Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35008934

RESUMO

Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.


Assuntos
Nicotiana/metabolismo , Imunidade Vegetal , Pseudomonas syringae/patogenicidade , Receptores de Detecção de Cálcio/fisiologia , Fatores de Virulência/metabolismo , Actinidia/fisiologia , Doenças das Plantas , Infecções por Pseudomonas , Pseudomonas syringae/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Nicotiana/fisiologia , Virulência
2.
Front Immunol ; 12: 748497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745120

RESUMO

Background: Impaired intestinal barrier integrity plays a crucial role in the development of many diseases such as obesity, inflammatory bowel disease, and type 2 diabetes. Thus, protecting the intestinal barrier from pathological disruption is of great significance. Tryptophan can increase gut barrier integrity, enhance intestinal absorption, and decrease intestinal inflammation. However, the mechanism of tryptophan in decreasing intestinal barrier damage and inflammatory response remains largely unknown. The objective of this study was to test the hypothesis that tryptophan can enhance intestinal epithelial barrier integrity and decrease inflammatory response mediated by the calcium-sensing receptor (CaSR)/Ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase Cγ1 (PLC-γ1) signaling pathway. Methods: IPEC-J2 cells were treated with or without enterotoxigenic Escherichia coli (ETEC) K88 in the absence or presence of tryptophan, CaSR inhibitor (NPS-2143), wild-type CaSR overexpression (pcDNA3.1-CaSR-WT), Rac1-siRNA, and PLC-γ1-siRNA. Results: The results showed that ETEC K88 decreased the protein concentration of occludin, zonula occludens-1 (ZO-1), claudin-1, CaSR, total Rac1, Rho family member 1 of porcine GTP-binding protein (GTP-rac1), phosphorylated phospholipase Cγ1 (p-PLC-γ1), and inositol triphosphate (IP3); suppressed the transepithelial electrical resistance (TEER); and enhanced the permeability of FITC-dextran compared with the control group. Compared with the control group, 0.7 mM tryptophan increased the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; elevated the TEER; and decreased the permeability of FITC-dextran and contents of interleukin-8 (IL-8) and TNF-α. However, 0.7 mM tryptophan+ETEC K88 reversed the effects induced by 0.7 mM tryptophan alone. Rac1-siRNA+tryptophan+ETEC K88 or PLC-γ1-siRNA+tryptophan+ETEC K88 reduced the TEER, increased the permeability of FITC-dextran, and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. NPS2143+tryptophan+ETEC K88 decreased the TEER and the protein concentration of CaSR, total Rac1, GTP-rac1, p-PLC-γ1, ZO-1, claudin-1, occludin, and IP3; increased the permeability of FITC-dextran; and improved the contents of IL-8 and TNF-α compared with tryptophan+ETEC K88. pcDNA3.1-CaSR-WT+Rac1-siRNA+ETEC K88 and pcDNA3.1-CaSR-WT+PLC-γ1-siRNA+ETEC K88 decreased the TEER and enhanced the permeability in porcine intestine epithelial cells compared with pcDNA3.1-CaSR-WT+ETEC K88. Conclusion: Tryptophan can improve intestinal epithelial barrier integrity and decrease inflammatory response through the CaSR/Rac1/PLC-γ1 signaling pathway.


Assuntos
Escherichia coli Enterotoxigênica/imunologia , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/citologia , Fosfolipase C gama/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Transdução de Sinais/fisiologia , Triptofano/farmacologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Animais , Antígenos de Bactérias/análise , Linhagem Celular , Escherichia coli Enterotoxigênica/química , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Proteínas de Escherichia coli/análise , Proteínas de Fímbrias/análise , Inflamação , Naftalenos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Suínos
3.
J Invest Dermatol ; 141(11): 2558-2561, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688406

RESUMO

The calcium-sensing receptor (CaSR) is important in the skin, contributing to several epidermal functions, including differentiation, water permeability barrier repair, and wound healing. Celli et al. (2021) show that CaSR levels are reduced in keratinocytes/skin from aged individuals, with resulting impairment of key functions. CaSR agonists can correct these defects, suggesting a possible therapy to combat aging-related delayed skin wound healing.


