Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.304
Filtrar
1.
Top Curr Chem (Cham) ; 382(2): 20, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829467

RESUMO

Cannabis sativa has long been used for neurological and psychological healing. Recently, cannabidiol (CBD) extracted from cannabis sativa has gained prominence in the medical field due to its non-psychotropic therapeutic effects on the central and peripheral nervous systems. CBD, also acting as a potent antioxidant, displays diverse clinical properties such as anticancer, antiinflammatory, antidepressant, antioxidant, antiemetic, anxiolytic, antiepileptic, and antipsychotic effects. In this review, we summarized the structural activity relationship of CBD with different receptors by both experimental and computational techniques and investigated the mechanism of interaction between related receptors and CBD. The discovery of structural activity relationship between CBD and target receptors would provide a direction to optimize the scaffold of CBD and its derivatives, which would give potential medical applications on CBD-based therapies in various illnesses.


Assuntos
Canabidiol , Canabidiol/química , Canabidiol/farmacologia , Canabidiol/metabolismo , Humanos , Animais , Antioxidantes/química , Antioxidantes/farmacologia , Cannabis/química , Relação Estrutura-Atividade , Receptores de Canabinoides/metabolismo , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antidepressivos/química , Antidepressivos/farmacologia
2.
Biochim Biophys Acta Gen Subj ; 1868(8): 130651, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825256

RESUMO

Cannabidiol (CBD) has antioxidant and anti-inflammatory activities. However, the anti-tumor effect of CBD on hepatocellular carcinoma (HCC) remains unclear. Here, we investigated whether CBD displays anti-tumorigenic effects in HCC cells and whether it could reduce tumorigenesis and metastases in vivo. First, this study treated HCC cells with different concentrations of CBD, followed by analyzing the changes in the proliferative, apoptotic, migratory and invasive abilities. The effects of CBD on the growth and metastasis of HCC cells in vivo were verified by tumorigenesis and metastasis assays. Subsequently, the target genes of CBD were predicted through the SwissTarget website and the genes differentially expressed in cells after CBD treatment were analyzed by microarray for intersection. The enrichment of the pathways after CBD treatment was analyzed by KEGG enrichment analysis, followed by western blot validation. Finally, rescue assays were used to validate the functions of genes as well as pathways in the growth and metastasis of HCC cells. A significant weakening of the ability of HCC cells to grow and metastasize in vitro and in vivo was observed upon CBD treatment. Mechanistically, CBD reduced GRP55 expression in HCC cells, along with increased TP53 expression and blocked MAPK signaling activation. In CBD-treated cells, the anti-tumor of HCC cells was restored after overexpression of GRP55 or deletion of TP53. CBD inhibits the MAPK signaling activation and increases the TP53 expression by downregulating GRP55 in HCC cells, thereby suppressing the growth and metastasis of HCC cells.


Assuntos
Canabidiol , Carcinoma Hepatocelular , Neoplasias Hepáticas , Receptores de Canabinoides , Proteína Supressora de Tumor p53 , Canabidiol/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/genética , Animais , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fenótipo , Camundongos Nus
3.
Cells ; 13(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38920677

RESUMO

The endocannabinoid system (ECS) is a widely recognized lipid messenger system involved in many aspects of our health and diseases [...].


Assuntos
Endocanabinoides , Endocanabinoides/metabolismo , Humanos , Animais , Receptores de Canabinoides/metabolismo
4.
Int J Mol Sci ; 25(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791416

RESUMO

Alzheimer's disease (AD) remains a significant health challenge, with an increasing prevalence globally. Recent research has aimed to deepen the understanding of the disease pathophysiology and to find potential therapeutic interventions. In this regard, G protein-coupled receptors (GPCRs) have emerged as novel potential therapeutic targets to palliate the progression of neurodegenerative diseases such as AD. Orexin and cannabinoid receptors are GPCRs capable of forming heteromeric complexes with a relevant role in the development of this disease. On the one hand, the hyperactivation of the orexins system has been associated with sleep-wake cycle disruption and Aß peptide accumulation. On the other hand, cannabinoid receptor overexpression takes place in a neuroinflammatory environment, favoring neuroprotective effects. Considering the high number of interactions between cannabinoid and orexin systems that have been described, regulation of this interplay emerges as a new focus of research. In fact, in microglial primary cultures of APPSw/Ind mice model of AD there is an important increase in CB2R-OX1R complex expression, while OX1R antagonism potentiates the neuroprotective effects of CB2R. Specifically, pretreatment with the OX1R antagonist has been shown to strongly potentiate CB2R signaling in the cAMP pathway. Furthermore, the blockade of OX1R can also abolish the detrimental effects of OX1R overactivation in AD. In this sense, CB2R-OX1R becomes a new potential therapeutic target to combat AD.


