptores CCR4/metabolismo , Fatores de Transcrição/metabolismo , Triptofano/genética , Triptofano/metabolismo
17.
J Affect Disord ; 310: 343-353, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526724

RESUMO

BACKGROUND: Chemokines and their receptors regulate inflammatory processes in major depressive disorder (MDD). Here, we characterize the expression pattern of the C-C chemokine receptor 4 (CCR4) and its ligands CCL17 and CCL22 in MDD and its clinical relevance in predicting disease severity. METHODS: Expression of CCR4 on peripheral blood lymphocytes and serum CCL17/CCL22 levels were measured using multiparameter flow cytometry and multiplex assays in 33 depressed inpatients at baseline (T0) and after 6-week multimodal treatment (T1) compared with 21 healthy controls (HC). Using stratified and correlation analysis, we examined the associations of CCR4-CCL17/CCL22 expression with depression severity and symptoms according to standard clinical rating scales and questionnaires. Additionally, we assessed whether polygenic risk score (PRS) for psychiatric disorders and chronotype are associated with disease status or CCR4-CCL17/CCL22 expression. Regression analysis was performed to assess the capacity of CCR4 and PRS in predicting disease severity. RESULTS: Compared with HC, MDD patients showed significantly decreased CCR4 expression on T cells (T0 and T1), whereas CCL17/CCL22 serum levels were increased. Stratified and correlation analysis revealed an association of CCR4 expression on CD4+ T cells with depression severity as well as Beck Depression Inventory-II items including loss of pleasure, agitation and cognitive deficits. CCR4 expression levels on CD4+ T cells together with cross-disorder and chronotype PRS significantly predicted disease severity. LIMITATIONS: This exploratory study with small sample size warrants future studies. CONCLUSIONS: This newly identified CCR4-CCL17/CCL22 signature and its predictive capacity for MDD severity suggest its potential functional involvement in the pathophysiology of MDD.


Assuntos
Transtorno Depressivo Maior , Receptores CCR4 , Quimiocina CCL17/metabolismo , Quimiocinas , Humanos , Linfócitos/metabolismo , Receptores CCR4/metabolismo , Linfócitos T/metabolismo
18.
Monoclon Antib Immunodiagn Immunother ; 41(2): 87-93, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35471046

RESUMO

The CC chemokine receptor type-4 (CCR4) belongs to the G-protein-coupled receptor superfamily, expressed on the cell surface of T cells and its malignancy. Two CCR4 ligands (CCL17 and CCL22) bind to CCR4 that mediate physiological and pathological functions of T cell immune responses. Anti-CCR4 monoclonal antibody (mAb) mogamulizumab is approved for adult T cell leukemia/lymphoma and cutaneous T cell lymphomas. In addition, mogamulizumab can deplete regulatory T cells, implying the application to solid tumors as an immunomodulator. Therefore, the development of sensitive mAbs for CCR4 has been desired for basic research, diagnosis, and therapy. In this study, a specific, and sensitive anti-mouse CCR4 (mCCR4) mAb, C4Mab-1 (rat IgG1, kappa), was established using N-terminal peptide immunization. C4Mab-1 reacted with mCCR4-overexpressed Chinese hamster ovary (CHO)-K1 cells, P388 (mouse lymphoid neoplasm), and J774-1 (mouse macrophage-like) cells in flow cytometry. Kinetic analyses using flow cytometry showed that KDs of C4Mab-1 for CHO/mCCR4, P388, and J774-1 cells were 4.2 × 10-9 M, 5.4 × 10-7 M, and 1.1 × 10-6 M, respectively. C4Mab-1 could be a valuable tool for elucidating mCCR4-related biological responses.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Animais , Anticorpos Monoclonais/farmacologia , Células CHO , Quimiocina CCL17 , Cricetinae , Cricetulus , Imunização , Camundongos , Ratos , Receptores CCR4/metabolismo
19.
Immunobiology ; 227(3): 152210, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358941

RESUMO

Among all the cancer-related deaths globally, pancreatic ductal adenocarcinoma (PDAC) accounts for the seventh leading cause of mortality. A dysregulated immune system disrupts anti-tumor immunity by abnormal accumulation of myeloid-derived suppressor cells (MDSCs), but the underlying mechanisms are still inconclusive. To gain new insights into the role of MDSCs in tumor settings, we aimed to determine the mechanism of expansion of various subsets of MDSCs in PDAC patients and their role in promoting invasiveness. We assessed the load of MDSCs, chemokines responsible for the recruitment of MDSCs in PDAC patients by flow cytometry. We investigated the chemokine profile of tumor tissue using qRT-PCR and the status of epithelial-mesenchymal transition (EMT) related markers E-Cadherin, N-Cadherin, Snail, and ZEB1 by qRT-PCR and immunohistochemistry. We found a higher frequency of tumor infiltrated MDSCs in PDAC patients. Chemokine ligands CCL2 and the receptor CCR4 were markedly elevated in the PDAC tumor, while CCR4+ monocytic MDSCs (M-MDSCs) were found significantly elevated in peripheral blood and tumor tissue. In tumor tissue, expression of E-Cadherin was significantly reduced, while N-Cadherin, Snail, and ZEB1 were markedly raised. The frequency of CCR4+ M-MDSCs significantly correlated with the expression of mesenchymal transition markers N-Cadherin, Snail, and ZEB1. Collectively, these results suggest that the CCL2-CCR4 axis plays a crucial role in driving the recruitment of M-MDSCs, which is associated with increased invasiveness in PDAC. This study sheds light on the expansion mechanism of MDSCs, which can serve as a crucial target of future anti-cancer strategies to inhibit tumor cell invasiveness.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Células Supressoras Mieloides , Neoplasias Pancreáticas , Caderinas , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Quimiocinas/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores CCR4/metabolismo , Neoplasias Pancreáticas
20.
Front Immunol ; 13: 740588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222362

RESUMO

Infiltrating T-regulatory cells in the tumor microenvironment is a key impediment to immunotherapy and is linked to a poor prognosis. We found that tumor-infiltrating Tregs express a higher expression of the chemokine receptor CCR4 than peripheral Tregs in breast cancer patients. CCL22 and CCL17 are released by tumor cells and tumor-associated macrophages, attracting CCR4+ Tregs to the tumor site. The Treg lineage-specific transcription factor FOXP3 changes the CCR4 promoter epigenetically in conjunction with HAT1 to provide a space for FOXP3 binding and activation of the CCR4 gene. To increase CCR4 expression in Tregs, the FOXP3/HAT1 axis is required for permissive (K23 and K27) or repressive (K14 and K18) acetylation of histone-3. In murine breast and melanoma tumor models, genetic ablation of FOXP3 reduced CCR4+ Treg infiltration and tumor size while also restoring anti-tumor immunity. Overexpression of FOXP3, on the other hand, increased CCR4+ Treg infiltration, resulting in a decreased anti-tumor immune response and tumor progression. These findings point to FOXP3 playing a new role in the tumor microenvironment as a transcriptional activator of CCR4 and a regulator of Treg infiltration.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Animais , Neoplasias da Mama/patologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Histona Acetiltransferases , Humanos , Camundongos , Receptores CCR4/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...