Assuntos
Envelhecimento/fisiologia , Queratinócitos/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Fenômenos Fisiológicos da Pele , Cicatrização/fisiologia , Animais , Cálcio/metabolismo , Regulação para Baixo , Humanos , Camundongos
4.
J Invest Dermatol ; 141(11): 2577-2586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862069

RESUMO

The calcium-sensing receptor (CaSR) drives essential calcium ion (Ca2+) and E-cadherin‒mediated processes in the epidermis, including differentiation, cell-to-cell adhesion, and epidermal barrier homeostasis in cells and in young adult mice. We now report that decreased CaSR expression leads to impaired Ca2+ signal propagation in aged mouse (aged >22 months) epidermis and human (aged >79 years, donor age) keratinocytes. Baseline cytosolic Ca2+ concentrations were higher, and capacitive Ca2+ entry was lower in aged than in young keratinocytes. As in Casr-knockout mice (EpidCaSR-/-), decreased CaSR expression led to decreased E-cadherin and phospholipase C-γ expression and to a compensatory upregulation of STIM1. Pretreatment with the CaSR agonist N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxybenzylamine normalized Ca2+ propagation and E-cadherin organization after experimental wounding. These results suggest that age-related defects in CaSR expression dysregulate normal keratinocyte and epidermal Ca2+ signaling, leading to impaired E-cadherin expression, organization, and function. These findings show an innovative mechanism whereby Ca2+- and E-cadherin‒dependent functions are impaired in aging epidermis and suggest a new therapeutic approach by restoring CaSR function.


Assuntos
Sinalização do Cálcio/fisiologia , Adesão Celular/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Envelhecimento da Pele/fisiologia , Idoso de 80 Anos ou mais , Animais , Caderinas/fisiologia , Células Cultivadas , Humanos , Camundongos , Receptores de Detecção de Cálcio/agonistas , Molécula 1 de Interação Estromal/análise
5.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119026, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33845096

RESUMO

Chemotactic and angiogenic factors secreted within the tumor microenvironment eventually facilitate the metastatic dissemination of cancer cells. Calcium-sensing receptor (CaSR) activates secretory pathways in breast cancer cells via a mechanism driven by vesicular trafficking of this receptor. However, it remains to be elucidated how endosomal proteins in secretory vesicles are controlled by CaSR. In the present study, we demonstrate that CaSR promotes expression of Rab27B and activates this secretory small GTPase via PI3K, PKA, mTOR and MADD, a guanine nucleotide exchange factor, also known as DENN/Rab3GEP. Active Rab27B leads secretion of various cytokines and chemokines, including IL-6, IL-1ß, IL-8, IP-10 and RANTES. Expression of Rab27B is stimulated by CaSR in MDA-MB-231 and MCF-7 breast epithelial cancer cells, but not in non-cancerous MCF-10A cells. This regulatory mechanism also occurs in HeLa and PC3 cells. Our findings provide insightful information regarding how CaSR activates a Rab27B-dependent mechanism to control secretion of factors known to intervene in paracrine communication circuits within the tumor microenvironment.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Quimiotaxia , Proteínas Quinases Dependentes de AMP Cíclico , Citocinas/metabolismo , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/metabolismo , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Fosfatidilinositol 3-Quinase , Receptores de Detecção de Cálcio/fisiologia , Via Secretória/fisiologia , Serina-Treonina Quinases TOR , Microambiente Tumoral , Proteínas rab de Ligação ao GTP/fisiologia
6.
Exp Biol Med (Maywood) ; 246(22): 2407-2419, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33926258

