Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.431
Filtrar
2.
Alcohol ; 118: 45-55, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38705312

RESUMO

Prenatal alcohol exposure can have persistent effects on learning, memory, and synaptic plasticity. Previous work from our group demonstrated deficits in long-term potentiation (LTP) of excitatory synapses on dentate gyrus granule cells in adult offspring of rat dams that consumed moderate levels of alcohol during pregnancy. At present, there are no pharmacotherapeutic agents approved for these deficits. Prior work established that systemic administration of the histaminergic H3R inverse agonist ABT-239 reversed deficits in LTP observed following moderate PAE. The present study examines the effect of a second H3R inverse agonist, SAR-152954, on LTP deficits following moderate PAE. We demonstrate that systemic administration of 1 mg/kg of SAR-152954 reverses deficits in potentiation of field excitatory post-synaptic potentials (fEPSPs) in adult male rats exposed to moderate PAE. Time-frequency analyses of evoked responses revealed PAE-related reductions in power during the fEPSP, and increased power during later components of evoked responses which are associated with feedback circuitry that are typically not assessed with traditional amplitude-based measures. Both effects were reversed by SAR-152954. These findings provide further evidence that H3R inverse agonism is a potential therapeutic strategy to address deficits in synaptic plasticity associated with PAE.


Assuntos
Potenciação de Longa Duração , Efeitos Tardios da Exposição Pré-Natal , Receptores Histamínicos H3 , Animais , Potenciação de Longa Duração/efeitos dos fármacos , Feminino , Masculino , Ratos , Gravidez , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/efeitos dos fármacos , Agonistas dos Receptores Histamínicos/farmacologia , Ratos Sprague-Dawley , Etanol/farmacologia , Agonismo Inverso de Drogas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos
3.
Adv Sci (Weinh) ; 11(23): e2310120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38647423

RESUMO

G-protein-coupled receptors (GPCRs) transmit downstream signals predominantly via G-protein pathways. However, the conformational basis of selective coupling of primary G-protein remains elusive. Histamine receptors H2R and H3R couple with Gs- or Gi-proteins respectively. Here, three cryo-EM structures of H2R-Gs and H3R-Gi complexes are presented at a global resolution of 2.6-2.7 Å. These structures reveal the unique binding pose for endogenous histamine in H3R, wherein the amino group interacts with E2065.46 of H3R instead of the conserved D1143.32 of other aminergic receptors. Furthermore, comparative analysis of the H2R-Gs and H3R-Gi complexes reveals that the structural geometry of TM5/TM6 determines the primary G-protein selectivity in histamine receptors. Machine learning (ML)-based structuromic profiling and functional analysis of class A GPCR-G-protein complexes illustrate that TM5 length, TM5 tilt, and TM6 outward movement are key determinants of the Gs and Gi/o selectivity among the whole Class A family. Collectively, the findings uncover the common structural geometry within class A GPCRs that determines the primary Gs- and Gi/o-coupling selectivity.


Assuntos
Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Humanos , Microscopia Crioeletrônica/métodos , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Histamina/metabolismo , Histamina/química , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/química , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/química , Receptores Histamínicos H3/genética , Transdução de Sinais
4.
Biomed Pharmacother ; 174: 116527, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579399

RESUMO

The aims of this work were to evaluate the expression of histamine H3 receptor (H3R) in triple negative breast cancer (TNBC) samples and to investigate the antitumoral efficacy and safety of the LINS01 series of H3R antagonists, through in silico, in vitro, and in vivo approaches. Antitumor activity of LINS01009, LINS01010, LINS01022, LINS01023 was assayed in vitro in 4T1 and MDA-MB-231 TNBC cells (0.01-100 µM), and in vivo in 4T1 tumors orthotopically established in BALB/c mice (1 or 20 mg/kg). Additionally, H3R expression was assessed in 50 human TNBC samples. We have described a higher H3R mRNA expression in basal-like/TNBC tumors vs. matched normal tissue using TCGA Pan-Cancer Atlas data, and a higher H3R expression in human tumor samples vs. peritumoral tissue evidenced by immunohistochemistry associated with poorer survival. Furthermore, while all the essayed compounds showed antitumoral properties, LINS01022 and LINS01023 exhibited the most potent antiproliferative effects by: i) inducing cell apoptosis and suppressing cell migration in 4T1 and MDA-MB-231 TNBC cells, and ii) inhibiting cell growth in paclitaxel-resistant 4T1 cells (potentiating the paclitaxel antiproliferative effect). Moreover, 20 mg/kg LINS01022 reduced tumor size in 4T1 tumor-bearing mice, exhibiting a safe toxicological profile and potential for druggability estimated by ADME calculations. We conclude that the H3R is involved in the regulation of TNBC progression, offering promising therapeutic potential for the novel LINS01 series of H3R antagonists.