Assuntos
Doença de Alzheimer , Canabinoides , Orexinas , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Humanos , Canabinoides/farmacologia , Canabinoides/metabolismo , Canabinoides/uso terapêutico , Orexinas/metabolismo , Receptores de Orexina/metabolismo , Receptores de Canabinoides/metabolismo , Transdução de Sinais , Peptídeos beta-Amiloides/metabolismo
5.
J Cell Mol Med ; 28(10): e18376, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38780511

RESUMO

Taking into account homeostatic disorders resulting from arterial hypertension and the key importance of CacyBP/SIP, ß-catenin and endocannabinoids in the functioning of many organs, it was decided to assess the presence and distribution of CacyBP/SIP, ß-catenin, CB1 and CB2 in the adrenal glands of hypertensive rats of various aetiology. The study was conducted on the adrenal glands of rats with spontaneous and renovascular hypertension. The expression of CacyBP/SIP, ß-catenin, CB1 and CB2 was detected by immunohistochemistry and real-time PCR method. The results of the present study revealed both lower gene expression and immunoreactivity of CacyBP/SIP in the adrenal glands of all hypertensive groups compared to the normotensive rats. This study demonstrated a reduction in the immunoreactivity and expression of the ß-catenin, CB1 and CB2 genes in the adrenals of 2K1C rats. While in SHR, the reaction showing ß-catenin and CB1 was very weak or negative, and the expression of CB2 in the adrenal glands of these rats increased. The results of this study show, for the first time, marked differences in the expression of CacyBP/SIP, ß-catenin and CB1 and CB2 cannabinoid receptors in the adrenal glands of rats with primary (SHR) and secondary hypertension (2K1C).


Assuntos
Glândulas Suprarrenais , Hipertensão , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , beta Catenina , Animais , beta Catenina/metabolismo , beta Catenina/genética , Masculino , Hipertensão/metabolismo , Hipertensão/genética , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Imuno-Histoquímica , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/genética , Hipertensão Renovascular/metabolismo , Hipertensão Renovascular/genética , Hipertensão Renovascular/patologia
6.
Neuropharmacology ; 256: 110018, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38810925

RESUMO

Diets high in sucrose and fat are becoming more prevalent the world over, accompanied by a raised prevalence of cardiovascular diseases, cancers, diabetes, obesity, and metabolic syndrome. Clinical studies link unhealthy diets with the development of mental health disorders, particularly depression. Here, we investigate the effects of 12 days of sucrose consumption administered as 2 L of 25% sucrose solution daily for 12 days in Göttingen minipigs on the function of brain receptors involved in reward and motivation, regulating feeding, and pre- and post-synaptic mechanisms. Through quantitative autoradiography of cryostat sections containing limbic brain regions, we investigated the effects of sucrose restricted to a 1-h period each morning, on the specific binding of [3H]raclopride on dopamine D2/3 receptors, [3H]UCB-J at synaptic vesicle glycoprotein 2A (SV2A), [3H]MPEPγ at metabotropic glutamate receptor subtype 5 (mGluR5) and [3H]SR141716A at the cannabinoid receptor 1 (CB1). Compared to control diet animals, the sucrose group showed significantly lower [3H]UCB-J and [3H]MPEPγ binding in the prefrontal cortex. The sucrose-consuming minipigs showed higher hippocampal CB1 binding, but unaltered dopamine D2/3 binding compared to the control group. We found that the sucrose diet reduced the synaptic density marker while increasing CB1 binding in limbic brain structures, which may subserve maladaptive changes in appetite regulation and feeding. Further studies of the effects of diets and lifestyle habits on brain neuroreceptor and synaptic density markers are warranted.