RESUMO

The calcium-sensing receptor (CaSR) plays a critical role in sensing extracellular calcium (Ca2+) and signaling to maintain Ca2+ homeostasis. In the parathyroid, the CaSR regulates secretion of parathyroid hormone, which functions to increase extracellular Ca2+ levels. The CaSR is also located in other organs imperative to Ca2+ homeostasis including the kidney and intestine, where it modulates Ca2+ reabsorption and absorption, respectively. In this review, we describe CaSR expression and its function in transepithelial Ca2+ transport in the kidney and intestine. Activation of the CaSR leads to G protein dependent and independent signaling cascades. The known CaSR signal transduction pathways involved in modulating paracellular and transcellular epithelial Ca2+ transport are discussed. Mutations in the CaSR cause a range of diseases that manifest in altered serum Ca2+ levels. Gain-of-function mutations in the CaSR result in autosomal dominant hypocalcemia type 1, while loss-of-function mutations cause familial hypocalciuric hypercalcemia. Additionally, the putative serine protease, FAM111A, is discussed as a potential regulator of the CaSR because mutations in FAM111A cause Kenny Caffey syndrome type 2, gracile bone dysplasia, and osteocraniostenosis, diseases that are characterized by hypocalcemia, hypoparathyroidism, and bony abnormalities, i.e. share phenotypic features of autosomal dominant hypocalcemia. Recent work has helped to elucidate the effect of CaSR signaling cascades on downstream proteins involved in Ca2+ transport across renal and intestinal epithelia; however, much remains to be discovered.


Assuntos
Cálcio/metabolismo , Receptores de Detecção de Cálcio/fisiologia , Transdução de Sinais , Animais , Transporte Biológico , Epitélio/metabolismo , Humanos
7.
J Clin Endocrinol Metab ; 106(4): e1775-e1792, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33340048

RESUMO

CONTEXT: The calcium-sensing receptor (CaSR) is essential to maintain a stable calcium concentration in serum. Spermatozoa are exposed to immense changes in concentrations of CaSR ligands such as calcium, magnesium, and spermine during epididymal maturation, in the ejaculate, and in the female reproductive environment. However, the role of CaSR in human spermatozoa is unknown. OBJECTIVE: This work aimed to investigate the role of CaSR in human spermatozoa. METHODS: We identified CaSR in human spermatozoa and characterized the response to CaSR agonists on intracellular calcium, acrosome reaction, and 3',5'-cyclic adenosine 5'-monophosphate (cAMP) in spermatozoa from men with either loss-of-function or gain-of-function mutations in CASR and healthy donors. RESULTS: CaSR is expressed in human spermatozoa and is essential for sensing extracellular free ionized calcium (Ca2+) and Mg2+. Activators of CaSR augmented the effect of sperm-activating signals such as the response to HCO3- and the acrosome reaction, whereas spermatozoa from men with a loss-of-function mutation in CASR had a diminished response to HCO3-, lower progesterone-mediated calcium influx, and were less likely to undergo the acrosome reaction in response to progesterone or Ca2+. CaSR activation increased cAMP through soluble adenylyl cyclase (sAC) activity and increased calcium influx through CatSper. Moreover, external Ca2+ or Mg2+ was indispensable for HCO3- activation of sAC. Two male patients with a CASR loss-of-function mutation in exon 3 presented with normal sperm counts and motility, whereas a patient with a loss-of-function mutation in exon 7 had low sperm count, motility, and morphology. CONCLUSION: CaSR is important for the sensing of Ca2+, Mg2+, and HCO3- in spermatozoa, and loss-of-function may impair male sperm function.


Assuntos
Bicarbonatos/metabolismo , Cálcio/metabolismo , Receptores de Detecção de Cálcio/fisiologia , Espermatozoides/metabolismo , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/genética , Adulto , Bicarbonatos/farmacologia , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Estudos de Casos e Controles , Feminino , Humanos , Hipercalcemia/congênito , Hipercalcemia/genética , Hipercalcemia/metabolismo , Hipercalcemia/patologia , Hipercalciúria/genética , Hipercalciúria/metabolismo , Hipercalciúria/patologia , Hipocalcemia/genética , Hipocalcemia/metabolismo , Hipocalcemia/patologia , Hipoparatireoidismo/congênito , Hipoparatireoidismo/genética , Hipoparatireoidismo/metabolismo , Hipoparatireoidismo/patologia , Rim/metabolismo , Rim/patologia , Magnésio/metabolismo , Magnésio/farmacologia , Masculino , Mutação , Receptores de Detecção de Cálcio/genética , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/genética , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/metabolismo , Neoplasias Testiculares/patologia
8.
Proc Natl Acad Sci U S A ; 117(35): 21711-21722, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817431

