Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.402
Filtrar
1.
Theranostics ; 14(8): 3213-3220, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855183

RESUMO

Purpose: Somatostatin receptor imaging with 18F-AlF-NOTA-octreotide (18F-AlF-OC) has shown promising performance in neuroendocrine neoplasms (NENs). In this study, we aim to investigate the diagnostic performance and clinical impact of 18F-AlF-OC in a large prospective cohort of patients with NEN. Methods: Between January 2023 and November 2023, a total of 219 patients with confirmed or suspected NEN were enrolled prospectively and underwent 18F-AlF-OC PET/CT at 2 h post-injection. The primary endpoint was the diagnostic performance, including sensitivity, specificity, and accuracy. An additional primary endpoint was the impact of 18F-AlF-OC on clinical management. The reference standard was based on the results of histopathology or radiological follow-up. Results: 205 patients were included in the final analysis. The patient-level sensitivity, specificity, and accuracy of 18F-AlF-OC PET/CT compared with contrast-enhanced CT/MRI were 90.5% vs. 81.8%, 93.1% vs. 71.1%, and 91.2% vs. 79.4%, respectively. 26 patients had tiny gastrointestinal NENs (smaller than 1 cm in diameter). The patient-based sensitivity of 18F-AlF-OC PET/CT and contrast-enhanced CT/MRI were 61.5% (16/26) and 37.5% (9/24), respectively. The smallest diameter of gastrointestinal NEN detected by 18F-AlF-OC PET/CT was 0.6 cm in the rectum, 0.3 cm in the stomach, and 0.5 cm in the duodenum. 18F-AlF-OC PET/CT results led to changes in clinical management in 19.5% of patients (40/205), owing mainly to new or unexpected findings compared to contrast-enhanced CT/MRI. Conclusion: 18F-AlF-OC PET/CT demonstrated great diagnostic performance in patients with NEN, particularly for detecting tiny gastrointestinal NEN. Furthermore, 18F-AlF-OC PET/CT impacted the therapeutic management in 19.5% of patients. Our results further validate the role of 18F-AlF-OC as a somatostatin receptor imaging tracer in clinical practice.


Assuntos
Tumores Neuroendócrinos , Octreotida , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Octreotida/análogos & derivados , Idoso , Adulto , Sensibilidade e Especificidade , Compostos Radiofarmacêuticos , Compostos Heterocíclicos com 1 Anel , Receptores de Somatostatina/metabolismo , Radioisótopos de Flúor , Imageamento por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Compostos Heterocíclicos
2.
Int J Nanomedicine ; 19: 4977-4994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828204

RESUMO

Purpose: Exosomes are membrane vesicles secreted by various cells and play a crucial role in intercellular communication. They can be excellent delivery vehicles for oligonucleotide drugs, such as microRNAs, due to their high biocompatibility. MicroRNAs have been shown to be more stable when incorporated into exosomes; however, the lack of targeting and immune evasion is still the obstacle to the use of these microRNA-containing nanocarriers in clinical settings. Our goal was to produce functional exosomes loaded with target ligands, immune evasion ligand, and oligonucleotide drug through genetic engineering in order to achieve more precise medical effects. Methods: To address the problem, we designed engineered exosomes with exogenous cholecystokinin (CCK) or somatostatin (SST) as the targeting ligand to direct the exosomes to the brain, as well as transduced CD47 proteins to reduce the elimination or phagocytosis of the targeted exosomes. MicroRNA-29b-2 was the tested oligonucleotide drug for delivery because our previous research showed that this type of microRNA was capable of reducing presenilin 1 (PSEN1) gene expression and decreasing the ß-amyloid accumulation for Alzheimer's disease (AD) in vitro and in vivo. Results: The engineered exosomes, containing miR29b-2 and expressing SST and CD47, were produced by gene-modified dendritic cells and used in the subsequent experiments. In comparison with CD47-CCK exosomes, CD47-SST exosomes showed a more significant increase in delivery efficiency. In addition, CD47-SST exosomes led to a higher delivery level of exosomes to the brains of nude mice when administered intravenously. Moreover, it was found that the miR29b-2-loaded CD47-SST exosomes could effectively reduce PSEN1 in translational levels, which resulted in an inhibition of beta-amyloid oligomers production both in the cell model and in the 3xTg-AD animal model. Conclusion: Our results demonstrated the feasibility of the designed engineered exosomes. The application of this exosomal nanocarrier platform can be extended to the delivery of other oligonucleotide drugs to specific tissues for the treatment of diseases while evading the immune system.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Antígeno CD47 , Exossomos , MicroRNAs , Presenilina-1 , Receptores de Somatostatina , Animais , Exossomos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , MicroRNAs/genética , MicroRNAs/administração & dosagem , Presenilina-1/genética , Encéfalo/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos , Antígeno CD47/genética , Antígeno CD47/metabolismo , Somatostatina , Humanos , Modelos Animais de Doenças
3.
Cancer J ; 30(3): 185-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753753

