Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Front Endocrinol (Lausanne) ; 12: 665537, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122340

RESUMO

A key factor for the insulin response to oral glucose is the pro-glucagon derived incretin hormone glucagon-like peptide-1 (GLP-1), together with the companion incretin hormone, glucose-dependent insulinotropic polypeptide (GIP). Studies in GIP and GLP-1 receptor knockout (KO) mice have been undertaken in several studies to examine this role of the incretin hormones. In the present study, we reviewed the literature on glucose and insulin responses to oral glucose in these mice. We found six publications with such studies reporting results of thirteen separate study arms. The results were not straightforward, since glucose intolerance in GIP or GLP-1 receptor KO mice were reported only in eight of the arms, whereas normal glucose tolerance was reported in five arms. A general potential weakness of the published study is that each of them have examined effects of only one single dose of glucose. In a previous study in mice with genetic deletion of both GLP-1 and GIP receptors we showed that these mice have impaired insulin response to oral glucose after large but not small glucose loads, suggesting that the relevance of the incretin hormones may be dependent on the glucose load. To further test this hypothesis, we have now performed a stepwise glucose administration through a gastric tube (from zero to 125mg) in model experiments in anesthetized female wildtype, GLP-1 receptor KO and GIP receptor KO mice. We show that GIP receptor KO mice exhibit glucose intolerance in the presence of impaired insulin response after 100 and 125 mg glucose, but not after lower doses of glucose. In contrast, GLP-1 receptor KO mice have normal glucose tolerance after all glucose loads, in the presence of a compensatory increase in the insulin response. Therefore, based on these results and the literature survey, we suggest that GIP and GLP-1 receptor KO mice retain normal glucose tolerance after oral glucose, except after large glucose loads in GIP receptor KO mice, and we also show an adaptive mechanism in GLP-1 receptor KO mice, which needs to be further examined.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Glucose/administração & dosagem , Células Secretoras de Insulina/efeitos dos fármacos , Insulina/farmacologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Administração Oral , Animais , Feminino , Polipeptídeo Inibidor Gástrico/metabolismo , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Hipoglicemiantes/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
2.
Front Immunol ; 12: 643144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717200

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) communicates information on energy availability from the gut to peripheral tissues. Disruption of its signaling in myeloid immune cells during high-fat diet (HFD)-induced obesity impairs energy homeostasis due to the unrestrained metabolically deleterious actions of S100A8/A9 alarmin. White adipose tissue (WAT) type 2 immune cell networks are important for maintaining metabolic and energy homeostasis and limiting obesity-induced inflammation. Nevertheless, the consequences of losing immune cell GIP receptor (GIPR) signaling on type 2 immunity in WAT remains unknown. Bone marrow (BM) chimerism was used to generate mice with GIPR (Gipr-/- BM) and GIPR/S100A8/A9 (Gipr-/- /S100a9-/- BM) deletion in immune cells. These mice were subjected to short (5 weeks) and progressive (14 weeks) HFD regimens. GIPR-deficiency was also targeted to myeloid cells by crossing Giprfl/fl mice and Lyz2cre/+ mice (LysMΔGipr ). Under both short and progressive HFD regimens, Gipr-/- BM mice exhibited altered expression of key type 2 immune cytokines in the epididymal visceral WAT (epiWAT), but not in subcutaneous inguinal WAT. This was further linked to declined representation of type 2 immune cells in epiWAT, such as group 2 innate lymphoid cells (ILC2), eosinophils, and FOXP3+ regulatory T cells (Tregs). Co-deletion of S100A8/A9 in Gipr-/- immune cells reversed the impairment of type 2 cytokine expression in epiWAT, suggesting a mechanistic role for this alarmin in type 2 immune suppression. LysMΔGipr mice on HFD also displayed altered expression of type 2 immune mediators, highlighting that GIPR-deficiency in myeloid immune cells is responsible for the impairment of type 2 immune networks. Finally, abrogated GIPR signaling in immune cells also affected adipocyte fraction cells, inducing their increased production of the beiging interfering cytokine IL-10 and stress- related type 2 cytokine IL-13. Collectively, these findings attribute an important role for GIPR in myeloid immune cells in supporting WAT type 2 immunity.