Assuntos
Antineoplásicos , Antagonistas dos Receptores Histamínicos H3 , Neoplasias de Mama Triplo Negativas , Animais , Feminino , Humanos , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Camundongos Endogâmicos BALB C , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos H3/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
ACS Chem Neurosci ; 15(6): 1206-1218, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440987

RESUMO

This study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine H3R antagonists/inverse agonists based on the structural modification of two lead compounds, viz., ADS003 and ADS009. The products are intended to maintain a high affinity for H3R while simultaneously inhibiting AChE or/and BuChE enzymes. Selected compounds were subjected to hH3R radioligand displacement and gpH3R functional assays. Some of the compounds showed nanomolar affinity. The most promising compound in the naphthalene series was ADS031, which contained a benzyl moiety at position 1 of the piperidine ring and displayed 12.5 nM affinity at the hH3R and the highest inhibitory activity against AChE (IC50 = 1.537 µM). Eight compounds showed over 60% eqBuChE inhibition and hence were qualified for the determination of the IC50 value at eqBuChE; their values ranged from 0.559 to 2.655 µM. Therapy based on a multitarget-directed ligand combining H3R antagonism with additional AChE/BuChE inhibitory properties might improve cognitive functions in multifactorial Alzheimer's disease.


Assuntos
Colinesterases , Receptores Histamínicos H3 , Estrutura Molecular , Ligantes , Histamina , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Éteres , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Receptores Histamínicos , Relação Estrutura-Atividade
6.
J Med Chem ; 67(5): 3643-3667, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393759

RESUMO

Steroid-based histamine H3 receptor antagonists (d-homoazasteroids) were designed by combining distinct structural elements of HTS hit molecules. They were characterized, and several of them displayed remarkably high affinity for H3 receptors with antagonist/inverse agonist features. Especially, the 17a-aza-d-homolactam chemotype demonstrated excellent H3R activity together with significant in vivo H3 antagonism. Optimization of the chemotype was initiated with special emphasis on the elimination of the hERG and muscarinic affinity. Additionally, ligand-based SAR considerations and molecular docking studies were performed to predict binding modes of the molecules. The most promising compounds (XXI, XXVIII, and XX) showed practically no muscarinic and hERG affinity. They showed antagonist/inverse agonist property in the in vitro functional tests that was apparent in the rat in vivo dipsogenia test. They were considerably stable in human and rat liver microsomes and provided significant in vivo potency in the place recognition and novel object recognition cognitive paradigms.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Ratos , Humanos , Animais , Histamina , Agonismo Inverso de Drogas , Receptores Histamínicos H3/metabolismo , Simulação de Acoplamento Molecular , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/metabolismo , Esteroides , Microssomos Hepáticos/metabolismo , Antagonistas dos Receptores Histamínicos H3/farmacologia , Antagonistas dos Receptores Histamínicos
7.
Eur J Pharmacol ; 968: 176450, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38387718

RESUMO

The histamine H3 receptor (H3R) regulates as a presynaptic G protein-coupled receptor the release of histamine and other neurotransmitters in the brain, and is consequently a potential therapeutic target for neuronal disorders. The human H3R encodes for seven splice variants that vary in the length of intracellular loop 3 and/or the C-terminal tail but are all able to induce heterotrimeric Gi protein signaling. The last two decades H3R drug discovery and lead optimization has been exclusively focused on the 445 amino acids-long reference isoform H3R-445. In this study, we pharmacologically characterized for the first time all seven H3R isoforms by determining their binding affinities for reference histamine H3 receptor agonists and inverse agonists. The H3R-453, H3R-415, and H3R-413 isoforms display similar binding affinities for all ligands as the H3R-445. However, increased agonist binding affinities were observed for the three shorter isoforms H3R-329, H3R-365, and H3R-373, whereas inverse agonists such as the approved anti-narcolepsy drug pitolisant (Wakix®) displayed significantly decreased binding affinities for the latter two isoforms. This opposite change in binding affinity of agonist versus inverse agonists on H3R-365 and H3R-373 is associated with their higher constitutive activity in a cAMP biosensor assay as compared to the other five isoforms. The observed differences in pharmacology between longer and shorter H3R isoforms should be considered in future drug discovery programs.