Assuntos
Sacarose , Porco Miniatura , Animais , Suínos , Sacarose/administração & dosagem , Masculino , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de Canabinoides/metabolismo , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Receptores de Dopamina D2/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Feminino , Receptores de Dopamina D3/metabolismo
7.
J Pregnancy ; 2024: 6620156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745869

RESUMO

Background: The cannabinoid receptor (CBR) plays a significant role in oogenesis, pregnancy, and childbirth. It might also play a significant role in preterm birth (PTB). The aim of the study was to investigate the association between the expression of the CBR in the placenta and the incidence of PTB. Methods: This prospective, observational, multicentre preliminary study was conducted on placental samples obtained from 109 women. The study included 95 patients hospitalized due to the high risk of PTB. They were divided into two groups: Group 1, where the expression of the CBR1 and CBR1a was analyzed, and Group 2, in which we examined CBR2 expression. The control group, that is, Group 3, consisted of 14 women who delivered at term, and their placentas were tested for the presence of all three receptor types (CBR1, CBR1a, and CBR2). Results: The study used reverse transcription and real-time PCR methods to assess the expression of CBRs in the placental tissues. The expression of the CBR2, CBR1, and CBR1a receptors was significantly lower in the placentas of women after PTB compared to those after term births, p = 0.038, 0.033, and 0.034, respectively. Conclusions: The presence of CBR mRNA in the human placental tissue was confirmed. The decreased expression of CBRs could serve as an indicator in predicting PTB.


Assuntos
Placenta , Nascimento Prematuro , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Humanos , Feminino , Gravidez , Placenta/metabolismo , Nascimento Prematuro/metabolismo , Estudos Prospectivos , Adulto , Receptor CB2 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Estudos de Casos e Controles , RNA Mensageiro/metabolismo , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/genética
8.
Eur J Pharmacol ; 976: 176679, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38821167

RESUMO

To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.


Assuntos
Canabinoides , Canabinoides/farmacologia , Canabinoides/química , Humanos , Animais , Relação Estrutura-Atividade , Receptores de Canabinoides/metabolismo , Ligantes , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/química
9.
Pharmacol Res ; 203: 107176, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583687

RESUMO

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Assuntos
Canabidiol , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil , Hipocampo , Receptores de Canabinoides , Reconhecimento Psicológico , Animais , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Receptores de Canabinoides/metabolismo , Masculino , Reconhecimento Psicológico/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Ratos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Memória/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Simulação de Acoplamento Molecular
10.
Eur J Pharmacol ; 971: 176549, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561104

RESUMO

Synthetic cannabinoid receptor agonists (SCRAs) remain one the largest classes of new psychoactive substances, and are increasingly associated with severe adverse effects and death compared to the phytocannabinoid Δ9-tetrahydrocannabinol (THC). In the attempt to circumvent the rapid emergence of novel SCRAs, several nations have implemented 'generic' legislations, or 'class-wide' bans based on common structural scaffolds. However, this has only encouraged the incorporation of new chemical entities, including distinct core and linker structures, for which there is a dearth of pharmacological data. The current study evaluated five emergent OXIZID SCRAs for affinity and functional activity at the cannabinoid CB1 receptor (CB1) in HEK 293 cells, as well as pharmacological equivalence with THC in drug discrimination in mice. All OXIZID compounds behaved as agonists in Gαi protein activation and ß-arrestin 2 translocation assays, possessing low micromolar affinity at CB1. All ligands also substituted for THC in drug discrimination, where potencies broadly correlated with in vitro activity, with the methylcyclohexane analogue BZO-CHMOXIZID being the most potent. Notably, MDA-19 (BZO-HEXOXIZID) exhibited partial efficacy in vitro, generating an activity profile most similar to that of THC, and partial substitution in vivo. Overall, the examined OXIZIDs were comparatively less potent and efficacious than previous generations of SCRAs. Further toxicological data will elucidate whether the moderate cannabimimetic activity for this series of SCRAs will translate to severe adverse health effects as seen with previous generations of SCRAs.


Assuntos
Agonistas de Receptores de Canabinoides , Processamento de Proteína Pós-Traducional , Humanos , Camundongos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Células HEK293 , Receptores de Canabinoides/metabolismo , Ligantes , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
11.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673761

RESUMO

Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.