Assuntos
Tecido Adiposo Branco/imunologia , Linfócitos/imunologia , Obesidade/imunologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Tecido Adiposo Branco/metabolismo , Animais , Calgranulina A/fisiologia , Calgranulina B/fisiologia , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Transdução de Sinais/fisiologia , Termogênese
3.
Life Sci ; 269: 119038, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453239

RESUMO

OBJECTIVE: Glucose-dependent insulinotropic polypeptide receptor (GIPR) has been identified as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). Therefore, we developed the anti-GIPR antagonistic monoclonal antibody (mAb) alone and in combination with DPP-4 inhibitor as potential therapeutic strategy for treating obesity and dyslipidemia based on this genetic evidence. METHODS: Fully neutralized GIPR activity of GIPR-monoclonal antibody (mAb) was assessed by regulating the in vitro production of cAMP in the mouse GIPR stably expressing cells. Chronic efficacies of GIPR-mAb alone and in combination with DPP-4 inhibitor Sitagliptin in diabetic or DIO mice were both investigated. Multiple metabolic parameters including body weight, glucose level, fat mass, lipid metabolism-related indicators as well as H&E staining and immunohistochemical analysis were performed. Role of GIPR in pancreatic cells on regulating fat metabolism was explored in GIPR ß-cell knockout mouse model. RESULTS: Chronic treatment of GIPR-mAb improved body weight control, glucose metabolism, and was associated with reduced fat mass, enhanced pancreatic function and exchange ratio of the resting respiratory in diabetic mice. In addition, further study of anti-GIPR mAb combined with Sitagliptin in DIO mice demonstrated significantly improved weight loss compare to the both monomer treatment. Furthermore, we demonstrated important role of GIPR in ß-cell in regulating the fat mass and response to antagonistic GIPR-mAb in a conditional GIPR-knockout mouse. CONCLUSION: Chronic treatment with anti-GIPR mAb alone and combined with DPP-4 inhibitor provide preclinical therapeutic approaches to treat obesity.


Assuntos
Anticorpos Monoclonais/farmacologia , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Dislipidemias/tratamento farmacológico , Nefropatias/tratamento farmacológico , Obesidade/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Quimioterapia Combinada , Dislipidemias/etiologia , Dislipidemias/patologia , Nefropatias/etiologia , Nefropatias/patologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/patologia , Receptores dos Hormônios Gastrointestinais/imunologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Redução de Peso
4.
Neurogastroenterol Motil ; 32(12): e14022, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33118247

RESUMO

BACKGROUND: Despite gastro-esophageal reflux disease affecting up to 20% of Western populations, relatively little is known about the molecular mechanisms underlying its most troublesome symptom: heartburn. Recent findings have unveiled the role of components of the esophageal mucosa in the pathogenesis of GERD including sensory nociceptive nerves and inflammatory mediators. Erosive esophagitis was long believed to develop as a result of acid injury at the esophageal lumen, but novel concepts suggest the generation of reflux-induced esophageal injury as a result of cytokine-mediated inflammation. Moreover, the localization and characterization of mucosal afferent nerves vary between GERD phenotypes and could explain the heterogeneity of symptom perception between patients who experience similar levels of acid reflux. PURPOSE: The purpose of this review is to consider the crosstalk of different factors of the esophageal mucosa in the pathogenesis of GERD, with a particular focus on mucosal innervation and molecular basis of acid-induced cytokine response. We discuss the current understanding of the mucosal response to acid injury, the nociceptive role of acid-sensitive receptors expressed in the esophageal mucosa, and the role of esophageal epithelial cells in initiating the onset of erosive esophagitis.


Assuntos
Mucosa Esofágica/fisiopatologia , Mucosa Gástrica/fisiopatologia , Refluxo Gastroesofágico/fisiopatologia , Animais , Mucosa Esofágica/patologia , Mucosa Gástrica/patologia , Refluxo Gastroesofágico/patologia , Humanos , Receptores dos Hormônios Gastrointestinais/fisiologia
5.
Curr Opin Pharmacol ; 55: 31-40, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053504

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone impacting glucose, lipid and bone metabolism through the GIP receptor (GIPR). The GIP system has key species differences complicating the translation of findings from rodent to human physiology. Furthermore, the effects of endogenous GIP in humans have been difficult to tease out due to the lack of a suitable GIPR antagonist. The naturally occurring GIP(3-30)NH2 has turned out to constitute a safe and efficacious GIPR antagonist for rodent and human use. To study GIP physiology, it is recommended to use the species-specific GIP(3-30)NH2 peptide sequence, and for human intravenous infusions, an antagonist:agonist ratio of a minimum of 600 with a 20min infusion time before the intervention of interest is recommended. Several studies using GIP(3-30)NH2 are coming, hopefully providing new insights into the physiology of GIP, the pathophysiologic involvement of GIP in several diseases and the therapeutic potential of the GIPR.