RESUMO

ABSTRACT: Neuroendocrine tumors (NETs) are rare tumors that develop from cells of the neuroendocrine system and can originate in multiple organs and tissues such as the bowels, pancreas, adrenal glands, ganglia, thyroid, and lungs. This review will focus on gastroenteropancreatic NETs (more commonly called NETs) characterized by frequent somatostatin receptor (SSTR) overexpression and pheochromocytomas/paragangliomas (PPGLs), which typically overexpress norepinephrine transporter. Advancements in SSTR-targeted imaging and treatment have revolutionized the management of patients with NETs. This comprehensive review delves into the current practice, discussing the use of the various Food and Drug Administration-approved SSTR-agonist positron emission tomography tracers and the predictive imaging biomarkers, and elaborating on 177Lu-DOTATATE peptide receptor radionuclide therapy including the evolving areas of posttherapy imaging practices and peptide receptor radionuclide therapy retreatment. SSTR-targeted imaging and therapy can also be used in patients with PPGL; however, this patient population has demonstrated the best outcomes from norepinephrine transporter-targeted therapy with 131I-metaiodobenzylguanidine. Metaiodobenzylguanidine theranostics for PPGL will be discussed, noting that in 2024 it became commercially unavailable in the United States. Therefore, the use and reported success of SSTR theranostics for PPGL will also be explored.


Assuntos
Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/terapia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/patologia , Receptores de Somatostatina/metabolismo , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/patologia , Nanomedicina Teranóstica/métodos , Medicina de Precisão/métodos , Tomografia por Emissão de Pósitrons/métodos , Neoplasias Intestinais/terapia , Neoplasias Intestinais/diagnóstico , Neoplasias Intestinais/patologia
4.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791582

RESUMO

A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Octreotida , Paclitaxel , Neoplasias Pancreáticas , Receptores de Somatostatina , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de Somatostatina/metabolismo , Camundongos , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Lipossomos/química , Sistemas de Liberação de Medicamentos/métodos , Octreotida/administração & dosagem , Octreotida/farmacologia , Somatostatina/análogos & derivados , Nanotecnologia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia
5.
J Cancer Res Clin Oncol ; 150(5): 272, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795250

RESUMO

PURPOSE: Somatostatin receptor (SSTR)-targeted PET imaging has emerged as a common approach to evaluating those patients with well-differentiated neuroendocrine tumors (NETs). The SSTR reporting and data system (SSTR-RADS) version 1.0 provides a means of categorizing lesions from 1 to 5 according to the likelihood of NET involvement, with SSTR-RADS-3A (soft-tissue) and SSTR-RADS-3B (bone) lesions being those suggestive of but without definitive NET involvement. The goal of the present study was to assess the ability of 68Ga-DOTATATE PET/MR imaging data to predict outcomes for indeterminate SSTR-RADS-3A and 3B lesions. METHODS: NET patients with indeterminate SSTR-RADS-3A or SSTR-RADS-3B lesions who underwent 68Ga-DOTATATE PET/MR imaging from April 2020 through August 2023 were retrospectively evaluated. All patients underwent follow-up through December 2023 (median, 17 months; (3-31 months)), with imaging follow-up or biopsy findings ultimately being used to classify lesions as malignant or benign. Lesion maximum standardized uptake value (SUVmax) along with minimum and mean apparent diffusion coefficient (ADCmin and ADCmean) values were measured and assessed for correlations with outcomes on follow-up. RESULTS: In total, 33 indeterminate SSTR-RADS-3 lesions from 22 patients (19 SSTR-RADS-3A and 14 SSTR-RADS-3B) were identified based upon baseline 68Ga-DOTATATE PET/MR findings. Over the course of follow-up, 16 of these lesions (48.5%) were found to exhibit true NET positivity, including 9 SSTR-RADS-3A and 7 SSTR-RADS-3B lesions. For SSTR-RADS-3A lymph nodes, a diameter larger than 0.7 cm and an ADCmin of 779 × 10-6mm2/s or lower were identified as being more likely to be associated with metastatic lesions. Significant differences in ADCmin and ADCmean were identified when comparing metastatic and non-metastatic SSTR-RADS-3B bone lesions (P < 0.05), with these parameters offering a high predictive ability (AUC = 0.94, AUC = 0.86). CONCLUSION: Both diameter and ADCmin can aid in the accurate identification of the nature of lesions associated with SSTR-RADS-3A lymph nodes, whereas ADCmin and ADCmean values can inform the accurate interpretation of SSTR-RADS-3B bone lesions.