Assuntos
Esclerose Múltipla , Córtex Pré-Frontal , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide , Receptores de Canabinoides , Humanos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Córtex Pré-Frontal/metabolismo , Receptores de Canabinoides/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Masculino , Adulto , Feminino , Receptores Acoplados a Proteínas G/metabolismo , Pessoa de Meia-Idade , Regulação para Cima , Multimerização Proteica
12.
Nutrients ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674820

RESUMO

Sarcopenia, a decline in muscle mass and strength, can be triggered by aging or medications like glucocorticoids. This study investigated cornflower (Centaurea cyanus) water extract (CC) as a potential protective agent against DEX-induced muscle wasting in vitro and in vivo. CC and its isolated compounds mitigated oxidative stress, promoted myofiber growth, and boosted ATP production in C2C12 myotubes. Mechanistically, CC reduced protein degradation markers, increased mitochondrial content, and activated protein synthesis signaling. Docking analysis suggested cannabinoid receptors (CB) 1 and 2 as potential targets of CC compounds. Specifically, graveobioside A from CC inhibited CB1 and upregulated CB2, subsequently stimulating protein synthesis and suppressing degradation. In vivo, CC treatment attenuated DEX-induced muscle wasting, as evidenced by enhanced grip strength, exercise performance, and modulation of muscle gene expression related to differentiation, protein turnover, and exercise performance. Moreover, CC enriched gut microbial diversity, and the abundance of Clostridium sensu stricto 1 positively correlated with muscle mass. These findings suggest a multifaceted mode of action for CC: (1) direct modulation of the muscle cannabinoid receptor system favoring anabolic processes and (2) indirect modulation of muscle health through the gut microbiome. Overall, CC presents a promising therapeutic strategy for preventing and treating muscle atrophy.


Assuntos
Dexametasona , Microbioma Gastrointestinal , Atrofia Muscular , Extratos Vegetais , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Extratos Vegetais/farmacologia , Camundongos , Dexametasona/farmacologia , Dexametasona/efeitos adversos , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/induzido quimicamente , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Receptores de Canabinoides/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Linhagem Celular , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Sarcopenia/tratamento farmacológico
13.
Cells ; 13(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474425

RESUMO

Cannabis use stimulates calorie intake, but epidemiological studies show that people who regularly use it are leaner than those who don't. Two explanations have been proposed for this paradoxical finding. One posits that Δ9-tetrahydrocannabinol (THC) in cannabis desensitizes adipose CB1 cannabinoid receptors, stopping their stimulating effects on lipogenesis and adipogenesis. Another explanation is that THC exposure in adolescence, when habitual cannabis use typically starts, produces lasting changes in the developing adipose organ, which impacts adult systemic energy use. Here, we consider these possibilities in the light of a study which showed that daily THC administration in adolescent mice produces an adult metabolic phenotype characterized by reduced fat mass, partial resistance to obesity and dyslipidemia, and impaired thermogenesis and lipolysis. The phenotype, whose development requires activation of CB1 receptors in differentiated adipocytes, is associated with overexpression of myocyte proteins in the adipose organ with unchanged CB1 expression. We propose that adolescent exposure to THC causes lasting adipocyte dysfunction and the consequent emergence of a metabolic state that only superficially resembles healthy leanness. A corollary of this hypothesis, which should be addressed in future studies, is that CB1 receptors and their endocannabinoid ligands may contribute to the maintenance of adipocyte differentiation during adolescence.


Assuntos
Cannabis , Endocanabinoides , Humanos , Camundongos , Animais , Adolescente , Endocanabinoides/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Receptores de Canabinoides/metabolismo , Adiposidade
14.
Neurourol Urodyn ; 43(5): 1207-1216, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38533637