Assuntos
Polipeptídeo Inibidor Gástrico/fisiologia , Fragmentos de Peptídeos/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Humanos , Ligantes , Especificidade da Espécie
6.
J Am Soc Nephrol ; 31(8): 1711-1727, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32703846

RESUMO

BACKGROUND: Patients with cystic fibrosis (CF) do not respond with increased urinary HCO3- excretion after stimulation with secretin and often present with metabolic alkalosis. METHODS: By combining RT-PCR, immunohistochemistry, isolated tubule perfusion, in vitro cell studies, and in vivo studies in different mouse models, we elucidated the mechanism of secretin-induced urinary HCO3- excretion. For CF patients and CF mice, we developed a HCO3- drinking test to assess the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in urinary HCO3-excretion and applied it in the patients before and after treatment with the novel CFTR modulator drug, lumacaftor-ivacaftor. RESULTS: ß-Intercalated cells express basolateral secretin receptors and apical CFTR and pendrin. In vivo application of secretin induced a marked urinary alkalization, an effect absent in mice lacking pendrin or CFTR. In perfused cortical collecting ducts, secretin stimulated pendrin-dependent Cl-/HCO3- exchange. In collecting ducts in CFTR knockout mice, baseline pendrin activity was significantly lower and not responsive to secretin. Notably, patients with CF (F508del/F508del) and CF mice showed a greatly attenuated or absent urinary HCO3--excreting ability. In patients, treatment with the CFTR modulator drug lumacaftor-ivacaftor increased the renal ability to excrete HCO3-. CONCLUSIONS: These results define the mechanism of secretin-induced urinary HCO3- excretion, explain metabolic alkalosis in patients with CF, and suggest feasibility of an in vivo human CF urine test to validate drug efficacy.


Assuntos
Bicarbonatos/metabolismo , Fibrose Cística/metabolismo , Rim/metabolismo , Animais , AMP Cíclico/fisiologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos Endogâmicos F344 , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/fisiologia , Secretina/farmacologia
7.
Endocrinology ; 161(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603429

RESUMO

The hypothalamus plays a critical role in controlling energy balance. High-fat diet (HFD) feeding increases the gene expression of proinflammatory mediators and decreases insulin actions in the hypothalamus. Here, we show that a gut-derived hormone, glucose-dependent insulinotropic polypeptide (GIP), whose levels are elevated during diet-induced obesity, promotes and mediates hypothalamic inflammation and insulin resistance during HFD-induced obesity. Unbiased ribonucleic acid sequencing of GIP-stimulated hypothalami revealed that hypothalamic pathways most affected by intracerebroventricular (ICV) GIP stimulation were related to inflammatory-related responses. Subsequent analysis demonstrated that GIP administered either peripherally or centrally, increased proinflammatory-related factors such as Il-6 and Socs3 in the hypothalamus, but not in the cortex of C57BL/6J male mice. Consistently, hypothalamic activation of IκB kinase-ß inflammatory signaling was induced by ICV GIP. Further, hypothalamic levels of proinflammatory cytokines and Socs3 were significantly reduced by an antagonistic GIP receptor (GIPR) antibody and by GIPR deficiency. Additionally, centrally administered GIP reduced anorectic actions of insulin in the brain and diminished insulin-induced phosphorylation of Protein kinase B and Glycogen synthase kinase 3ß in the hypothalamus. Collectively, these findings reveal a previously unrecognized role for brain GIP signaling in diet-induced inflammation and insulin resistance in the hypothalamus.


Assuntos
Encefalite/induzido quimicamente , Polipeptídeo Inibidor Gástrico/farmacologia , Hipotálamo/efeitos dos fármacos , Inflamação/induzido quimicamente , Resistência à Insulina , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Dieta Hiperlipídica , Encefalite/genética , Polipeptídeo Inibidor Gástrico/administração & dosagem , Polipeptídeo Inibidor Gástrico/fisiologia , Hipotálamo/imunologia , Hipotálamo/patologia , Inflamação/genética , Infusões Intraventriculares , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Receptores dos Hormônios Gastrointestinais/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
8.
Neuropharmacology ; 170: 108042, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32147454