Assuntos
Tumores Neuroendócrinos , Compostos Organometálicos , Receptores de Somatostatina , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Receptores de Somatostatina/metabolismo , Adulto , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Compostos Radiofarmacêuticos , Idoso de 80 Anos ou mais , Prognóstico
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732036

RESUMO

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Assuntos
Bivalves , Pectinidae , Receptores de Somatostatina , Animais , Pectinidae/genética , Pectinidae/crescimento & desenvolvimento , Pectinidae/metabolismo , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Filogenia , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
7.
Sci Rep ; 14(1): 10045, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698013

RESUMO

Chronic stress has been implicated in mental illnesses and depressive behaviors. Somatostatin 4 receptor (SSTR4) has been shown to mediate anxiolytic and depression-like effects. Here, we aimed to explore the potential of SSTR4 as a diagnostic marker for chronic stress in mice. The mice were divided into single stress, chronic restraint stress, and control groups, and Sstr4 mRNA expression in the pituitary, lungs, and thymus, its protein expression in the thymus, were analyzed. Compared to controls, Sstr4 mRNA expression decreased significantly in the pituitary gland of the chronic and single-stress groups (P = 0.0181 and 0.0022, respectively) and lungs of the single-stress group (P = 0.0124), whereas it significantly increased in the thymus of the chronic-stress group (P = 0.0313). Thymic SSTR4 expression did not decrease significantly in stress groups compared to that in the control group (P = 0.0963). These results suggest that SSTR4 expression fluctuates in response to stress. Furthermore, Sstr4 mRNA expression dynamics in each organ differed based on single or chronic restraint stress-loading periods. In conclusion, this study suggests that investigating SSTR4 expression in each organ could allow for its use as a stress marker to estimate the stress-loading period and aid in diagnosing chronic stress.


Assuntos
Biomarcadores , Receptores de Somatostatina , Estresse Psicológico , Timo , Animais , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Camundongos , Estresse Psicológico/metabolismo , Masculino , Biomarcadores/metabolismo , Timo/metabolismo , Hipófise/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Pulmão/metabolismo , Doença Crônica , Estresse Fisiológico , Restrição Física
8.
Arch Endocrinol Metab ; 68: e230181, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38788146

RESUMO

Hemangioblastomas associated with von Hippel-Lindau (VHL) disease are frequently multiple and recur during prolonged follow-up. Currently, no systemic treatment is available for these tumors. Recent studies have shown the expression of somatostatin receptors in these types of hemangioblastomas. Notably, increased somatostatin receptor expression in a tumor, as determined by peptide-receptor radionuclide imaging, is a predictive factor of response to treatment with somatostatin analogs and peptide-receptor radionuclide therapy. The aim of this study was to describe the case of a patient with increased expression of somatostatin receptors in a suprasellar hemangioblastoma associated with VHL disease and conduct a literature review on somatostatin receptor expression in patients with VHL-associated hemangioblastomas. We describe herein the case of a 51-year-old man with VHL disease who had a suprasellar hemangioblastoma detected on magnetic resonance imaging. Peptide-receptor radionuclide imaging using gallium-68-DOTATOC (68Ga-DOTATOC) identified increased expression of somatostatin receptors in the suprasellar hemangioblastoma, along with multiple pancreatic neuroendocrine tumors and bilateral pheochromocytomas. The patient was treated for 1 year with lanreotide, a somatostatin analog. A repeat 68Ga-DOTATOC 1 year after starting lanreotide revealed decreased radiotracer uptake by the hemangioblastoma, consistent with a metabolic response. The presence of somatostatin receptors in hemangioblastomas associated with VHL disease is a novel finding. The decreased expression of these receptors after treatment with a somatostatin analog, as described in the present case, positions the somatostatin receptor as a new target for novel diagnostic, therapeutic, and follow-up opportunities in patients with VHL disease.