Assuntos
Histamina , Receptores Histamínicos H3 , Humanos , Histamina/farmacologia , Receptores Histamínicos H3/metabolismo , Agonismo Inverso de Drogas , Receptores Histamínicos , Isoformas de Proteínas , Agonistas dos Receptores Histamínicos/farmacologia
8.
Future Med Chem ; 16(3): 197-204, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38189171

RESUMO

Aims: Our research aimed to evaluate how the rigidification of the characteristic 3-aminopropyloxy linker by incorporating it into 1,5-benzoxazepines affects the potency of histamine H3 receptor (H3R) antagonists/inverse agonists. This research constitutes a starting point for the full characterization of the pharmacological properties of this group of compounds. Materials & methods: Several 1,5-benzoxazepine derivatives were synthesized and pharmacologically tested as potential H3R antagonist/inverse agonists. In a addition, the effect of the derivatives on acetylcholinesterase and butyrylcholinesterase inhibition and cytotoxicity were tested. Results: The studies indicated 1,5-benzoxazepine containing three carbon side chains as a compound for further modification. Conclusion: Further optimization of the lead structure is necessary, which will favorably affect biological targets.


Assuntos
Histamina , Receptores Histamínicos H3 , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Receptores Histamínicos H3/química , Agonismo Inverso de Drogas , Relação Estrutura-Atividade
9.
Stem Cells Dev ; 33(3-4): 67-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38032751

RESUMO

The histamine H3 receptor, prominently expressed in neurons with a minor presence in glial cells, acts as both an autoreceptor and an alloreceptor, controlling the release of histamine and other neurotransmitters. The receptor impacts various essential physiological processes. Our team's initial investigations had demonstrated that the histamine H3 receptor antagonists could facilitate nerve regeneration by promoting the histamine H1 receptors on primary neural stem cells (NSCs) in the traumatic brain injury mouse, which suggested the potential of histamine H3 receptor as a promising target for treating neurological disorders and promoting nerve regeneration. Pitolisant (PITO) is the only histamine H3 receptor antagonist approved by the Food and Drug Administration (FDA) for treating narcolepsy. However, there is no report on Pitolisant in neural development or regeneration, and it is urgent to be further studied in strong biological activity models in vitro. The embryonic stem (ES) cells were differentiated into neural cells in vitro, which replicated the neurodevelopmental processes that occur in vivo. It also provided an alternative model for studying neurodevelopmental processes and testing drugs for neurological conditions. Therefore, we aimed to elucidate the regulatory role of Pitolisant in the early differentiation of ES cells into neural cells. Our results demonstrated that Pitolisant could promote the differentiation of ES cells toward NSCs and stimulated the formation of growth cones. Furthermore, Pitolisant was capable of inducing the polarization of NSCs through the cAMP-LKB1-SAD/MARK2 pathway, but had no significant effect on later neuronal maturation. Pitolisant altered mitochondrial morphology and upregulated the levels of mitochondrion-related proteins TOM20, Drp1, and p-Drp1, and reversed the inhibitory effect of Mdivi-1 on mitochondrial fission during the early neural differentiation of ES cells. In addition, Pitolisant induced the increase in cytosolic Ca2+. Our study provided an experimental foundation for the potential application of histamine H3 receptor-targeted modulators in the field of neuroregeneration.


Assuntos
Histamina , Piperidinas , Receptores Histamínicos H3 , Camundongos , Animais , Histamina/farmacologia , Células-Tronco Embrionárias Murinas/metabolismo , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Receptores Histamínicos H3/metabolismo
10.
Int Rev Neurobiol ; 172: 37-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37833018

