Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 97: 129548, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949379

RESUMO

GPR34 is a rhodopsin-like class G protein-coupled receptor (GPCR) that is involved in the development and progression of several diseases. Despite its importance, effective targeting strategies are lacking. We herein report a series of (S)-3-(4-(benzyloxy)phenyl)-2-(2-phenoxyacetamido)propanoic acid derivatives as a new class of GPR34 antagonists. Structure-activity relationship (SAR) studies led to the identification of the most potent compound, 5e, which displayed an IC50 value of 0.680 µM in the GloSensor cAMP assay and 0.059 µM in the Tango assay. 5e demonstrated low cytotoxicity and high selectivity in vitro, and it was able to dose-dependently inhibit Lysophosphatidylserine-induced ERK1/2 phosphorylation in CHO cells expressing GPR34. Furthermore, 5e displayed excellent efficacy in a mouse model of neuropathic pain without any apparent signs of toxicity. Collectively, this study has identified a promising compound, which shows great potential in the development of potent antagonists with a new chemical scaffold targeting GPR34.


Assuntos
Propionatos , Receptores de Lisofosfolipídeos , Animais , Cricetinae , Camundongos , Células CHO , Cricetulus , Receptores de Lisofosfolipídeos/antagonistas & inibidores , Receptores de Lisofosfolipídeos/química , Relação Estrutura-Atividade
2.
Biochemistry ; 59(11): 1173-1201, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32124599

RESUMO

When lipid mediators bind to G-protein-coupled receptors (GPCRs), the ligand first enters the lipid bilayer, then diffuses laterally in the cell membrane to make hydrophobic contact with the receptor protein, and finally enters the receptor's binding pocket. In this process, the location of the hydrophobic contact point on the surface of the receptor has been little discussed even in cases in which the crystal structure has been determined, because the ligand binding pocket is buried inside the transmembrane (TM) domains. Here, we coupled an activator ligand to a series of membrane phospholipid surrogates, which constrain the depth of entry of the ligand into the lipid bilayer. Consequently, via measurement of the receptor-activating activity as a function of the depth of entry into the membrane, these surrogates can be used as molecular rulers to estimate the location of the hydrophobic contact point on the surface of GPCR. We focused on lysophosphatidylserine (LysoPS) receptor GPR34 and prepared a series of simplified membrane-lipid-surrogate-conjugated lysophospholipid analogues by attaching alkoxy amine chains of varying lengths to the hydrophobic tail of a potent GPR34 agonist. As expected, the activity of these lipid-conjugated LysoPS analogues was dependent on chain length. The predicted contact position matches the position of the terminal benzene ring of a nonlipidic ligand that protrudes between TMs 4 and 5 of the receptor. We further found that the nature of the terminal hydrophilic functional group of the conjugated membrane lipid surrogate strongly influences the activity, suggesting that lateral hydrophilic contact of LysoPS analogues with the receptor's surface is also crucial for ligand-GPCR binding.


Assuntos
Membrana Celular/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Motivos de Aminoácidos , Membrana Celular/química , Membrana Celular/genética , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Lisofosfolipídeos/química , Ligação Proteica , Domínios Proteicos , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética
3.
Trends Pharmacol Sci ; 39(11): 953-966, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30343728

RESUMO

Lysophospholipids (LPLs), particularly sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA), are bioactive lipid modulators of cellular homeostasis and pathology. The discovery and characterization of five S1P- and six LPA-specific G protein-coupled receptors (GPCRs), S1P1-5 and LPA1-6, have expanded their known involvement in all mammalian physiological systems. Resolution of the S1P1, LPA1, and LPA6 crystal structures has fueled the growing interest in these receptors and their ligands as targets for pharmacological manipulation. In this review, we have attempted to provide an integrated overview of the three crystallized LPL GPCRs with biochemical and physiological structure-function data. Finally, we provide a novel discussion of how chaperones for LPLs may be considered when extrapolating crystallographic and computational data toward understanding actual biological interactions and phenotypes.


Assuntos
Receptores de Lisofosfolipídeos/química , Animais , Humanos , Ligantes , Lisofosfolipídeos/metabolismo , Conformação Proteica , Receptores de Lisofosfolipídeos/metabolismo
4.
Pharmacol Ther ; 189: 71-88, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29684466

RESUMO

Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.