RESUMO

Alzheimer's disease (AD) is a progressively neurodegenerative disorder, which seriously affects human health and cannot be stopped by current treatments. Type 2 diabetes mellitus (T2DM) is a risk factor for AD. Our recent studies reported the neuroprotective effects of a GLP-1/GIP/Glucagon receptor triagonist (Triagonist), a novel unimolecular anti-diabetic drug, in cognitive and pathological improvements of 3xTg-AD mice. However, the detailed electrophysiological and molecular mechanisms underlying neuroprotection remain unexplored. The present study investigated the underlying electrophysiological and molecular mechanisms further by using whole-cell patch clamp techniques. Our results revealed that chronic Triagonist treatment effectively reduced working memory and reference memory errors of 3xTg-AD mice in a radial maze test. In addition, the Triagonist increased spontaneous excitatory synaptic activities, differentially modulated voltage- and chemically-gated Ca2+ flux, and reduced the over-excitation of pyramidal neurons in hippocampal slices of 3xTg-AD mice. In addition, chronic Triagonist treatment also up-regulated the expression levels of synaptophysin and PSD-95 in the hippocampus of 3xTg-AD mice. These results indicate that the Triagonist could improve memory formation, as well as synaptic transmission, Ca2+ balance, and neuronal excitability in 3xTg-AD mice. These neuroprotective effects of Triagonist may be involved in the up-regulation of synaptophysin and PSD-95. Therefore, the study suggests that multi-receptor agonists might be a novel therapeutic strategy for the treatment of AD.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Memória de Curto Prazo/efeitos dos fármacos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores de Glucagon/agonistas , Transmissão Sináptica/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Animais , Sinalização do Cálcio/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Presenilina-1/genética , Receptores dos Hormônios Gastrointestinais/fisiologia , Receptores de Glucagon/fisiologia , Transmissão Sináptica/fisiologia , Proteínas tau/genética
9.
Peptides ; 125: 170250, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917165

RESUMO

Obesity has a multifactorial origin. It is known that alterations of the intra uterine milieu induce developmental programming effects leading to metabolic diseases in offspring. Obesity is diminished in mice lacking the glucose-dependent insulinotropic polypeptide receptor (Gipr-/-) when exposed to a high fat diet (HFD). We investigated whether Gipr-/- mice are still protected from obesity when additionally exposure to a HFD during pregnancy and lactation occurs. Male and female wild type (WT) and Gipr-/- offspring received either a control/ low fat diet or HFD during pregnancy and lactation and were then either left on this diet or placed on the opposite diet after weaning until 24 weeks of life. Female WT mice showed increased body weight and adiposity when exposed to a HFD during pregnancy and lactation and post-weaning compared to female WT that received the HFD after weaning only. This exacerbated effect of a HFD during pregnancy and lactation was abolished in female Gipr-/- mice. Male Gipr-/- mice were protected from obesity to a much lesser extent. Male Gipr-/- mice exposed to a HFD during pregnancy and lactation and after weaning exhibited significantly increased fed serum glucose compared to Gipr-/- mice exposed to a HFD after weaning only. In female Gipr-/- mice no differences in fed blood glucose were observed between these groups. Our data indicate that female Gipr-/- mice are more protected from obesity. This protection is preserved in female Gipr-/- mice when additional deleterious effects of a HFD occur during fetal development.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/patologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Caracteres Sexuais , Animais , Feminino , Desenvolvimento Fetal , Lactação/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Gravidez , Desmame
10.
Expert Rev Gastroenterol Hepatol ; 14(2): 103-111, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31996050

RESUMO

Introduction: Motilin was first alluded to nearly a century ago. But it remains a rather abstruse peptide, in the shadow of its younger but more lucid 'cousin' ghrelin.Areas covered: The review aimed to bring to the fore multifarious aspects of motilin research with a view to aiding prioritization of future studies on this gastrointestinal peptide.Expert opinion: Growing evidence indicates that rodents (mice, rats, guinea pigs) do not have functional motilin system and, hence, studies in these species are likely to have a minimal translational impact. Both the active peptide and motilin receptor were initially localized to the upper gastrointestinal tract only but more recently - also to the brain (in both humans and other mammals with functional motilin system). Motilin is now indisputably implicated in interdigestive contractile activity of the gastrointestinal tract (in particular, gastric phase III of the migrating motor complex). Beyond this role, evidence is building that there is a cross-talk between motilin system and the brain-pancreas axis, suggesting that motilin exerts not only contractile but also orexigenic and insulin secretagogue actions.