RESUMO

Military personnel are often victims of spinal cord injury resulting in lifetime disability and decrease in quality of life. However, no suitable therapeutic measures are still available to restore functional disability or arresting the pathophysiological progression of disease in victims for leading a better quality of life. Thus, further research in spinal cord injury using novel strategies or combination of available neuroprotective drugs is urgently needed for superior neuroprotection. In this regard, our laboratory is engaged in developing TiO2 nanowired delivery of drugs, antibodies and enzymes in combination to attenuate spinal cord injury induced pathophysiology and functional disability in experimental rodent model. Previous observations show that histamine antagonists or antioxidant compounds when given alone in spinal cord injury are able to induce neuroprotection for short periods after trauma. In this investigation we used a combination of histaminergic drugs with antioxidant compound H-290/51 using their nanowired delivery for neuroprotection in spinal cord injury of longer duration. Our observations show that a combination of H3 receptor inverse agonist BF-2549 with H3 receptor antagonist and H4 receptor agonist clobenpropit induced neuroprotection is potentiated by antioxidant compound H-290/51 in spinal cord injury. These observations suggests that histamine receptors are involved in the pathophysiology of spinal cord injury and induce superior neuroprotection in combination with an inhibitor of lipid peroxidation H-290/51, not reported earlier. The possible mechanisms and significance of our findings in relation to future clinical approaches in spinal cord injury is discussed.


Assuntos
Nanofios , Receptores Histamínicos H3 , Traumatismos da Medula Espinal , Humanos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Agonismo Inverso de Drogas , Agonistas dos Receptores Histamínicos/farmacologia , Agonistas dos Receptores Histamínicos/uso terapêutico , Neuroproteção , Qualidade de Vida , Receptores Histamínicos H3/uso terapêutico , Receptores Histamínicos H4
11.
Sci Rep ; 13(1): 16127, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752220

RESUMO

G protein-coupled receptors (GPCRs) are the largest protein family in humans and are important drug targets. Yeast, especially Saccharomyces cerevisiae, is a useful host for modifying the function and stability of GPCRs through protein engineering, which is advantageous for mammalian cells. When GPCRs are expressed in yeast, their function is often impaired. In this study, we performed random mutagenesis using error-prone PCR and then an in vivo screening to obtain mutants that recovered the activity of the human histamine H3 receptor (H3R), which loses its signaling function when expressed in yeast. Four mutations with recovered activity were identified after screening. Three of the mutations were identified near the DRY and NPxxY motifs of H3R, which are important for activation and are commonly found in class A GPCRs. The mutants responded exclusively to the yeast YB1 strain harboring Gi-chimera proteins, showing retention of G protein specificity. Analysis of one of the mutants with recovered activity, C415R, revealed that it maintained its ligand-binding characteristics. The strategy used in this study may enable the recovery of the activity of other GPCRs that do not function in S. cerevisiae and may be useful in creating GPCRs mutants stabilized in their active conformations.


Assuntos
Receptores Histamínicos H3 , Saccharomyces cerevisiae , Animais , Humanos , Histamina/metabolismo , Mamíferos/metabolismo , Reação em Cadeia da Polimerase , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Receptores Histamínicos/genética , Receptores Histamínicos/metabolismo , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Adv Neurobiol ; 32: 55-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480459

RESUMO

Parkinson's disease (PD) in military personnel engaged in combat operations is likely to develop in their later lives. In order to enhance the quality of lives of PD patients, exploration of novel therapy based on new research strategies is highly warranted. The hallmarks of PD include increased alpha synuclein (ASNC) and phosphorylated tau (p-tau) in the cerebrospinal fluid (CSF) leading to brain pathology. In addition, there are evidences showing increased histaminergic nerve fibers in substantia niagra pars compacta (SNpc), striatum (STr), and caudate putamen (CP) associated with upregulation of histamine H3 receptors and downregulation of H4 receptors in human brain. Previous studies from our group showed that modulation of potent histaminergic H3 receptor inverse agonist BF-2549 or clobenpropit (CLBPT) partial histamine H4 agonist with H3 receptor antagonist induces neuroprotection in PD brain pathology. Recent studies show that PD also enhances amyloid beta peptide (AßP) depositions in brain. Keeping these views in consideration in this review, nanowired delivery of monoclonal antibodies to AßP together with ASNC and H3/H4 modulator drugs on PD brain pathology is discussed based on our own observations. Our investigation shows that TiO2 nanowired BF-2649 (1 mg/kg, i.p.) or CLBPT (1 mg/kg, i.p.) once daily for 1 week together with nanowired delivery of monoclonal antibodies (mAb) to AßP and ASNC induced superior neuroprotection in PD-induced brain pathology. These observations are the first to show the modulation of histaminergic receptors together with antibodies to AßP and ASNC induces superior neuroprotection in PD. These observations open new avenues for the development of novel drug therapies for clinical strategies in PD.