Assuntos
Receptores de Lisofosfolipídeos/fisiologia , Animais , Evolução Molecular , Genômica , História do Século XX , História do Século XXI , Humanos , Fenótipo , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/história
5.
J Med Chem ; 60(14): 6384-6399, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28715213

RESUMO

The ligands of certain G-protein-coupled receptors (GPCRs) have been identified as endogenous lipids, such as lysophosphatidylserine (LysoPS). Here, we analyzed the molecular basis of the structure-activity relationship of ligands of GPR34, one of the LysoPS receptor subtypes, focusing on recognition of the long-chain fatty acid moiety by the hydrophobic pocket. By introducing benzene ring(s) into the fatty acid moiety of 2-deoxy-LysoPS, we explored the binding site's preference for the hydrophobic shape. A tribenzene-containing fatty acid surrogate with modifications of the terminal aromatic moiety showed potent agonistic activity toward GPR34. Computational docking of these derivatives with a homology modeling/molecular dynamics-based virtual binding site of GPR34 indicated that a kink in the benzene-based lipid surrogates matches the L-shaped hydrophobic pocket of GPR34. A tetrabenzene-based lipid analogue bearing a bulky tert-butyl group at the 4-position of the terminal benzene ring exhibited potent GPR34 agonistic activity, validating the present hydrophobic binding pocket model.


Assuntos
Derivados de Benzeno/química , Ácidos Graxos/química , Fosfosserina/análogos & derivados , Receptores de Lisofosfolipídeos/química , Animais , Derivados de Benzeno/síntese química , Derivados de Benzeno/farmacologia , Sítios de Ligação , Ácidos Graxos/síntese química , Ácidos Graxos/farmacologia , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Fosfosserina/síntese química , Fosfosserina/química , Fosfosserina/farmacologia , Receptores de Lisofosfolipídeos/agonistas , Relação Estrutura-Atividade
6.
Biochim Biophys Acta ; 1863(7 Pt A): 1534-51, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27086875

RESUMO

Protein folding, topogenesis and intracellular targeting of G protein-coupled receptors (GPCRs) must be precisely coordinated to ensure correct receptor localization. To elucidate how different steps of GPCR biosynthesis work together, we investigated the process of membrane topology determination and how it relates to the acquisition of cell surface trafficking competence in human GPR34. By monitoring a fused FLAG-tag and a conformation-sensitive native epitope during the expression of GPR34 mutant panel, a tri-basic motif in the first intracellular loop was identified as the key topogenic signal that dictates the orientation of transmembrane domain-1 (TM1). Charge disruption of the motif perturbed topogenic processes and resulted in the conformational epitope loss, post-translational processing alteration, and trafficking arrest in the Golgi. The placement of a cleavable N-terminal signal sequence as a surrogate topogenic determinant overcame the effects of tri-basic motif mutations and rectified the TM1 orientation; thereby restored the conformational epitope, post-translational modifications, and cell surface trafficking altogether. Progressive N-tail truncation and site-directed mutagenesis revealed that a proline-rich segment of the N-tail and all four cysteines individually located in the four separate extracellular regions must simultaneously reside in the ER lumen to muster the conformational epitope. Oxidation of all four cysteines was necessary for the epitope formation, but the cysteine residues themselves were not required for the trafficking event. The underlying biochemical properties of the conformational epitope was therefore the key to understand mechanistic processes propelled by positive-inside rule that simultaneously regulate the topogenesis and intracellular trafficking of GPR34.


Assuntos
Membrana Celular/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Motivos de Aminoácidos , Anticorpos Monoclonais/imunologia , Retículo Endoplasmático/metabolismo , Epitopos , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Transfecção
7.
J Lipid Res ; 55(10): 1986-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24891334

RESUMO

It is now accepted that lysophospholipids (LysoGPs) have a wide variety of functions as lipid mediators that are exerted through G protein-coupled receptors (GPCRs) specific to each lysophospholipid. While the roles of some LysoGPs, such as lysophosphatidic acid and sphingosine 1-phosphate, have been thoroughly examined, little is known about the roles of several other LysoGPs, such as lysophosphatidylserine (LysoPS), lysophosphatidylthreonine, lysophosphatidylethanolamine, lysophosphatidylinositol (LPI), and lysophosphatidylglycerol. Recently, a GPCR was found for LPI (GPR55) and three GPCRs (GPR34/LPS1, P2Y10/LPS2, and GPR174/LPS3) were found for LysoPS. In this review, we focus on these newly identified GPCRs and summarize the actions of LysoPS and LPI as lipid mediators.