Assuntos
Hemangioblastoma , Receptores de Somatostatina , Doença de von Hippel-Lindau , Humanos , Hemangioblastoma/diagnóstico por imagem , Doença de von Hippel-Lindau/complicações , Receptores de Somatostatina/análise , Receptores de Somatostatina/metabolismo , Masculino , Pessoa de Meia-Idade , Octreotida/uso terapêutico , Octreotida/análogos & derivados , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/tratamento farmacológico , Seguimentos , Imageamento por Ressonância Magnética , Compostos Radiofarmacêuticos/uso terapêutico
9.
PET Clin ; 19(3): 325-339, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38714399

RESUMO

Neuroendocrine neoplasms (NEN) are rare tumors arising from neuroendocrine cells. NEN are ideally suited for a theragnostic approach due to their specific expression of somatostatin receptors (SSTR). SSTR imaging of NEN dates back to the 1980s, but has evolved recently due to the introduction of more sensitive SSTR PET radiotracers. SSTR PET is a primary imaging modality for identifying NEN and characterizing SSTR expression. SSTR PET is complementary to anatomic imaging for assessing tumor response to treatment. SSTR PET is mandated to determine eligibility for peptide receptor radionuclide therapy. Here, the role of imaging to aid management of NEN is reviewed.


Assuntos
Tumores Neuroendócrinos , Receptores de Somatostatina , Humanos , Tumores Neuroendócrinos/diagnóstico por imagem , Receptores de Somatostatina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
10.
Int Immunopharmacol ; 134: 112186, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733824

RESUMO

BACKGROUND: Although the pathophysiological mechanism of septic cardiomyopathy has been continuously discovered, it is still a lack of effective treatment method. Cortistatin (CST), a neuroendocrine polypeptide of the somatostatin family, has emerged as a novel cardiovascular-protective peptide, but the specific mechanism has not been elucidated. PURPOSE: The aim of our study is to explore the role of CST in cardiomyocytes pyroptosis and myocardial injury in sepsis and whether CST inhibits cardiomyocytes pyroptosis through specific binding with somastatin receptor 2 (SSTR2) and activating AMPK/Drp1 signaling pathway. METHODS AND RESULTS: In this study, plasma CST levels were significantly high and were negatively correlated with N-terminal pro-B type natriuretic peptide (NT-proBNP), a biomarker for cardiac dysfunction, in patients with sepsis. Exogenous administration of CST significantly improved survival rate and cardiac function in mouse models of sepsis by inhibiting the activation of the NLRP3 inflammasome and pyroptosis of cardiomyocytes (decreased cleavage of caspase-1, IL-1ß and gasdermin D). Pharmacological inhibition and genetic ablation revealed that CST exerted anti-pyroptosis effects by specifically binding to somatostatin receptor subtype 2 (SSTR2), thus activating AMPK and inactivating Drp1 to inhibit mitochondrial fission in cardiomyocytes. CONCLUSIONS: This study is the first to report that CST attenuates septic cardiomyopathy by inhibiting cardiomyocyte pyroptosis through the SSTR2-AMPK-Drp1-NLRP3 pathway. Importantly, CST specifically binds to SSTR2, which promotes AMPK phosphorylation, inhibits Drp1-mediated mitochondrial fission, and reduces ROS levels, thereby inhibiting NLRP3 inflammasome activation-mediated pyroptosis and alleviating sepsis-induced myocardial injury.


Assuntos
Proteínas Quinases Ativadas por AMP , Cardiomiopatias , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuropeptídeos , Piroptose , Receptores de Somatostatina , Sepse , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Receptores de Somatostatina/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Neuropeptídeos/metabolismo , Camundongos , Masculino , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Camundongos Knockout
11.
Biochem Biophys Res Commun ; 710: 149917, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38604071

RESUMO

Melanin-concentrating hormone (MCH) receptor 1 (MCHR1), a G protein-coupled receptor, is poised for interaction with its ligands on the plasma membrane. Analyses of MCHR1 knockout mice suggest that this receptor could be a therapeutic target for the treatment of appetite disorders, glucose metabolism, psychiatric disorders, and inflammation. Binding of MCH to MCHR1 initiates calcium signaling, which is subsequently attenuated through receptor internalization. However, the ultimate destiny of the receptor post-internalization remains unexplored. In this study, we report the extracellular secretion of MCHR1 via exosomes. The recruitment of MCHR1 to exosomes occurs subsequent to its internalization, which is induced by stimulation with the ligand MCH. Although a highly glycosylated form of MCHR1, potentially representing a mature form, is selectively recruited to exosomes, the MCHR1 transferred into other cells does not exhibit functionality. The truncation of MCHR1 at the C-terminus not only impairs its response to MCH but also hinders its recruitment to exosomes. These findings imply that functional MCHR1 could be secreted extracellularly via exosomes, a process that may represent a mechanism for the termination of intracellular MCHR1 signaling.