RESUMO

Many membrane receptors are regulated by nutrients. However, how these nutrients control a single receptor remains unknown, even in the case of the well-studied calcium-sensing receptor CaSR, which is regulated by multiple factors, including ions and amino acids. Here, we developed an innovative cell-free Förster resonance energy transfer (FRET)-based conformational CaSR biosensor to clarify the main conformational changes associated with activation. By allowing a perfect control of ambient nutrients, this assay revealed that Ca2+ alone fully stabilizes the active conformation, while amino acids behave as pure positive allosteric modulators. Based on the identification of Ca2+ activation sites, we propose a molecular basis for how these different ligands cooperate to control CaSR activation. Our results provide important information on CaSR function and improve our understanding of the effects of genetic mutations responsible for human diseases. They also provide insights into how a receptor can integrate signals from various nutrients to better adapt to the cell response.


Assuntos
Cálcio/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/ultraestrutura , Regulação Alostérica/fisiologia , Sítios de Ligação/genética , Cálcio/fisiologia , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Ligantes , Conformação Molecular , Receptores de Detecção de Cálcio/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
9.
J Pharmacol Sci ; 143(4): 315-319, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32505644

RESUMO

This study examined the possible involvement of Ca2+-sensing receptor (CaSR) in nitric oxide (NO) production in human vascular endothelial cells. Extracellular Ca2+ elevated the intracellular Ca2+ concentration, the endothelial NO synthase (eNOS) phosphorylation level, and NO release from the cells. These responses were inhibited by a CaSR antagonist and a Gq/11 protein inhibitor. Application of an endothelial cell suspension induced vasorelaxation in isolated rat thoracic aorta precontracted by phenylephrine. Adding an NO scavenger to the organ bath abolished this vasorelaxation response. These results suggest that extracellular Ca2+ promotes NO generation via CaSR- and Gq/11 protein-mediated eNOS activation.


Assuntos
Cálcio/farmacologia , Células Endoteliais/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Óxido Nítrico Sintase/fisiologia , Óxido Nítrico/metabolismo , Receptores de Detecção de Cálcio/fisiologia , Transdução de Sinais/fisiologia , Células Cultivadas , Humanos , Receptores de Detecção de Cálcio/metabolismo
10.
Vitam Horm ; 112: 289-310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32061345

RESUMO

Vasopressin (AVP) plays a major role in the regulation of water homeostasis by its antidiuretic action on the kidney, mediated by V2 receptors. An increase in plasma sodium concentration stimulates AVP release, which in turn promotes water reabsorption. Upon binding to the V2 receptors in the renal collecting duct, AVP induces the expression and apical membrane insertion of the aquaporin-2 (AQP2) water channels and subsequent water reabsorption. AVP regulates two independent mechanisms: the short-term regulation of AQP2 trafficking and long-term regulation of the total abundance of the AQP2 protein in the cells. On the other hand, several hormones, acting through specific receptors, have been reported to antagonize AVP-mediated water transport in kidney. In this respect, we previously described that high luminal Ca2+ in the renal collecting duct attenuates short-term AVP-induced AQP2 trafficking through activation of the Ca2+-sensing receptor (CaSR). This effect is due to reduction of AVP-dependent cAMP generation and possibly hydrolysis. Moreover, CaSR signaling reduces AQP2 abundance both via AQP2-targeting miRNA-137 and the proteasomal degradation pathway. This chapter summarizes recent data elucidating the molecular mechanisms underlying the physiological role of the CaSR-dependent regulation of AQP2 expression and trafficking.


Assuntos
Aquaporina 2 , Receptores de Detecção de Cálcio , Vasopressinas , Aquaporina 2/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Humanos , Rim/metabolismo , MicroRNAs , Neurofisinas , Fosforilação , Precursores de Proteínas , Transporte Proteico , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/fisiologia , Transdução de Sinais , Vasopressinas/metabolismo
11.
J Neurochem ; 154(6): 598-617, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32058590