RESUMO

AIMS: Activation of the endocannabinoid system by monoacylglycerol lipase (MAGL) blockade may affect the lower urinary tract function. We investigated the effect of an MAGL inhibitor, MJN110, on neurogenic lower urinary tract dysfunction (LUTD) in the mouse model of spinal cord injury (SCI). METHODS: Female C57BL/6 mice that underwent spinal cord transection at T8-10 level were divided into three groups consisting of (1) vehicle-treated SCI mice, (2) 5 mg/kg, or (3) 10 mg/kg of MJN110-treated SCI mice. MJN110 and vehicle were administered intraperitoneally for 7 days from 4 weeks after spinal cord transection. We then conducted awake cystometrograms and compared urodynamic parameters between three groups. The expression of cannabinoid (CB) receptors, TRP receptors, and inflammatory cytokines in L6-S1 dorsal root ganglia (DRG) or the bladder mucosa were evaluated and compared among three groups. Changes in the level of serum 2-arachidonoylglycerol (2-AG) and bladder MAGL were also evaluated. RESULTS: In the cystometrogram, detrusor overactivity (DO) parameters, such as the number of nonvoiding contraction (NVC), a ratio of time to the 1st NVC to intercontraction interval (ICI), and NVC integrals were improved by MJN110 treatment, and some effects were dose dependent. Although MJN110 did not improve voiding efficiency, it decreased bladder capacity, ICI, and residual urine volume compared to vehicle injection. MJN110 treatment groups had lower CB2, TRPV1, TRPA1, and inflammatory cytokines mRNA levels in DRG and bladder mucosa. Serum 2-AG was increased, and bladder MAGL was decreased after MAGL inhibitor treatment. CONCLUSIONS: MAGL inhibition improved LUTD including attenuation of DO after SCI. Thus, MAGL can be a therapeutic target for neurogenic LUTD after SCI.


Assuntos
Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases , Traumatismos da Medula Espinal , Bexiga Urinária , Urodinâmica , Animais , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/metabolismo , Feminino , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Urodinâmica/efeitos dos fármacos , Camundongos , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Receptores de Canabinoides/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Endocanabinoides/metabolismo , Citocinas/metabolismo , Bexiga Urinaria Neurogênica/tratamento farmacológico , Bexiga Urinaria Neurogênica/fisiopatologia , Bexiga Urinaria Neurogênica/etiologia , Sintomas do Trato Urinário Inferior/tratamento farmacológico , Sintomas do Trato Urinário Inferior/fisiopatologia , Sintomas do Trato Urinário Inferior/etiologia , Carbamatos , Succinimidas
15.
Neurochem Res ; 49(5): 1278-1290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368587

RESUMO

Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.


Assuntos
Amidoidrolases , Endocanabinoides , Lisina , Receptor CB1 de Canabinoide , Isolamento Social , Animais , Ratos , Amidoidrolases/genética , Endocanabinoides/metabolismo , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides/metabolismo
16.
Biochem Pharmacol ; 222: 116052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354957

RESUMO

The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and ß-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and ß-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of ß-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and ß-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards ß-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/metabolismo , beta-Arrestinas/metabolismo , Receptores de Canabinoides/metabolismo , beta-Arrestina 1/metabolismo , Ligantes , Proteínas de Ligação ao GTP/metabolismo , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
17.
Sci Total Environ ; 918: 170679, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325485

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) is a quinone derivative of a common tire additive 6PPD, whose occurrence has been widely reported both in the environment and human bodies including in adults, pregnant women and children. Yet, knowledge on the potential intestinal toxicity of 6PPD-Q in mammals at environmentally relevant dose remain unknown. In this study, the effects of 6PPD-Q on the intestines of adult ICR mice were evaluated by orally administering environmentally relevant dose or lower levels of 6PPD-Q (0.1, 1, 10, and 100 µg/kg) for 21 days. We found that 6PPD-Q disrupted the integrity of the intestinal barrier, mostly in the jejunum and ileum, but not in the duodenum or colon, in a dose-dependent manner. Moreover, intestinal inflammation manifested with elevated levels of TNF-α, IL-1, and IL-6 mostly observed in doses at 10 and 100 µg/kg. Using reverse target screening technology combining molecular dynamic simulation modeling we identified key cannabinoid receptors including CNR2 activation to be potentially mediating the intestinal inflammation induced by 6PPD-Q. In summary, this study provides novel insights into the toxic effects of emerging contaminant 6PPD-Q on mammalian intestines and that the chemical may be a cannabinoid receptor agonist to modulate inflammation.