Assuntos
Encéfalo/fisiologia , Trato Gastrointestinal/fisiologia , Motilina/fisiologia , Pâncreas/fisiologia , Animais , Motilidade Gastrointestinal/fisiologia , Grelina/fisiologia , Humanos , Fome/fisiologia , Insulina/fisiologia , Complexo Mioelétrico Migratório/fisiologia , Receptor Cross-Talk/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Receptores de Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia
11.
Peptides ; 125: 170152, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31522751

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) receptor knockout (KO) mice are tools for studying GIP physiology. Previous results have demonstrated that these mice have impaired insulin response to oral glucose. In this study, we examined the insulin response to intravenous glucose by measuring glucose, insulin and C-peptide after intravenous glucose (0.35 g/kg) in 5-h fasted female GIP receptor KO mice and their wild-type (WT) littermates. The 1 min insulin and C-peptide responses to intravenous glucose were significantly enhanced in GIP receptor KO mice (n = 26) compared to WT mice (n = 30) as was beta cell function (area under the 50 min C-peptide curve divided by area under the 50 min curve for glucose) (P = 0.001). Beta cell function after intravenous glucose was also enhanced in GIP receptor KO mice in the presence of the glucagon-like peptide-1 receptor antagonist exendin 9 (30 nmol/kg; P = 0.007), the muscarinic antagonist atropine (5 mg/kg; P = 0.007) and the combination of the alpha-adrenoceptor antagonist yohimbine (1.4 mg/kg) and the beta-adrenoceptor antagonist propranolol (2.5 mg/kg; P = 0.042). Analysis of the regression between fasting glucose (6.8 ± 0.1 mmol/l in GIP receptor KO mice and 7.5 ± 0.2 mmol/l in WT mice, P = 0.003) and the 1 min C-peptide response to intravenous glucose showed a negative linear regression between these variables in both WT (n = 60; r = -0.425, P = 0.001) and GIP receptor KO mice (n = 56; r = -0.474, P < 0.001). We conclude that there is a beta cell adaptation in GIP receptor KO mice resulting in enhanced insulin secretion after intravenous glucose to which slight long-term reduction in circulating glucose in these mice may contribute.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Receptores dos Hormônios Gastrointestinais/fisiologia , Adaptação Fisiológica , Animais , Modelos Animais de Doenças , Jejum , Feminino , Hipoglicemiantes/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Camundongos Knockout , Edulcorantes/farmacologia
12.
Endocr Rev ; 41(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511854

RESUMO

Glucose-dependent insulinotropic polypeptide receptor (GIPR) is associated with obesity in human genome-wide association studies. Similarly, mouse genetic studies indicate that loss of function alleles and glucose-dependent insulinotropic polypeptide overexpression both protect from high-fat diet-induced weight gain. Together, these data provide compelling evidence to develop therapies targeting GIPR for the treatment of obesity. Further, both antagonists and agonists alone prevent weight gain, but result in remarkable weight loss when codosed or molecularly combined with glucagon-like peptide-1 analogs preclinically. Here, we review the current literature on GIPR, including biology, human and mouse genetics, and pharmacology of both agonists and antagonists, discussing the similarities and differences between the 2 approaches. Despite opposite approaches being investigated preclinically and clinically, there may be viability of both agonists and antagonists for the treatment of obesity, and we expect this area to continue to evolve with new clinical data and molecular and pharmacological analyses of GIPR function.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Animais , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Obesidade/genética , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/fisiologia
13.
Peptides ; 125: 170227, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31805296

RESUMO

Gastric inhibitory polypeptide (GIP) is a regulatory peptide expressed in the mammalian upper small intestine, and both GIP and its receptor (GIPR) are expressed in the cortex and hippocampus regions of the brain as well. While learning and memory deficits have been observed in GIPR-/- mice, the effects of peripheral GIP immunoneutralization on motor-coordination, learning, and memory have not been examined. In the present study, adult GIPR-/- mice (KO) and age-matched wild-type C57BL/6 J mice (WT) received weekly vehicle PBS injections for 12 weeks, while a third group of wild-type mice were injected weekly for 12 weeks with 30 mg/kg body weight humanized GIP-mAb (AB) to assess the possibility of long-term effects of peripheral GIP antagonism on rodent memory and behavior. All mice groups then underwent a battery of tests that evaluated motor behavior, body coordination, and memory. Performance deficits in several memory studies after 12 weeks of treatment were demonstrated in KO, but not in AB or WT mice. Body coordination performance showed no significant differences among the 3 groups. A similar short-term study (3 injections over 9 days) was also conducted and the results were similar to those from the long-term study. Thus, short-term and long-term peripheral GIP antagonism by GIP-mAb did not appear to affect learning and memory in mice, consistent with the notion that the GIP-mAb does not cross the blood brain barrier. Furthermore, our studies indicate that GIP signaling in the brain appears to involve local neurocrine pathways.