Assuntos
Lisofosfolipídeos , Receptores de Lisofosfolipídeos , Animais , Humanos , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética , Receptores de Lisofosfolipídeos/metabolismo , Relação Estrutura-Atividade
8.
Trends Pharmacol Sci ; 35(5): 219-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24746475

RESUMO

G-protein-coupled receptors (GPCRs) that recognize the lysophospholipids (LPLs) are grouped into two phylogenetically distinct families: the endothelial differentiation gene (Edg) and non-Edg GPCRs. Owing to their more recent identification, and hindered by a lack of selective pharmacological tools, our understanding of the functions and signaling pathways of the non-Edg GPCRs is still in its infancy. Targeting the non-conserved allosteric binding sites of the LPL GPCRs shows particular promise for the development of selective modulators by structure-based drug design. However, only one Edg GPCR (S1PR1) structure has been determined to date, and it has low sequence identity with the non-Edg GPCRs (<20%). Thus, a representative structure of a non-Edg GPCR remains a pressing objective for selective structure-based drug design. Obtaining selective modulators targeting the non-Edg receptors would help to unravel the biology behind these novel GPCRs and potentially will support therapeutic treatment of diseases such as cancer, inflammation, and neuropsychiatric disorders.


Assuntos
Receptores de Lisofosfolipídeos/agonistas , Receptores de Lisofosfolipídeos/antagonistas & inibidores , Sítios de Ligação , Sistemas de Liberação de Medicamentos , Humanos , Modelos Moleculares , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/metabolismo
9.
Prostaglandins Other Lipid Mediat ; 89(3-4): 135-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19427394

RESUMO

It is now widely accepted that lysophospholipids (LPLs), a product of the phospholipase A reaction, function as mediators through G-protein-coupled receptors. Notably, recent studies of lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have revealed their essential roles in vivo. On the other hand, other LPLs such as lysophosphatidylserine (LPS), lysophosphatidylthreonine (LPT), lysophosphatidylethanolamine (LPE), lysophosphatidylinositol (LPI) and lysophosphatidylglycerol (LPG) have been reported to show lipid mediator-like responses both in vivo (LPS and LPT) and in vitro (LPS, LPT, LPE and LPG), while very little is known about their receptor, synthetic enzyme and patho-physiological roles. In this review, we summarize the actions of these LPLs as lipid mediators including LPS, LPT, LPE and LPG.


Assuntos
Lisofosfolipídeos/fisiologia , Animais , Humanos , Ligantes , Isoformas de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/fisiologia , Transdução de Sinais
10.
Biochim Biophys Acta ; 1781(9): 540-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18501204

RESUMO

Bioactive lysophospholipids include lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), cyclic-phosphatidic acid (CPA) and alkyl glycerolphosphate (AGP). These lipid mediators stimulate a variety of responses that include cell survival, proliferation, migration, invasion, wound healing, and angiogenesis. Responses to lysophospholipids depend upon interactions with biomolecular targets in the G protein-coupled receptor (GPCR) and nuclear receptor families, as well as enzymes. Our current understanding of lysophospholipid interactions with these targets is based on a combination of lysophospholipid analog structure activity relationship studies as well as more direct structural characterization techniques such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and experimentally-validated molecular modeling. The direct structural characterization studies are the focus of this review, and provide the insight necessary to stimulate structure-based therapeutic lead discovery efforts in the future.


Assuntos
Lisofosfolipídeos/metabolismo , Receptores de Lisofosfolipídeos/metabolismo , Animais , Humanos , Lisofosfolipídeos/química , Modelos Moleculares , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética
11.
Biochem Biophys Res Commun ; 362(4): 928-34, 2007 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-17765871

RESUMO

GPR55 is an orphan G protein-coupled receptor. In this study, we explored a possible endogenous ligand for GPR55 using HEK293 cells which expressed GPR55. We found that lysophosphatidylinositol induced rapid phosphorylation of the extracellular signal-regulated kinase in transiently or stably GPR55-expressing cells. On the other hand, lysophosphatidylinositol did not induce phosphorylation of the extracellular signal-regulated kinase in vector-transfected cells. Lysophosphatidic acid and sphingosine 1-phosphate also induced phosphorylation of the extracellular signal-regulated kinase in GPR55-expressing cells. However, these lipid phosphoric acids elicited similar responses in vector-transfected cells. Various types of other lysolipids as well as the cannabinoid receptor ligands did not induce phosphorylation of the extracellular signal-regulated kinase. We also found that lysophosphatidylinositol elicited a rapid Ca2+ transient in GPR55-expressing cells. Lysophosphatidylinositol also stimulated the binding of GTPgammaS to the GPR55-expressing cell membranes. These results strongly suggest that GPR55 is a specific and functional receptor for lysophosphatidylinositol.