Assuntos
Exossomos , Hormônios Hipotalâmicos , Receptores do Hormônio Hipofisário , Humanos , Camundongos , Animais , Exossomos/metabolismo , Receptores do Hormônio Hipofisário/metabolismo , Transdução de Sinais , Camundongos Knockout , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Melaninas/metabolismo
12.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38612419

RESUMO

Somatostatin receptor ligands (SRLs) with high affinity for somatostatin receptors 2 and 5 (SSTR2 and SSTR5) are poorly efficacious in NF-PitNETs, expressing high levels of SSTR3. ITF2984 is a pan-SSTR ligand with high affinity for SSTR3, able to induce SSTR3 activation and to exert antitumoral activity in the MENX rat model. The aim of this study was to test ITF2984's antiproliferative and proapoptotic effects in NF-PitNET primary cultured cells derived from surgically removed human tumors and to characterize their SSTR expression profile. We treated cells derived from 23 NF-PitNETs with ITF2984, and a subset of them with octreotide, pasireotide (SRLs with high affinity for SSTR2 or 5, respectively), or cabergoline (DRD2 agonist) and we measured cell proliferation and apoptosis. SSTR3, SSTR2, and SSTR5 expression in tumor tissues was analyzed by qRT-PCR and Western blot. We demonstrated that ITF2984 reduced cell proliferation (-40.8 (17.08)%, p < 0.001 vs. basal, n = 19 NF-PitNETs) and increased cell apoptosis (+41.4 (22.1)%, p < 0.001 vs. basal, n = 17 NF-PitNETs) in all tumors tested, whereas the other drugs were only effective in some tumors. In our model, SSTR3 expression levels did not correlate with ITF2984 antiproliferative nor proapoptotic effects. In conclusion, our data support a possible use of ITF2984 in the pharmacological treatment of NF-PitNET.


Assuntos
Antimitóticos , Tumores Neuroendócrinos , Neoplasias Hipofisárias , Humanos , Tumores Neuroendócrinos/tratamento farmacológico , Octreotida/farmacologia , Octreotida/uso terapêutico , Neoplasias Hipofisárias/tratamento farmacológico , Neoplasias Hipofisárias/genética , Receptores de Somatostatina/genética
13.
J Neurosci ; 44(21)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38575343

RESUMO

Information seeking, such as standing on tiptoes to look around in humans, is observed across animals and helps survival. Its rodent analog-unsupported rearing on hind legs-was a classic model in deciphering neural signals of cognition and is of intense renewed interest in preclinical modeling of neuropsychiatric states. Neural signals and circuits controlling this dedicated decision to seek information remain largely unknown. While studying subsecond timing of spontaneous behavioral acts and activity of melanin-concentrating hormone (MCH) neurons (MNs) in behaving male and female mice, we observed large MN activity spikes that aligned to unsupported rears. Complementary causal, loss and gain of function, analyses revealed specific control of rear frequency and duration by MNs and MCHR1 receptors. Activity in a key stress center of the brain-the locus ceruleus noradrenaline cells-rapidly inhibited MNs and required functional MCH receptors for its endogenous modulation of rearing. By defining a neural module that both tracks and controls rearing, these findings may facilitate further insights into biology of information seeking.


Assuntos
Comportamento Exploratório , Hormônios Hipotalâmicos , Locus Cerúleo , Melaninas , Neurônios , Hormônios Hipofisários , Animais , Locus Cerúleo/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/fisiologia , Melaninas/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hormônios Hipofisários/metabolismo , Masculino , Feminino , Camundongos , Neurônios/fisiologia , Neurônios/metabolismo , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL , Receptores de Somatostatina/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Hipotálamo/fisiologia
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38648900

RESUMO

AIMS: Trophoblast cell dysfunction is one of the important factors leading to preeclampsia (PE). Cytoplasmic polyadenylation element-binding 2 (CPEB2) has been found to be differentially expressed in PE patients, but whether it mediates PE process by regulating trophoblast cell function is unclear. METHODS: The expression of CPEB2 and somatostatin receptor 3 (SSTR3) was detected by quantitative real-time PCR, Western blot (WB) and immunofluorescence staining. Cell functions were analyzed by CCK-8 assay, EdU assay, flow cytometry and transwell assay. Epithelial-mesenchymal transition (EMT)-related protein levels were detected by WB. The interaction of CPEB2 and SSTR3 was confirmed by RIP assay, dual-luciferase reporter assay and PCR poly(A) tail assay. Animal experiments were performed to explore the effect of CPEB2 on PE progression in vivo, and the placental tissues of rat were used for H&E staining, immunohistochemical staining and TUNEL staining. RESULTS: CPEB2 was lowly expressed in PE patients. CPEB2 upregulation accelerated trophoblast cell proliferation, migration, invasion and EMT, while its knockdown had an opposite effect. CPEB2 bound to the CPE site in the 3'-UTR of SSTR3 mRNA to suppress SSTR3 translation through reducing poly(A) tails. Besides, SSTR3 overexpression suppressed trophoblast cell proliferation, migration, invasion and EMT, while its silencing accelerated trophoblast cell functions. However, these effects could be reversed by CPEB2 upregulation and knockdown, respectively. In vivo experiments, CPEB2 overexpression relieved histopathologic changes, inhibited apoptosis, promoted proliferation and enhanced EMT in the placenta of PE rat by decreasing SSTR3 expression. CONCLUSION: CPEB2 inhibited PE progression, which promoted trophoblast cell functions by inhibiting SSTR3 translation through polyadenylation.