Assuntos
Anticorpos Monoclonais/farmacologia , Polipeptídeo Inibidor Gástrico/antagonistas & inibidores , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Modelos Animais de Doenças , Polipeptídeo Inibidor Gástrico/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
14.
Epilepsy Res ; 154: 97-106, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31121474

RESUMO

AIMS: Glia-mediated neuro-inflammation and oxidative stress-induced neuronal apoptosis can contribute to epileptogenesis. We have demonstrated previously that mimetics of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and dual-GLP-1/GIP receptor agonists protect the brain from inflammation, oxidative stress, apoptosis and neuronal loss in animal models of central nervous system diseases. METHODS: This study investigated for the first time whether the novel dual GLP-1/GIP receptor agonist DA3-CH has neuroprotective effects in the pilocarpine-induced status epilepticus (SE) rat model and the studies the underlying mechanisms. DA3-CH was administered once daily at 10 nmol/kg ip. following SE induction. The effect of DA3-CH was evaluated by immunohistochemistry and western blot at 12 h, 1 d, 3 d, 7 d after kindling. RESULTS: Our findings show that DA3-CH reduced the chronic inflammation response (astrogliosis and microgliosis), and the associated release of the pro-inflammatory cytokines interleukin-1ß (IL-ß) and tumor necrosis factor-α (TNF-α) in the hippocampal CA1 area. Furthermore, DA3-CH reduced the expression of the mitochondrial pro-apoptotic protein Bax, while increasing the expression of the anti-apoptotic protein Bcl-2. Neuronal numbers in the CA1 area were much reduced by pilocarpine treatment, and DA3-CH protected neurons from neurotoxicity. CONCLUSION: These results demonstrated that DA3-CH could mitigate pilocarpine-induced neuro-inflammation, mitochondrial apoptosis and neuronal loss. The findings encourage the development of dual agonists as novel therapeutic interventions for epilepsy.


Assuntos
Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Fármacos Neuroprotetores/uso terapêutico , Pilocarpina/toxicidade , Receptores dos Hormônios Gastrointestinais/agonistas , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Masculino , Fármacos Neuroprotetores/farmacologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Receptores dos Hormônios Gastrointestinais/fisiologia
15.
Biol Aujourdhui ; 212(1-2): 13-19, 2018.
Artigo em Francês | MEDLINE | ID: mdl-30362451

RESUMO

G-protein coupled receptors represent the largest family of membrane receptors. G-protein dependent signal of GPCR is classically thought to originate exclusively from the plasma membrane and, until very recently, internalized GPCRs were considered silent. At present, experimental proofs exist showing that GPCR can continue to signal via G proteins after internalization. We demonstrated that, once internalized in early endosomes, Glucose-dependent Insulinotropic Peptide Receptor (GIPR) continues to stimulate production of cAMP and activate PKA. In addition to indirect proofs showing that kinetics of cAMP production and PKA activation depend on internalization and GIPR trafficking, we identified the active form of Gαs on early endosomes containing GIPR and detected a distinct FRET signal accounting for cAMP production at the surface of endosomes containing GIP, relative to endosomes without GIP.


Assuntos
Adenilil Ciclases/metabolismo , Endossomos/metabolismo , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Endossomos/enzimologia , Ativação Enzimática , Polipeptídeo Inibidor Gástrico/fisiologia , Humanos , Transporte Proteico , Transdução de Sinais/fisiologia
16.
Am J Pathol ; 188(10): 2264-2280, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30036520

RESUMO

Activation of the secretin (Sct)/secretin receptor (SR) axis stimulates ductular reaction and liver fibrosis, which are hallmarks of cholangiopathies. Our aim was to define the role of Sct-regulated cellular senescence, and we demonstrated that both ductular reaction and liver fibrosis are significantly reduced in Sct-/-, SR-/-, and Sct-/-/SR-/- bile duct ligated (BDL) mice compared with BDL wild-type mice. The reduction in hepatic fibrosis in Sct-/-, SR-/-, and Sct-/-/SR-/- BDL mice was accompanied by reduced transforming growth factor-ß1 levels in serum and cholangiocyte supernatant, as well as decreased expression of markers of cellular senescence in cholangiocytes in contrast to enhanced cellular senescence in hepatic stellate cells compared with BDL wild-type mice. Secretin directly stimulated the senescence of cholangiocytes and regulated, by a paracrine mechanism, the senescence of hepatic stellate cells and liver fibrosis via modulation of transforming growth factor-ß1 biliary secretion. Targeting senescent cholangiocytes may represent a novel therapeutic approach for ameliorating hepatic fibrosis during cholestatic liver injury.