Assuntos
Intestinos , Jejuno , Gravidez , Criança , Feminino , Humanos , Animais , Camundongos , Jejuno/metabolismo , Receptores de Canabinoides/metabolismo , Camundongos Endogâmicos ICR , Íleo/metabolismo , Inflamação/induzido quimicamente , Quinonas , Mamíferos
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338960

RESUMO

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Assuntos
Canabinoides , Infarto do Miocárdio , Receptor CB1 de Canabinoide , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Receptores de Canabinoides/metabolismo , Dronabinol/farmacologia
19.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339171

RESUMO

Resistant migraine characterizes those patients who have failed at least three classes of migraine prophylaxis. These difficult-to-treat patients are likely to be characterized by a high prevalence of psychological disturbances. A dysfunction of the endocannabinoid system (ECS), including alteration in the levels of endocannabinoid congeners, may underlie several psychiatric disorders and the pathogenesis of migraines. Here we explored whether the peripheral gene expression of major components of the ECS and the plasma levels of endocannabinoids and related lipids are associated with psychological disorders in resistant migraine. Fifty-one patients (age = 46.0 ± 11.7) with resistant migraine received a comprehensive psychological evaluation according to the DSM-5 criteria. Among the patients, 61% had personality disorders (PD) and 61% had mood disorders (MD). Several associations were found between these psychological disorders and peripheral ECS alterations. Lower plasma levels of palmitoiletanolamide (PEA) were found in the PD group compared with the non-PD group. The MD group was characterized by lower mRNA levels of diacylglycerol lipase α (DAGLα) and CB2 (cannabinoid-2) receptor. The results suggest the existence of peripheral dysfunction in some components of the ECS and an alteration in plasma levels of PEA in patients with resistant migraine and mood or personality disorders.


Assuntos
Transtornos Mentais , Transtornos de Enxaqueca , Humanos , Adulto , Pessoa de Meia-Idade , Endocanabinoides/metabolismo , Estudos Transversais , Receptores de Canabinoides/metabolismo , Transtornos da Personalidade , Personalidade , Transtornos de Enxaqueca/genética
20.
Transl Psychiatry ; 14(1): 101, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374108

RESUMO

G protein-coupled receptor 55 (GPR55) has been thought to be a putative cannabinoid receptor. However, little is known about its functional role in cannabinoid action and substance use disorders. Here we report that GPR55 is predominantly found in glutamate neurons in the brain, and its activation reduces self-administration of cocaine and nicotine in rats and mice. Using RNAscope in situ hybridization, GPR55 mRNA was identified in cortical vesicular glutamate transporter 1 (VgluT1)-positive and subcortical VgluT2-positive glutamate neurons, with no detection in midbrain dopamine (DA) neurons. Immunohistochemistry detected a GPR55-like signal in both wildtype and GPR55-knockout mice, suggesting non-specific staining. However, analysis using a fluorescent CB1/GPR55 ligand (T1117) in CB1-knockout mice confirmed GPR55 binding in glutamate neurons, not in midbrain DA neurons. Systemic administration of the GPR55 agonist O-1602 didnt impact ∆9-THC-induced analgesia, hypothermia and catalepsy, but significantly mitigated cocaine-enhanced brain-stimulation reward caused by optogenetic activation of midbrain DA neurons. O-1602 alone failed to alter extracellar DA, but elevated extracellular glutamate, in the nucleus accumbens. In addition, O-1602 also demonstrated inhibitory effects on cocaine or nicotine self-administration under low fixed-ratio and/or progressive-ratio reinforcement schedules in rats and wildtype mice, with no such effects observed in GPR55-knockout mice. Together, these findings suggest that GPR55 activation may functionally modulate drug-taking and drug-seeking behavior possibly via a glutamate-dependent mechanism, and therefore, GPR55 deserves further study as a new therapeutic target for treating substance use disorders.


Assuntos
Canabidiol , Cocaína , Receptores de Canabinoides , Transtornos Relacionados ao Uso de Substâncias , Animais , Camundongos , Ratos , Canabidiol/análogos & derivados , Cocaína/farmacologia , Neurônios Dopaminérgicos/metabolismo , Ácido Glutâmico/metabolismo , Camundongos Knockout , Nicotina/farmacologia , Preparações Farmacêuticas/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Acoplados a Proteínas G/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...