Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytokine ; 68(2): 101-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24767864

RESUMO

OBJECTIVE: To identify how the gp130-signaling cytokine oncostatin M (OSM), acting alone or in concert with IL-1ß or TNFα, affects synovial fibroblast expression of genes relevant to inflammation and bone erosion in inflammatory arthritis. METHODS: Synovial fibroblasts (SFs) were isolated from non-arthritic wild type (WT) or OSM receptor deficient (OSMR(-/-)) mice and stimulated with OSM, IL-1ß or TNFα and their combinations. Cytokine gene expression was assessed by quantitative RT-PCR. ELISA, flow cytometry and immunohistochemistry identified protein expression. Gene expression patterns were confirmed in SFs isolated from patients with osteoarthritis (OASFs) and rheumatoid arthritis (RASFs). RESULTS: Expression of OSM and its receptors, gp130, OSMR and LIFR, was increased in synovial tissue from the mouse antigen-induced arthritis model. In isolated WT mouse synovial fibroblasts OSM alone, or in synergy with IL-1ß, or together with TNFα, potently induced expression of the pro-inflammatory cytokine IL-6. OSM also induced a sustained increase in mRNA levels of the pro-osteoclastic cytokine RANKL. Combining OSM with IL-1ß, but not with TNFα, further increased RANKL expression. Importantly these effects of OSM were all dependent on the expression of OSMR. Furthermore, OSM also increased expression of its own receptors, gp130 and OSMR and the IL-1 receptor, IL1-R1; the latter effects were also observed in both human OASFs and RASFs. CONCLUSION: Together our data suggests that OSM signaling via OSMR in SFs has the potential to contribute significantly to joint destruction in inflammatory arthritis. It not only induces expression of pro-inflammatory and pro-osteoclastic cytokines but can also augment its own actions and that of IL-1 by inducing expression of OSMR and IL-1R1.


Assuntos
Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , Oncostatina M/metabolismo , Receptores de Oncostatina M/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Regulação da Expressão Gênica , Humanos , Interleucina-1beta/genética , Camundongos Endogâmicos C57BL , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores de Oncostatina M/deficiência
2.
J Bone Miner Res ; 27(4): 902-12, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22190112

RESUMO

Parathyroid hormone (PTH) is the only approved anabolic agent for osteoporosis treatment. It acts via osteoblasts to stimulate both osteoclast formation and bone formation, with the balance between these two activities determined by the mode of administration. Oncostatin M (OSM), a gp130-dependent cytokine expressed by osteoblast lineage cells, has similar effects and similar gene targets in the osteoblast lineage. In this study, we investigated whether OSM might participate in anabolic effects of PTH. Microarray analysis and quantitative real-time polymerase chain reaction (qPCR) of PTH-treated murine stromal cells and primary calvarial osteoblasts identified significant regulation of gp130 and gp130-dependent coreceptors and ligands, including a significant increase in OSM receptor (OSMR) expression. To determine whether OSMR signaling is required for PTH anabolic action, 6-week-old male Osmr(-/-) mice and wild-type (WT) littermates were treated with hPTH(1-34) for 3 weeks. In WT mice, PTH increased trabecular bone volume and trabecular thickness. In contrast, the same treatment had a catabolic effect in Osmr(-/-) mice, reducing both trabecular bone volume and trabecular number. This was not explained by any alteration in the increased osteoblast formation and mineral apposition rate in response to PTH in Osmr(-/-) compared with WT mice. Rather, PTH treatment doubled osteoclast surface in Osmr(-/-) mice, an effect not observed in WT mice. Consistent with this finding, when osteoclast precursors were cultured in the presence of osteoblasts, more osteoclasts were formed in response to PTH when Osmr(-/-) osteoblasts were used. Neither PTH1R mRNA levels nor cAMP response to PTH were modified in Osmr(-/-) osteoblasts. However, RANKL induction in PTH-treated Osmr(-/-) osteoblasts was sustained at least until 24 hours after PTH exposure, an effect not observed in WT osteoblasts. These data indicate that the transient RANKL induction by intermittent PTH administration, which is associated with its anabolic action, is changed to a prolonged induction in OSMR-deficient osteoblasts, resulting in bone destruction.


Assuntos
Anabolizantes/farmacologia , Osteoblastos/metabolismo , Hormônio Paratireóideo/farmacologia , Ligante RANK/metabolismo , Receptores de Oncostatina M/deficiência , Animais , Linhagem Celular , Receptor gp130 de Citocina/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ligante RANK/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Oncostatina M/genética , Receptores de Oncostatina M/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...