RESUMO

Synaptotagmin-7 (Syt-7) is one of two major calcium sensors for exocytosis in adrenal chromaffin cells, the other being synaptotagmin-1 (Syt-1). Despite a broad appreciation for the importance of Syt-7, questions remain as to its localization, function in mediating discharge of dense core granule cargos, and role in triggering release in response to physiological stimulation. These questions were addressed using two distinct experimental preparations-mouse chromaffin cells lacking endogenous Syt-7 (KO cells) and a reconstituted system employing cell-derived granules expressing either Syt-7 or Syt-1. First, using immunofluorescence imaging and subcellular fractionation, it is shown that Syt-7 is widely distributed in organelles, including dense core granules. Total internal reflection fluorescence (TIRF) imaging demonstrates that the kinetics and probability of granule fusion in Syt-7 KO cells stimulated by a native secretagogue, acetylcholine, are markedly lower than in WT cells. When fusion is observed, fluorescent cargo proteins are discharged more rapidly when only Syt-1 is available to facilitate release. To determine the extent to which the aforementioned results are attributable purely to Syt-7, granules expressing only Syt-7 or Syt-1 were triggered to fuse on planar supported bilayers bearing plasma membrane SNARE proteins. Here, as in cells, Syt-7 confers substantially greater calcium sensitivity to granule fusion than Syt-1 and slows the rate at which cargos are released. Overall, this study demonstrates that by virtue of its high affinity for calcium and effects on fusion pore expansion, Syt-7 plays a central role in regulating secretory output from adrenal chromaffin cells.


Assuntos
Grânulos Cromafim/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Sinaptotagminas/genética , Sinaptotagminas/fisiologia , Acetilcolina/farmacologia , Animais , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Fenômenos Eletrofisiológicos , Exocitose , Feminino , Cinética , Masculino , Fusão de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células PC12 , Ratos , Proteínas SNARE/metabolismo , Frações Subcelulares/metabolismo , Sinaptotagmina I/fisiologia
12.
Mol Reprod Dev ; 87(5): 598-606, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32017318

RESUMO

Extracellular calcium is required for intracellular Ca2+ oscillations needed for egg activation, but the regulatory mechanism is still poorly understood. The present study was designed to demonstrate the function of calcium-sensing receptor (CASR), which could recognize extracellular calcium as first messenger, during porcine egg activation. CASR expression was markedly upregulated following egg activation. Functionally, the addition of CASR agonist NPS R-568 significantly enhanced pronuclear formation rate, while supplementation of CASR antagonist NPS2390 compromised egg activation. There was no change in NPS R-568 group compared with control group when the egg activation was performed without extracellular calcium addition. The addition of NPS2390 precluded the activation-dependent [Ca2+ ]i rise. When egg activation was conducted in intracellular Ca2+ chelator BAPTA-AM and NPS R-568 containing medium, CASR function was abolished. Meanwhile, CASR activation increased the level of the [Ca2+ ]i effector p-CAMKII, and the presence of KN-93, an inhibitor of CAMKII, significantly reduced the CASR-mediated increasement of pronuclear formation rate. Furthermore, the increase of CASR expression following activation was reversed by inhibiting CAMKII activity, supporting a positive feedback loop between CAMKII and CASR. Altogether, these findings provide a new pathway of egg activation about CASR, as the extracellular Ca2+ effector, promotes egg activation via its downstream effector and upstream regulator CAMKII.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Fertilização/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Suínos/fisiologia , Adamantano/análogos & derivados , Adamantano/farmacologia , Animais , Benzilaminas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Fertilização/efeitos dos fármacos , Masculino , Fenetilaminas/farmacologia , Propilaminas/farmacologia , Quinoxalinas/farmacologia , Receptores de Detecção de Cálcio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Interações Espermatozoide-Óvulo/efeitos dos fármacos , Sulfonamidas/farmacologia
13.
Dtsch Med Wochenschr ; 145(3): 171-174, 2020 02.
Artigo em Alemão | MEDLINE | ID: mdl-32018291

RESUMO

Calcium is pivotal for neuromuscular function, coagulation, and signal transduction. An imbalance of enteral calcium uptake, deposition in and resorption from bones, and renal calcium elimination causes hypercalcemia. The dissociation between total serum calcium and ionized calcium has important implications in diagnosing hypercalcemia. The calcium sensing receptor (CaSR) regulates parathyroid hormone release and renal calcium reabsorption. Knowing the actions of the CaSR is important for diagnosing and treating patients with hyperparathyroidism. Diuretics can cause hypercalcemia, but also provide a clinical tool to lower serum calcium.