Assuntos
Poliadenilação , Pré-Eclâmpsia , Proteínas de Ligação a RNA , Receptores de Somatostatina , Trofoblastos , Gravidez , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Feminino , Animais , Receptores de Somatostatina/metabolismo , Receptores de Somatostatina/genética , Ratos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Trofoblastos/metabolismo , Trofoblastos/patologia , Proliferação de Células , Transição Epitelial-Mesenquimal/genética , Ratos Sprague-Dawley , Adulto , Progressão da Doença , Movimento Celular/genética , Biossíntese de Proteínas , Placenta/metabolismo , Placenta/patologia
15.
J Gastrointest Surg ; 28(6): 923-932, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574966

RESUMO

BACKGROUND: Sleeve gastrectomy (SG) is one of the most commonly performed bariatric surgeries. SG treats type 2 diabetes mellitus better than several drugs. The mechanisms that underlie this phenomenon are not clear. This study proposed that somatostatin (SST) isoforms SST-14 and SST-28 are key in the carbohydrate after SG. METHODS: Surgeries were performed on 3 groups of Wistar rats: the fasting, surgery control, and SG groups. Plasma levels of glucose, insulin, SST-14, and SST-28 were measured at 2 survival periods after surgery. Islet SST receptor (SSTR) and cell populations were studied. We performed a pasireotide (SST-28 analogue) infusion assay in another group of rats to confirm the influence of SST-28 plasma levels on the delta-cell population. RESULTS: This study found an elevation in the insulin response after SG in animals but a decrease in the insulin response over the long term with a loss of beta-cell mass. An increase in duodenal SST-28-producing cells in the duodenum and a loss of pancreatic SST-14-producing cells were observed after SG in animals but not in controls. The expression of SSTR type 5 in delta-cell populations from each group and the ability of the pasireotide infusion assay to decrease the delta-cell population indicated the effect of SST-28 plasma levels on delta-cell maintenance. CONCLUSION: After SG initiates a compensatory response in the duodenum, beta-cell mass is depleted after loss of the brake that regulates SST-14 at the paracrine level in a nonobese, normoglycemic rat model. This was an experimental model, with no clinical translation to the human clinic, with a preliminary importance regarding new pathophysiologic perspectives or pathways.


Assuntos
Glicemia , Gastrectomia , Insulina , Ratos Wistar , Receptores de Somatostatina , Somatostatina , Animais , Somatostatina/análogos & derivados , Gastrectomia/métodos , Ratos , Masculino , Receptores de Somatostatina/metabolismo , Glicemia/metabolismo , Insulina/sangue , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Duodeno/metabolismo , Duodeno/cirurgia
16.
J Nucl Med ; 65(4): 533-539, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38485273