Assuntos
Doença de Parkinson , Receptores Histamínicos H3 , Humanos , alfa-Sinucleína , Peptídeos beta-Amiloides/imunologia , Anticorpos Monoclonais/farmacologia , Encéfalo , Agonismo Inverso de Drogas , Histamina , Doença de Parkinson/tratamento farmacológico , Receptores Histamínicos H4 , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacologia
13.
J Med Chem ; 66(14): 9658-9683, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37418295

RESUMO

In search of new dual-acting histamine H3/sigma-1 receptor ligands, we designed a series of compounds structurally based on highly active in vivo ligands previously studied and described by our team. However, we kept in mind that within the previous series, a pair of closely related compounds, KSK67 and KSK68, differing only in the piperazine/piperidine moiety in the structural core showed a significantly different affinity at sigma-1 receptors (σ1Rs). Therefore, we first focused on an in-depth analysis of the protonation states of piperazine and piperidine derivatives in the studied compounds. In a series of 16 new ligands, mainly based on the piperidine core, we selected three lead structures (3, 7, and 12) for further biological evaluation. Compound 12 showed a broad spectrum of analgesic activity in both nociceptive and neuropathic pain models based on the novel molecular mechanism.


Assuntos
Neuralgia , Receptores Histamínicos H3 , Receptores sigma , Humanos , Histamina , Receptores Histamínicos H3/química , Ligantes , Nociceptividade , Piperazina , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Piperidinas/química , Neuralgia/tratamento farmacológico , Relação Estrutura-Atividade , Receptor Sigma-1
14.
J Psychopharmacol ; 37(10): 1011-1022, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329185

RESUMO

BACKGROUND: The histamine-3 receptor (H3R) is an auto- and heteroreceptor that inhibits the release of histamine and other neurotransmitters. Post-mortem evidence has found altered H3R expression in patients with psychotic disorders, which may underlie cognitive impairment associated with schizophrenia (CIAS). AIMS: We used positron emission tomography (PET) imaging to compare brain uptake of an H3R selective tracer between patients with schizophrenia and matched controls (healthy individuals). Regions of interest included the dorsolateral prefrontal cortex (DLPFC) and striatum. We explored correlations between tracer uptake and symptoms, including cognitive domains. METHODS: A total of 12 patients and 12 matched controls were recruited to the study and were assessed with psychiatric and cognitive rating scales. They received a PET scan using the H3R-specific radioligand [11C]MK-8278 to determine H3R availability. RESULTS: There was no statistically significant difference in tracer uptake between patients and controls in the DLPFC (t19 = 0.79, p = 0.44) or striatum (t21 = 1.18, p = 0.25). An exploratory analysis found evidence for lower volume of distribution in the left cuneus (pFWE-corrected = 0.01). DLPFC tracer uptake was strongly correlated with cognition in controls (trail making test (TMT) A: r = 0.77, p = 0.006; TMT B: rho = 0.74, p = 0.01), but not in patients (TMT A: r = -0.18, p = 0.62; TMT B: rho = -0.06, p = 0.81). CONCLUSIONS: These findings indicate H3R in the DLPFC might play a role in executive function and this is disrupted in schizophrenia in the absence of major alterations in H3R availability as assessed using a selective radiotracer for H3R. This provides further evidence for the role of H3R in CIAS.


Assuntos
Receptores Histamínicos H3 , Esquizofrenia , Humanos , Histamina/metabolismo , Receptores Histamínicos H3/metabolismo , Voluntários Saudáveis , Cognição , Tomografia por Emissão de Pósitrons/métodos
15.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240396