Assuntos
Hipercalcemia , Cálcio/metabolismo , Cálcio/fisiologia , Humanos , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/fisiologia , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/fisiologia
14.
Life Sci ; 242: 117183, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874167

RESUMO

The kidney is a vital organ responsible for regulating water, electrolyte and acid-base balance as well as eliminating toxic substances from the blood in the body. Exposure of humans to heavy metals in their natural and occupational environments, foods, water, and drugs has serious implications on the kidney's health. The accumulation of heavy metals in the kidney has been linked to acute or chronic renal injury, kidney stones or even renal cancer, at the expense of expensive treatment options. Therefore, unearthing novel biomarkers and potential therapeutic agents or targets against kidney injury for efficient treatment are imperative. The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR) is typically expressed in the parathyroid glands and renal tubules. It modulates parathyroid hormone secretion according to the serum calcium (Ca2+) concentration. In the kidney, it modulates electrolyte and water excretion by regulating the function of diverse tubular segments. Notably, CaSR lowers passive and active Ca2+ reabsorption in distal tubules, which facilitates phosphate reabsorption in proximal tubules and stimulates proton and water excretion in collecting ducts. Moreover, at the cellular level, modulation of the CaSR regulates cytosolic Ca2+ levels, reactive oxygen species (ROS) generation and the mitogen-activated protein kinase (MAPK) signaling cascades as well as autophagy and the suppression of apoptosis, an effect predominantly triggered by heavy metals. In this regard, we present a review on the CaSR at the cellular level and its potential as a therapeutic target for the development of new and efficient drugs against heavy metals-induced nephrotoxicity.


Assuntos
Nefropatias/induzido quimicamente , Metais Pesados/toxicidade , Receptores de Detecção de Cálcio/metabolismo , Animais , Intoxicação por Metais Pesados/metabolismo , Humanos , Rim/efeitos dos fármacos , Receptores de Detecção de Cálcio/fisiologia
16.
J Endod ; 45(7): 907-916, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31126710

RESUMO

INTRODUCTION: The purpose of this study was to verify the expression of the calcium-sensing receptor (CaSR) and its role in mineral trioxide aggregate (MTA)-induced odontoblastic differentiation and mineralization in human dental pulp cells (hDPCs). METHODS: The expression of CaSR in human dental pulp tissue and hDPCs was detected using immunohistochemical and immunofluorescent assays. Then, hDPCs were cultured in specific medium supplemented with defined concentrations of MTA dilute alone or in combination with calcimimetic R-568 (a positive allosteric modulator of CaSR [Tocris Bioscience, Bristol, UK]), and cell viability was monitored by Cell Counting Kit-8 (Dojindo Molecular Technologies, Kumamoto, Japan) analysis. Alkaline phosphatase activity, alizarin red S staining, quantitative real-time polymerase chain reaction, and Western blot were used to investigate the gene/protein expression of odontoblastic-associated markers and CaSR in medium supplemented with different combinations of diluted MTA, R-568, and calcilytic Calhex 231 (a negative allosteric modulator of CaSR [Sigma-Aldrich, St Louis, MO]). RESULTS: CaSR was slightly expressed in the central pulp tissue, whereas it was strongly expressed in the odontoblast layer, plasma membrane, and cytoplasm of hDPCs. Cell Counting Kit-8 assay indicated maximum cell viability in cultures treated with 1:8 diluted MTA additives. Compared with undifferentiated controls, the cells at the early stage of odontoblastic differentiation exhibited lower CaSR protein expression. The combination of 1:8 diluted MTA with 0.1 and 1.0 µmol/L R-568 led to significantly increased cell vitality but decreased alkaline phosphatase activity and mineralized deposit formation, and this negative effect could be attenuated by 1.0 µmol/L Calhex 231 supplementation. Quantitative polymerase chain reaction results showed a significant up-regulation of RUNX2, DSPP, DMP-1, and OCN gene expression in the 1 µmol/L R-568-treated hDPCs. Western blot analysis indicated that the treatment by MTA and R-568 alone or their combination gave no clear trend on the protein levels of CaSR and dentin sialophosphoprotein, whereas Calhex 231 can increase their expressions. In addition, the up-regulation of Akt phosphorylation was observed in R-568- and Calhex 231-treated hDPCs. CONCLUSIONS: Our data indicated that CaSR is expressed in human dental pulp and hDPCs and that it can negatively or positively regulate MTA-induced mineralization of hDPCs via the phosphoinositide 3-kinase/Akt pathway in a ligand-dependent manner, suggesting a therapeutic target for modulating reparative dentin formation.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Diferenciação Celular , Polpa Dentária , Odontoblastos , Óxidos , Receptores de Detecção de Cálcio , Silicatos , Fosfatase Alcalina , Compostos de Alumínio/farmacologia , Compostos de Cálcio/farmacologia , Proliferação de Células , Células Cultivadas , Combinação de Medicamentos , Proteínas da Matriz Extracelular , Humanos , Óxidos/farmacologia , Fosfatidilinositol 3-Quinases , Receptores de Detecção de Cálcio/fisiologia , Silicatos/farmacologia
17.
Arterioscler Thromb Vasc Biol ; 39(3): 482-495, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30626206