Assuntos
Rim/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/metabolismo , Sítios de Ligação , Linhagem Celular , Humanos , Ligação Proteica , Receptores de Canabinoides
12.
Genomics ; 87(2): 254-64, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16338117

RESUMO

Directed cloning approaches and large-scale sequencing of several vertebrate genomes unveiled many new members of the G-protein-coupled receptor (GPCR) superfamily, among them GPR34. Initial studies showed that GPR34 is an evolutionarily old GPCR structurally related to a group of ADP-like receptors. To gain insight into the genomic organization, regulation of expression, and supragenomic diversification of GPR34 several vertebrate species were analyzed. In contrast to the obviously intronless coding region GPR34 displays an evolutionary preserved 5' noncoding intron-exon structure. Further, an alternatively used cryptic intron was identified within the coding region, which shortens the N terminus by 47 amino acids. Ubiquitous expression of GPR34 is driven by genomic sequences upstream of at least two transcriptional start regions in mouse and rat but only one region in human. In rodents, both promoters are active in all tissues investigated, but the level of activity is tissue-specific. At the translational level, several conserved in-frame AUGs within the first 150 bp of the coding region may serve as start points for translation in human and other mammals. Combinatory mutagenesis and expression of reporter constructs confirmed these multiple translational start points and revealed a preference for the second in-frame AUG in human GPR34. Our data show that multiple translation initiation starts and alternative splicing contribute to the supragenomic diversification of GPR34.


Assuntos
Genômica , Receptores de Lisofosfolipídeos/química , Receptores de Lisofosfolipídeos/genética , Alelos , Animais , Sequência de Bases , Códon , DNA , Éxons , Regulação da Expressão Gênica , Humanos , Íntrons , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Conformação Proteica , Homologia de Sequência do Ácido Nucleico
13.
Prostaglandins Other Lipid Mediat ; 77(1-4): 179-84, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16099402

RESUMO

Both ligand-based and GPCR privileged scaffold chemical tools have recently emerged to provide new insights into the function and physiology of the GPCR lysophospholipid receptors both in vitro and in vivo. Both rational, design-based approaches as well as hybrid approaches where high throughput screening has been coupled to an understanding of critical molecular interactions have been productive in advancing understanding of physiology and potential therapeutics in this field. It is now feasible to identify reasonably potent and selective small molecules that provide chemical proof-of-concept in vivo directly from high throughput screening. These developments, coupled with the availability of receptor knock-out mice, presage rapid progress in the field.


Assuntos
Receptores de Lisofosfolipídeos/química , Animais , Proteínas de Ligação ao GTP/química , Humanos , Ligantes , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Ligação Proteica , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Esfingosina/análogos & derivados , Esfingosina/química
14.
Life Sci ; 77(14): 1522-30, 2005 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15953619

RESUMO

The International Union of Pharmacology (IUPHAR) has established a Nomenclature Committee comprised of sub-committees of experts to evaluate types and subtypes of receptors and ion channels in an effort to establish universally accepted nomenclature [Vanhoutte, P.M., Barnard, E.A., Cosmides, G.J., Humphrey, P.P., Spedding, M., Godfraind, T., 1994. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. Pharmacological Reviews 46, 111-116]. This overview cites the reports of the IUPHAR subcommittees and other prominent review articles in an effort to compile receptors for lipid mediators that bind to and evoke their pharmacological responses via seven-transmembrane spanning, G-protein-coupled receptors.


Assuntos
Glicoproteínas da Membrana de Plaquetas/química , Receptores de Canabinoides/química , Receptores Eicosanoides/química , Receptores Acoplados a Proteínas G/química , Receptores de Lisofosfolipídeos/química , Terminologia como Assunto , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de Canabinoides/metabolismo , Receptores Eicosanoides/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Lisofosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...