RESUMO

The main aim of this study is to synthesize contrast microbubbles (MB) functionalized with engineered protein ligands using a microfluidic device to target breast cancer specific vascular B7-H3 receptor in vivo for diagnostic ultrasound imaging. We used a high-affinity affibody (ABY) selected against human/mouse B7-H3 receptor for engineering targeted MBs (TMBs). We introduced a C-terminal cysteine residue to this ABY ligand for facilitating site-specific conjugation to DSPE-PEG-2K-maleimide (M. Wt = 2.9416 kDa) phospholipid for MB formulation. We optimized the reaction conditions of bioconjugations and applied it for microfluidic based synthesis of TMBs using DSPE-PEG-ABY and DPPC liposomes (5:95 mole %). The binding affinity of TMBs to B7-H3 (MBB7-H3) was tested in vitro in MS1 endothelial cells expressing human B7-H3 (MS1B7-H3) by flow chamber assay, and by ex vivo in the mammary tumors of a transgenic mouse model (FVB/N-Tg (MMTV-PyMT)634Mul/J), expressing murine B7-H3 in the vascular endothelial cells by immunostaining analyses. We successfully optimized the conditions needed for generating TMBs using a microfluidic system. The synthesized MBs showed higher affinity to MS1 cells engineered to express higher level of hB7-H3, and in the endothelial cells of mouse tumor tissue upon injecting TMBs in a live animal. The average number (mean ± SD) of MBB7-H3 binding to MS1B7-H3 cells was estimated to be 354.4 ± 52.3 per field of view (FOV) compared to wild-type control cells (MS1WT; 36.2 ± 7.5/FOV). The non-targeted MBs did not show any selective binding affinity to both the cells (37.7 ± 7.8/FOV for MS1B7-H3 and 28.3 ± 6.7/FOV for MS1WT cells). The fluorescently labeled MBB7-H3 upon systemic injection in vivo co-localized to tumor vessels, expressing B7-H3 receptor, as validated by ex vivo immunofluorescence analyses. We have successfully synthesized a novel MBB7-H3 via microfluidic device, which allows us to produce on demand TMBs for clinical applications. This clinically translatable MBB7-H3 showed significant binding affinity to vascular endothelial cells expressing B7-H3 both in vitro and in vivo, which shows its potential for clinical translation as a molecular ultrasound contrast agent for human applications.


Assuntos
Neoplasias da Mama , Receptores Histamínicos H3 , Camundongos , Animais , Humanos , Feminino , Microbolhas , Células Endoteliais/metabolismo , Ultrassonografia/métodos , Camundongos Transgênicos , Imagem Molecular/métodos , Meios de Contraste , Neoplasias da Mama/patologia , Dispositivos Lab-On-A-Chip
16.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108661

RESUMO

Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Humanos , Animais , Histamina , Antagonistas dos Receptores Histamínicos H3/farmacologia , Obesidade/tratamento farmacológico , Aumento de Peso , Ligantes , Antagonistas dos Receptores Histamínicos
17.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110645

RESUMO

H3R is becoming an attractive and promising target for epilepsy treatment as well as the discovery of antiepileptics. In this work, a series of 6-aminoalkoxy-3,4-dihydroquinolin-2(1H)-ones was prepared to screen their H3R antagonistic activities and antiseizure effects. The majority of the target compounds displayed a potent H3R antagonistic activity. Among them, compounds 2a, 2c, 2h, and 4a showed submicromolar H3R antagonistic activity with an IC50 of 0.52, 0.47, 0.12, and 0.37 µM, respectively. The maximal electroshock seizure (MES) model screened out three compounds (2h, 4a, and 4b) with antiseizure activity. Meanwhile, the pentylenetetrazole (PTZ)-induced seizure test gave a result that no compound can resist the seizures induced by PTZ. Additionally, the anti-MES action of compound 4a fully vanished when it was administrated combined with an H3R agonist (RAMH). These results showed that the antiseizure role of compound 4a might be achieved by antagonizing the H3R receptor. The molecular docking of 2h, 4a, and PIT with the H3R protein predicted their possible binding patterns and gave a presentation that 2h, 4a, and PIT had a similar binding model with H3R.


Assuntos
Antagonistas dos Receptores Histamínicos H3 , Receptores Histamínicos H3 , Ratos , Animais , Humanos , Histamina , Ratos Wistar , Simulação de Acoplamento Molecular , Antagonistas dos Receptores Histamínicos H3/química , Receptores Histamínicos H3/metabolismo , Relação Dose-Resposta a Droga , Anticonvulsivantes/química , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Pentilenotetrazol/efeitos adversos
18.
J Biol Chem ; 299(4): 104583, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871761