RESUMO

Objective- This study aims to determine whether and how the enriched metabolites of endothelial extracellular vesicles (eEVs) are critical for cigarette smoke-induced direct injury of endothelial cells and the development of pulmonary hypertension, rarely explored in contrast to long-investigated mechanisms secondary to chronic hypoxemia. Approach and Results- Metabonomic screen of eEVs from cigarette-smoking human subjects reveals prominent elevation of spermine-a polyamine metabolite with potent agonist activity for the extracellular CaSR (calcium-sensing receptor). CaSR inhibition with the negative allosteric modulator Calhex231 or CaSR knockdown attenuates cigarette smoke-induced pulmonary hypertension in rats without emphysematous changes in lungs or chronic hypoxemia. Cigarette smoke exposure increases the generation of spermine-positive eEVs and their spermine content. Immunocytochemical staining and immunogold electron microscopy recognize the spermine enrichment not only within the cytosol but also on the outer surface of eEV membrane. The repression of spermine synthesis, the inhibitory analog of spermine, N1-dansyl-spermine, Calhex231, or CaSR knockdown profoundly suppresses eEV exposure-mobilized cytosolic calcium signaling, pulmonary artery constriction, and smooth muscle cell proliferation. Confocal imaging of immunohistochemical staining demonstrates the migration of spermine-positive eEVs from endothelium into smooth muscle cells in pulmonary arteries of cigarette smoke-exposed rats. The repression of spermine synthesis or CaSR knockout results in attenuated development of pulmonary hypertension induced by an intravascular administration of eEVs. Conclusions- Cigarette smoke enhances eEV generation with spermine enrichment at their outer surface and cytosol, which activates CaSR and subsequently causes smooth muscle cell constriction and proliferation, therefore, directly leading to the development of pulmonary hypertension.


Assuntos
Células Endoteliais/metabolismo , Vesículas Extracelulares/fisiologia , Hipertensão Pulmonar/prevenção & controle , Receptores de Detecção de Cálcio/fisiologia , Espermina/fisiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Fumar Tabaco/efeitos adversos , Animais , Benzamidas/farmacologia , Transporte Biológico , Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Cicloexilaminas/farmacologia , Endotélio Vascular/metabolismo , Vesículas Extracelulares/química , Técnicas de Silenciamento de Genes , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Masculino , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores de Detecção de Cálcio/antagonistas & inibidores , Receptores de Detecção de Cálcio/deficiência , Receptores de Detecção de Cálcio/genética , Espermina/biossíntese
18.
Kidney Int ; 94(5): 882-886, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30348305

RESUMO

Uromodulin is produced in the thick ascending limb, but little is known about regulation of its excretion in urine. Using mouse and cellular models, we demonstrate that excretion of uromodulin by thick ascending limb cells is increased or decreased upon inactivation or activation of the calcium-sensing receptor (CaSR), respectively. These effects reflect changes in uromodulin trafficking and likely involve alterations in intracellular cyclic adenosine monophosphate (cAMP) levels. Administration of the CaSR agonist cinacalcet led to a rapid reduction of urinary uromodulin excretion in healthy subjects. Modulation of uromodulin excretion by the CaSR may be clinically relevant considering the increasing use of CaSR modulators.