RESUMO

ß--emitting 177Lu-octreotate is an approved somatostatin receptor subtype 2 (SSTR2)-directed peptide receptor radionuclide therapy for the treatment of gastroenteropancreatic neuroendocrine tumors (NETs). However,177Lu-octreotate has fast pharmacokinetics, requiring up to 4 treatment doses. Moreover, 177Lu is less than ideal for theranostics because of the low branching ratio of its γ-emissions, which limits its SPECT imaging capability. Compared with 177Lu, 67Cu has better decay properties for use as a theranostic. Here, we report the preclinical evaluation of a long-lived somatostatin analog, [67Cu]Cu-DOTA-Evans blue-TATE (EB-TATE), against SSTR2-positive NETs. Methods: The in vitro cytotoxicity of [67Cu]Cu-EB-TATE was investigated on 2-dimensional cells and 3-dimensional spheroids. In vivo pharmacokinetics and dosimetry were studied in healthy BALB/c mice, whereas ex vivo biodistribution, micro-SPECT/CT imaging, and therapy studies were done on athymic nude mice bearing QGP1.SSTR2 and BON1.SSTR2 xenografts. Therapeutic efficacy was compared with [177Lu]Lu-EB-TATE. Results: Projected human effective doses of [67Cu]Cu-EB-TATE for male (0.066 mSv/MBq) and female (0.085 mSv/MBq) patients are tolerable. In vivo micro-SPECT/CT imaging of SSTR2-positive xenografts with [67Cu]Cu-EB-TATE showed tumor-specific uptake and prolonged accumulation. Biodistribution showed tumor accumulation, with concurrent clearance from major organs over a period of 72 h. [67Cu]Cu-EB-TATE was more effective (60%) at eliminating tumors that were smaller than 50 mm3 within the first 15 d of therapy than was [177Lu]Lu-EB-TATE (20%) after treatment with 2 doses of 15 MBq administered 10 d apart. Mean survival of [67Cu]Cu-EB-TATE-treated groups was 90 d and more than 90 d, whereas that of [177Lu]Lu-EB-TATE was more than 90 d and 89 d against vehicle control groups (26 d and 53 d), for QGP1.SSTR2 and BON1.SSTR2 xenografts, respectively. Conclusion: [67Cu]Cu-EB-TATE exhibited high SSTR2-positive NET uptake and retention, with favorable dosimetry and SPECT/CT imaging capabilities. The antitumor efficacy of [67Cu]Cu-EB-TATE is comparable to that of [177Lu]Lu-EB-TATE, with [67Cu]Cu-EB-TATE being slightly more effective than [177Lu]Lu-EB-TATE for complete remission of small tumors. [67Cu]Cu-EB-TATE therefore warrants clinical development.


Assuntos
Tumores Neuroendócrinos , Animais , Camundongos , Humanos , Masculino , Feminino , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/tratamento farmacológico , Octreotida , Medicina de Precisão , Azul Evans , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , Camundongos Nus
18.
J Neurooncol ; 167(3): 415-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38441839

RESUMO

PURPOSE: Predicting resistance to first-generation Somatostatin Receptor Ligands (fg-SRL) in Acromegaly patients remains an ongong challenge. Tumor-associated immune components participate in various pathological processes, including drug-resistance. We aimed to identify the immune components involved in resistance of fg-SRL, and to investigate biomarkers that can be targeted to treat those drug-resistant Acromegaly. METHODS: We conducted a retrospective study involving 35 Acromegaly patients with somatotropinomas treated postoperatively with fg-SRL. Gathering clinicopathological data, SSTR2 expression, and immunological profiles, we utilized univariate, binary logistic regression, and ROC analyses to assess their predictive roles in fg-SRL resistance. Spearman correlation analysis further examined interactions among interested characteristics. RESULTS: 19 patients (54.29%) exhibited resistance to postoperative fg-SRL. GH level at diagnosis, preoperative tumor volume, T2WI-MRI intensity, granularity, PD-L1, SSTR2, and CD8 + T cell infiltration showed association with clinical outcomes of fg-SRL. Notably, T2WI-MRI hyperintensity, PD-L1-IRS > 7, CD8 + T cell infiltration < 14.8/HPF, and SSTR2-IRS < 5.4 emerged as reliable predictors for fg-SRL resistance. Correlation analysis highlighted a negative relationship between PD-L1 expression and CD8 + T cell infiltration, while showcasing a positive correlation with preoperative tumor volume of somatotropinomas. Additionally, 5 patients with fg-SRL resistance underwent re-operation were involved. Following fg-SRL treatment, significant increases in PD-L1 and SSTR5 expression were observed, while SSTR2 expression decreased in somatotropinoma. CONCLUSION: PD-L1 expression and CD8 + T cell infiltration, either independently or combined with SSTR2 expression and T2WI-MRI intensity, could form a predictive model guiding clinical decisions on fg-SRL employment. Furthermore, targeting PD-L1 through immunotherapy and embracing second-generations of SRL with higher affinity to SSTR5 represent promising strategies to tackle fg-SRL resistance in somatotropinomas.