RESUMO

The histamine H3 receptor (H3R) is highly enriched in the spiny projection neurons (SPNs) of the striatum, in both the D1 receptor (D1R)-expressing and D2 receptor (D2R)-expressing populations. A crossantagonistic interaction between H3R and D1R has been demonstrated in mice, both at the behavioral level and at the biochemical level. Although interactive behavioral effects have been described upon coactivation of H3R and D2R, the molecular mechanisms underlying this interaction are poorly understood. Here, we show that activation of H3R with the selective agonist R-(-)-α-methylhistamine dihydrobromide mitigates D2R agonist-induced locomotor activity and stereotypic behavior. Using biochemical approaches and the proximity ligation assay, we demonstrated the existence of an H3R-D2R complex in the mouse striatum. In addition, we examined consequences of simultaneous H3R-D2R agonism on the phosphorylation levels of several signaling molecules using immunohistochemistry. H3R agonist treatment modulated Akt (serine/threonine PKB)-glycogen synthase kinase 3 beta signaling in response to D2R activation via a ß-arrestin 2-dependent mechanism in D2R-SPNs but not in D1R-SPNs. Phosphorylation of mitogen- and stress-activated protein kinase 1 and rpS6 (ribosomal protein S6) was largely unchanged under these conditions. As Akt-glycogen synthase kinase 3 beta signaling has been implicated in several neuropsychiatric disorders, this work may help clarify the role of H3R in modulating D2R function, leading to a better understanding of pathophysiology involving the interaction between histamine and dopamine systems.


Assuntos
Receptores de Dopamina D2 , Receptores Histamínicos H3 , Transdução de Sinais , Animais , Camundongos , Corpo Estriado/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Transdução de Sinais/fisiologia
19.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903593

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD. Histamine H3 receptors (H3Rs) antagonists/inverse agonists are indicated for CNS diseases. Combining AChEIs with H3R antagonism in one structure could bring a beneficial therapeutic effect. The aim of this study was to find new multitargetting ligands. Thus, continuing our previous research, acetyl- and propionyl-phenoxy-pentyl(-hexyl) derivatives were designed. These compounds were tested for their affinity to human H3Rs, as well as their ability to inhibit cholinesterases (acetyl- and butyrylcholinesterases) and, additionally, human monoamine oxidase B (MAO B). Furthermore, for the selected active compounds, their toxicity towards HepG2 or SH-SY5Y cells was evaluated. The results showed that compounds 16 (1-(4-((5-(azepan-1-yl)pentyl)oxy)phenyl)propan-1-one) and 17 (1-(4-((6-(azepan-1-yl)hexyl)oxy)phenyl)propan-1-one) are the most promising, with a high affinity for human H3Rs (Ki: 30 nM and 42 nM, respectively), a good ability to inhibit cholinesterases (16: AChE IC50 = 3.60 µM, BuChE IC50 = 0.55 µM; 17: AChE IC50 = 1.06 µM, BuChE IC50 = 2.86 µM), and lack of cell toxicity up to 50 µM.


Assuntos
Doença de Alzheimer , Neuroblastoma , Receptores Histamínicos H3 , Humanos , Histamina , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Agonismo Inverso de Drogas , Receptores Histamínicos H3/química , Inibidores da Colinesterase/química , Receptores Histamínicos , Monoaminoxidase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Ligantes
20.
ACS Chem Neurosci ; 14(4): 645-656, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36702158

RESUMO

The human histamine H3 receptor (hH3R) is predominantly expressed in the CNS, where it regulates the synthesis and release of histamine and other neurotransmitters. Due to its neuromodulatory role, the hH3R has been associated with various CNS disorders, including Alzheimer's and Parkinson's disease. Markedly, the hH3R gene undergoes extensive splicing, resulting in 20 isoforms, of which 7TM isoforms exhibit variations in the intracellular loop 3 (IL3) and/or C-terminal tail. Particularly, hH3R isoforms that display variations in IL3 (e.g., hH3R-365) are shown to differentially signal via Gαi-dependent pathways upon binding of biased agonists (e.g., immepip, proxifan, imetit). Nevertheless, the mechanisms underlying biased agonism at hH3R isoforms remain unknown. Using a structure-function relationship study with a broad range of H3R agonists, we thereby explored determinants underlying isoform bias at hH3R isoforms that exhibit variations in IL3 (i.e., hH3R-445, -415, -365, and -329) in a Gαi-dependent pathway (cAMP inhibition). Hence, we systematically characterized hH3R isoforms on isoform bias by comparing various ligand properties (i.e., structural and molecular) to the degree of isoform bias. Importantly, our study provides novel insights into the structural and molecular basis of receptor isoform bias, highlighting the importance to study GPCRs with multiple isoforms to better tailor drugs.


Assuntos
Histamina , Receptores Histamínicos H3 , Humanos , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/química , Receptores Histamínicos H3/metabolismo , Receptores Histamínicos , Isoformas de Proteínas/metabolismo , Ligantes , Agonistas dos Receptores Histamínicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...