Assuntos
Cirrose Hepática/fisiopatologia , Receptores Acoplados a Proteínas G/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Secretina/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Animais , Ductos Biliares/citologia , Senescência Celular/fisiologia , Células de Kupffer/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , RNA Mensageiro/metabolismo , Secretina/farmacologia
17.
Endocrinology ; 158(7): 2134-2144, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28430907

RESUMO

In addition to overeating, starvation also reduces fecundity in mammals. However, little is known about the molecular mechanisms linking food intake to fertility, especially in males. Gastric inhibitory polypeptide (GIP), which is released from intestinal K-cells after meal ingestion, stimulates insulin secretion from pancreatic ß-cells through the action of incretin and has several extrapancreatic effects. Here, we identified GIP receptor (Gipr) expression in mouse spermatids. Microarray analysis revealed that pregnancy-specific glycoprotein 17 (Psg17), a potential CD9-binding partner, was significantly decreased in GIP receptor-knockout (Gipr-/-) testes. Glycosylphosphatidylinositol-anchored PSG17 was expressed on the surface of acrosome-reacted sperm, and Gipr-/- sperm led to a lower fertilization rate in vitro, compared with that of Gipr+/+ sperm, both in the absence and presence of the zona pellucida. Plasma GIP concentrations and Psg17 messenger RNA (mRNA) were immediately increased in the testis after a single meal, whereas ingestion of a chronic high-fat diet markedly decreased Gipr and Psg17 mRNA. These results suggest that reduced GIP signaling, by decreased GIP levels or the downregulation of Gipr, is associated with the reduction of fecundity due to starvation or overeating. Thus, proper regulation of GIP signaling in the testis could be a potential unique therapeutic target for male infertility in obese and diabetic individuals.


Assuntos
Ingestão de Alimentos/fisiologia , Polipeptídeo Inibidor Gástrico/fisiologia , Glicoproteínas/fisiologia , Proteínas da Gravidez/fisiologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Interações Espermatozoide-Óvulo/genética , Animais , Feminino , Fertilidade/genética , Polipeptídeo Inibidor Gástrico/genética , Glicoproteínas/genética , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise em Microsséries , Proteínas da Gravidez/genética , Receptores dos Hormônios Gastrointestinais/genética , Transdução de Sinais/genética , Testículo/metabolismo
18.
Biol Psychiatry ; 81(3): 243-251, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26803341

RESUMO

BACKGROUND: Social recognition underlies social behavior in animals, and patients with psychiatric disorders associated with social deficits show abnormalities in social recognition. Oxytocin is implicated in social behavior and has received attention as an effective treatment for sociobehavioral deficits. Secretin receptor-deficient mice show deficits in social behavior. The relationship between oxytocin and secretin concerning social behavior remains to be determined. METHODS: Expression of c-Fos in oxytocin neurons and release of oxytocin from their dendrites after secretin application were investigated. Social recognition was examined after intracerebroventricular or local injection of secretin, oxytocin, or an oxytocin receptor antagonist in rats, oxytocin receptor-deficient mice, and secretin receptor-deficient mice. Electron and light microscopic immunohistochemical analysis was also performed to determine whether oxytocin neurons extend their dendrites into the medial amygdala. RESULTS: Supraoptic oxytocin neurons expressed the secretin receptor. Secretin activated supraoptic oxytocin neurons and facilitated oxytocin release from dendrites. Secretin increased acquisition of social recognition in an oxytocin receptor-dependent manner. Local application of secretin into the supraoptic nucleus facilitated social recognition, and this facilitation was blocked by an oxytocin receptor antagonist injected into, but not outside of, the medial amygdala. In the medial amygdala, dendrite-like thick oxytocin processes were found to extend from the supraoptic nucleus. Furthermore, oxytocin treatment restored deficits of social recognition in secretin receptor-deficient mice. CONCLUSIONS: The results of our study demonstrate that secretin-induced dendritic oxytocin release from supraoptic neurons enhances social recognition. The newly defined secretin-oxytocin system may lead to a possible treatment for social deficits.