Assuntos
Acromegalia , Receptores de Somatostatina , Humanos , Receptores de Somatostatina/metabolismo , Feminino , Masculino , Acromegalia/metabolismo , Acromegalia/cirurgia , Acromegalia/tratamento farmacológico , Acromegalia/imunologia , Acromegalia/sangue , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto , Biomarcadores Tumorais/metabolismo , Ligantes , Resistencia a Medicamentos Antineoplásicos , Antígeno B7-H1/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/cirurgia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/tratamento farmacológico , Prognóstico , Idoso , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Seguimentos , Octreotida/uso terapêutico
19.
Clin Pharmacol Ther ; 115(6): 1326-1335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38549435

RESUMO

Somatostatin inhibits endocrine and exocrine secretion in various tissues by acting on five somatostatin receptor subtypes (SSTR1-5). The clinical effects of SSTR5 antagonism remain unknown. Herein, we evaluated the effects of SCO-240, an oral SSTR5 antagonist, in healthy individuals. This randomized, single-center, double-blind, placebo-controlled, phase I study included healthy Japanese and White individuals. The effects of ascending single oral doses of SCO-240 were evaluated in healthy individuals. The main outcome measures were safety, tolerability, pharmacokinetics, and pharmacodynamics (gallbladder contractions and levels of serum insulin and plasma glucagon-like peptide-1 (GLP-1)). The levels of pituitary hormones were evaluated in our exploratory analysis. The results indicated that SCO-240 was safe and well-tolerated at all tested doses. Oral SCO-240 was readily absorbed, with its systemic exposure increasing in a dose-dependent manner. The median time to maximum concentration and mean terminal half-life of SCO-240 were 3-4 and 10.2-12.6 hours, respectively, in the ascending dose section. No clinically meaningful changes in SCO-240 pharmacokinetic profiles were observed between fed and fasted or between Japanese and White individuals. No increase in gallbladder contractions or levels of insulin and GLP-1 were detected. SCO-240 induced robust growth hormone (GH) secretion without altering the levels of other pituitary hormones. In conclusion, the study is the first to demonstrate that SSTR5 antagonism stimulates GH secretion in humans. SCO-240 was safe and well-tolerated and exhibited once-daily oral dosing potential. The robust effects of SCO-240 on GH secretion suggest that it may be a treatment option for GH-related disorders.


Assuntos
Voluntários Saudáveis , Receptores de Somatostatina , Humanos , Masculino , Adulto , Método Duplo-Cego , Feminino , Receptores de Somatostatina/antagonistas & inibidores , Administração Oral , Adulto Jovem , Hormônio do Crescimento Humano/administração & dosagem , Relação Dose-Resposta a Droga , Peptídeo 1 Semelhante ao Glucagon , Insulina/sangue , Vesícula Biliar/metabolismo , Vesícula Biliar/efeitos dos fármacos , Pessoa de Meia-Idade
20.
Nucl Med Biol ; 132-133: 108905, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555651

RESUMO

DOTATATE is a somatostatin peptide analog used in the clinic to detect somatostatin receptors which are highly expressed on neuroendocrine tumors. Somatostatin receptors are found naturally in the intestines, pancreas, lungs, and brain (mainly cortex). In vivo measurement of the somatostatin receptors in the cortex has been challenging because available tracers cannot cross the blood-brain barrier (BBB) due to their intrinsic polarity. A peptide called melittin, a main component of honeybee venom, has been shown to disrupt plasma membranes and increase the permeability of biological membranes. In this study, we assessed the feasibility of using melittin to facilitate the passage of [64Cu]Cu-DOTATATE through the BBB and its binding to somatostatin receptors in the cortex. Evaluation included in vitro autoradiography on Long Evans rat brains to estimate the binding affinity of [64Cu]Cu-DOTATATE to the somatostatin receptors in the cortex and an in vivo evaluation of [64Cu]Cu-DOTATATE binding in NMRI mice after injection of melittin. This study found an in vitro Bmax = 89 ± 4 nM and KD = 4.5 ± 0.6 nM in the cortex, resulting in a theoretical binding potential (BP) calculated as Bmax/KD ≈ 20, which is believed suitable for in vivo brain PET imaging. However, the in vivo results showed no significant difference between the control and melittin injected mice, indicating that the honeybee venom failed to open the BBB. Additional experiments, potentially involving faster injection rates are required to verify that melittin can increase brain uptake of non-BBB permeable PET tracers. Furthermore, an evaluation of whether a venom with a narrow therapeutic range can be used for clinical purposes needs to be considered.


Assuntos
Barreira Hematoencefálica , Estudos de Viabilidade , Meliteno , Compostos Organometálicos , Tomografia por Emissão de Pósitrons , Receptores de Somatostatina , Animais , Receptores de Somatostatina/metabolismo , Meliteno/química , Meliteno/metabolismo , Ratos , Tomografia por Emissão de Pósitrons/métodos , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Compostos Organometálicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Masculino , Camundongos , Radioisótopos de Cobre , Octreotida/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...