Assuntos
Receptores de Detecção de Cálcio/fisiologia , Uromodulina/urina , Animais , Cálcio/metabolismo , AMP Cíclico/análise , Alça do Néfron/metabolismo , Camundongos , Receptores de Detecção de Cálcio/genética
19.
Clin Exp Nephrol ; 22(6): 1258-1265, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29961155

RESUMO

BACKGROUND: The calcium-sensing receptor (CaSR) is localized in the apical membrane of proximal tubules in close proximity to the transporters responsible for proton secretion. Therefore, the aim of the present study was to analyze the effects of CaSR stimulation on the biochemical activity of the vacuolar H+-ATPase in a cellular model of proximal tubule cells, OKP cells. METHODS: Biochemical activity of H+-ATPase was performed using cell homogenates, and the inorganic phosphate released was determined by a colorimetric method. Changes in cytosolic ionized calcium [Ca2+]i were also determined using Fluo-4. RESULTS: A significant increase of vacuolar H+-ATPase activity was observed when the CaSR was stimulated with agonists such as Gd3+ (300 µM) and neomycin (200 µM). This activity was also stimulated in a dose-dependent fashion by changes in extracellular Ca2+ (Ca2+o) between 10-4 and 2 mM. Gd3+ and neomycin produced a sustained rise of [Ca2+]i, an effect that disappears when extracellular calcium was removed in the presence of 0.1 µM thapsigargin. Inhibition of phospholipase C (PLC) activity with U73122 (5 × 10-8 M) reduced the increase in [Ca2+]i induced by neomycin. CONCLUSION: CaSR stimulation induces an increase in the vacuolar H+-ATPase activity of OKP cells, an effect that involves an increase in [Ca2+]i and require phospholipase C activity. The consequent decrease in intratubular pH could lead to increase ionization of luminal calcium, potentially enhancing its reabsorption in distal tubule segments and reducing the formation of calcium phosphate stones.


Assuntos
Túbulos Renais Proximais/metabolismo , Receptores de Detecção de Cálcio/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Concentração de Íons de Hidrogênio , Neomicina/farmacologia , Gambás , Fosfolipases Tipo C/metabolismo
20.
Biomed Pharmacother ; 103: 838-843, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29710499

RESUMO

This study was designed to investigate the effects of astragalosides on cardiac diastolic function, and an emphasis was placed on the variation of the upstream molecular regulators of phospholamban. Chronic heart failure (CHF) rats were induced by ligaturing the left anterior coronary artery, and rats in the therapeutic groups were treated with either a 50 mg/kg dose of captopril, 10 mg/kg dose of astragalosides or 20 mg/kg dose of astragalosides. Four weeks after treatment, the ratio of the early and atrial peak filling velocities (E/A) and maximal slope diastolic pressure decrement (-dp/dt) both decreased in CHF rats (by 30.3% and 25.5%, respectively) and significantly increased in 20 mg/kg astragalosides and captopril-treated rats. The protein phosphatase-1 activity was lower in the 20 mg/kg astragalosides group than in the CHF group (0.22 vs 0.44, P < 0.01), and the inhibitor-1 levels in the astragalosides and captopril-treated groups were increased. Chronic heart failure increased expression of protein kinase C-α and calcium-sensing receptor, and these changes were attenuated by astragalosides therapy. Astragalosides restored the diastolic dysfunction of chronic heart failure rats, possibly by downregulation of calcium-sensing receptor and protein kinase C-α, which in turn augmented inhibitor-1 expression, reduced protein phosphatase-1 activity and increased phospholamban phosphorylation.


Assuntos
Pressão Sanguínea/fisiologia , Insuficiência Cardíaca/tratamento farmacológico , Proteína Quinase C-alfa/fisiologia , Proteína Fosfatase 1/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Animais Recém-Nascidos , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Diástole , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Insuficiência Cardíaca/fisiopatologia , Masculino , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Fosfatase 1/antagonistas & inibidores , Distribuição Aleatória , Ratos , Ratos Wistar , Receptores de Detecção de Cálcio/antagonistas & inibidores , Saponinas/uso terapêutico , Triterpenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...