Assuntos
Neurônios/fisiologia , Ocitocina/fisiologia , Reconhecimento Psicológico/fisiologia , Secretina/fisiologia , Comportamento Social , Núcleo Supraóptico/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/ultraestrutura , Animais , Dendritos/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Ocitocina/administração & dosagem , Ocitocina/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/fisiologia , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/fisiologia , Receptores de Ocitocina/genética , Receptores de Ocitocina/fisiologia , Secretina/administração & dosagem , Núcleo Supraóptico/metabolismo
19.
J Diabetes Investig ; 7(4): 497-505, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27181102

RESUMO

AIMS/INTRODUCTION: The involvement of glucose-dependent insulinotropic polypeptide (GIP) on inflammation was explored in atherosclerosis and adipose tissue. Periodontal disease is a chronic inflammatory disease, and is considered one of the diabetic complications. In the present study, to examine the effect of GIP on periodontitis, we induced experimental periodontitis in glucose-dependent insulinotropic polypeptide receptor-knockout mice (GIPRKO). We also investigated the anti-inflammatory effect of GIP in a culture system. MATERIALS AND METHODS: Experimental periodontitis was induced by ligature wire in GIPRKO and C57BL/C mice. Two weeks after the ligature, immunohistological evaluation and inflammatory messenger ribonucleic acid expression in the gingiva was examined. To elucidate the role of GIP in inflammation, the effects of GIP on lipopolysaccharide-induced gene expressions in THP-1 cells were evaluated. RESULTS: Periodontitis increased inflammatory cell infiltration, macrophage accumulation and tumor necrosis factor-α and nitric oxide synthase gene expressions in the gingiva. Periodontitis in GIPRKO showed a marked increase of inflammatory cells in the gingivomucosal tissue. Mac-1-positive macrophages and the inflammatory gene expressions were significantly increased in periodontitis in GIPRKO compared with C57BL/C mice periodontitis. Immunohistochemical staining confirmed that GIP receptors were expressed in residual and infiltrated Mac-1-positive macrophages. The in vitro study showed that GIP suppressed lipopolysaccharide-induced tumor necrosis factor-α and nitric oxide synthase gene expression in a dose-dependent manner. Furthermore, the inhibitory effect of GIP on lipopolysaccharide-induced inflammatory gene expressions was at least partially through cyclic adenosine monophosphate/protein kinase A pathway. CONCLUSIONS: These results suggest the beneficial effects of GIP on periodontal disease. In diabetic patients, GIP is expected to have a direct anti-inflammatory effect on periodontitis in addition to its glucose-lowering effect.


Assuntos
Polipeptídeo Inibidor Gástrico/fisiologia , Periodontite/fisiopatologia , Receptores dos Hormônios Gastrointestinais/fisiologia , Animais , Técnicas de Cultura de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Polipeptídeo Inibidor Gástrico/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Periodontite/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Nat Rev Gastroenterol Hepatol ; 13(1): 38-48, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26392067

RESUMO

The gastrointestinal tract is the major source of the related hormones ghrelin and motilin, which act on structurally similar G protein-coupled receptors. Nevertheless, selective receptor agonists are available. The primary roles of endogenous ghrelin and motilin in the digestive system are to increase appetite or hedonic eating (ghrelin) and initiate phase III of gastric migrating myoelectric complexes (motilin). Ghrelin and motilin also both inhibit nausea. In clinical trials, the motilin receptor agonist camicinal increased gastric emptying, but at lower doses reduced gastroparesis symptoms and improved appetite. Ghrelin receptor agonists have been trialled for the treatment of diabetic gastroparesis because of their ability to increase gastric emptying, but with mixed results; however, relamorelin, a ghrelin agonist, reduced nausea and vomiting in patients with this disorder. Treatment of postoperative ileus with a ghrelin receptor agonist proved unsuccessful. Centrally penetrant ghrelin receptor agonists stimulate defecation in animals and humans, although ghrelin itself does not seem to control colorectal function. Thus, the most promising uses of motilin receptor agonists are the treatment of gastroparesis or conditions with slow gastric emptying, and ghrelin receptor agonists hold potential for the reduction of nausea and vomiting, and the treatment of constipation. Therapeutic, gastrointestinal roles for receptor antagonists or inverse agonists have not been identified.


Assuntos
Fármacos Gastrointestinais/uso terapêutico , Gastroenteropatias/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/efeitos dos fármacos , Receptores de Grelina/efeitos dos fármacos , Receptores de Neuropeptídeos/efeitos dos fármacos , Apetite/efeitos dos fármacos , Apetite/fisiologia , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/fisiopatologia , Esvaziamento Gástrico/efeitos dos fármacos , Esvaziamento Gástrico/fisiologia , Fármacos Gastrointestinais/efeitos adversos , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Grelina/fisiologia , Humanos , Fome/efeitos dos fármacos , Fome/fisiologia , Motilina/fisiologia , Náusea/tratamento farmacológico , Náusea/fisiopatologia , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/fisiologia , Receptores de Grelina/agonistas , Receptores de Grelina/fisiologia , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/fisiologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...