Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54.122
Filtrar
1.
J Am Med Inform Assoc ; 31(8): 1693-1703, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38964369

RESUMO

OBJECTIVE: The aim of this project was to create time-aware, individual-level risk score models for adverse drug events related to multiple sclerosis disease-modifying therapy and to provide interpretable explanations for model prediction behavior. MATERIALS AND METHODS: We used temporal sequences of observational medical outcomes partnership common data model (OMOP CDM) concepts derived from an electronic health record as model features. Each concept was assigned an embedding representation that was learned from a graph convolution network trained on a knowledge graph (KG) of OMOP concept relationships. Concept embeddings were fed into long short-term memory networks for 1-year adverse event prediction following drug exposure. Finally, we implemented a novel extension of the local interpretable model agnostic explanation (LIME) method, knowledge graph LIME (KG-LIME) to leverage the KG and explain individual predictions of each model. RESULTS: For a set of 4859 patients, we found that our model was effective at predicting 32 out of 56 adverse event types (P < .05) when compared to demographics and past diagnosis as variables. We also assessed discrimination in the form of area under the curve (AUC = 0.77 ± 0.15) and area under the precision-recall curve (AUC-PR = 0.31 ± 0.27) and assessed calibration in the form of Brier score (BS = 0.04 ± 0.04). Additionally, KG-LIME generated interpretable literature-validated lists of relevant medical concepts used for prediction. DISCUSSION AND CONCLUSION: Many of our risk models demonstrated high calibration and discrimination for adverse event prediction. Furthermore, our novel KG-LIME method was able to utilize the knowledge graph to highlight concepts that were important to prediction. Future work will be required to further explore the temporal window of adverse event occurrence beyond the generic 1-year window used here, particularly for short-term inpatient adverse events and long-term severe adverse events.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Medição de Risco , Registros Eletrônicos de Saúde , Redes Neurais de Computação , Feminino , Masculino , Pessoa de Meia-Idade , Adulto
2.
PLoS Comput Biol ; 20(7): e1012246, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968324

RESUMO

Animals continuously detect information via multiple sensory channels, like vision and hearing, and integrate these signals to realise faster and more accurate decisions; a fundamental neural computation known as multisensory integration. A widespread view of this process is that multimodal neurons linearly fuse information across sensory channels. However, does linear fusion generalise beyond the classical tasks used to explore multisensory integration? Here, we develop novel multisensory tasks, which focus on the underlying statistical relationships between channels, and deploy models at three levels of abstraction: from probabilistic ideal observers to artificial and spiking neural networks. Using these models, we demonstrate that when the information provided by different channels is not independent, linear fusion performs sub-optimally and even fails in extreme cases. This leads us to propose a simple nonlinear algorithm for multisensory integration which is compatible with our current knowledge of multimodal circuits, excels in naturalistic settings and is optimal for a wide class of multisensory tasks. Thus, our work emphasises the role of nonlinear fusion in multisensory integration, and provides testable hypotheses for the field to explore at multiple levels: from single neurons to behaviour.


Assuntos
Modelos Neurológicos , Dinâmica não Linear , Animais , Algoritmos , Biologia Computacional/métodos , Neurônios/fisiologia , Humanos , Redes Neurais de Computação
3.
Phys Med Biol ; 69(15)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38981593

RESUMO

Objective.Head and neck radiotherapy planning requires electron densities from different tissues for dose calculation. Dose calculation from imaging modalities such as MRI remains an unsolved problem since this imaging modality does not provide information about the density of electrons.Approach.We propose a generative adversarial network (GAN) approach that synthesizes CT (sCT) images from T1-weighted MRI acquisitions in head and neck cancer patients. Our contribution is to exploit new features that are relevant for improving multimodal image synthesis, and thus improving the quality of the generated CT images. More precisely, we propose a Dual branch generator based on the U-Net architecture and on an augmented multi-planar branch. The augmented branch learns specific 3D dynamic features, which describe the dynamic image shape variations and are extracted from different view-points of the volumetric input MRI. The architecture of the proposed model relies on an end-to-end convolutional U-Net embedding network.Results.The proposed model achieves a mean absolute error (MAE) of18.76±5.167in the target Hounsfield unit (HU) space on sagittal head and neck patients, with a mean structural similarity (MSSIM) of0.95±0.09and a Frechet inception distance (FID) of145.60±8.38. The model yields a MAE of26.83±8.27to generate specific primary tumor regions on axial patient acquisitions, with a Dice score of0.73±0.06and a FID distance equal to122.58±7.55. The improvement of our model over other state-of-the-art GAN approaches is of 3.8%, on a tumor test set. On both sagittal and axial acquisitions, the model yields the best peak signal-to-noise ratio of27.89±2.22and26.08±2.95to synthesize MRI from CT input.Significance.The proposed model synthesizes both sagittal and axial CT tumor images, used for radiotherapy treatment planning in head and neck cancer cases. The performance analysis across different imaging metrics and under different evaluation strategies demonstrates the effectiveness of our dual CT synthesis model to produce high quality sCT images compared to other state-of-the-art approaches. Our model could improve clinical tumor analysis, in which a further clinical validation remains to be explored.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Humanos , Imageamento por Ressonância Magnética/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia , Imageamento Tridimensional/métodos , Imagem Multimodal/métodos , Redes Neurais de Computação
4.
Nat Commun ; 15(1): 5983, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013860

RESUMO

Single-cell sequencing is frequently affected by "omission" due to limitations in sequencing throughput, yet bulk RNA-seq may contain these ostensibly "omitted" cells. Here, we introduce the single cell trajectory blending from Bulk RNA-seq (BulkTrajBlend) algorithm, a component of the OmicVerse suite that leverages a Beta-Variational AutoEncoder for data deconvolution and graph neural networks for the discovery of overlapping communities. This approach effectively interpolates and restores the continuity of "omitted" cells within single-cell RNA sequencing datasets. Furthermore, OmicVerse provides an extensive toolkit for both bulk and single cell RNA-seq analysis, offering seamless access to diverse methodologies, streamlining computational processes, fostering exquisite data visualization, and facilitating the extraction of significant biological insights to advance scientific research.


Assuntos
Algoritmos , Análise de Sequência de RNA , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , RNA-Seq/métodos , Redes Neurais de Computação , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
5.
Nat Commun ; 15(1): 5997, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39013885

RESUMO

Cancer is rarely the straightforward consequence of an abnormality in a single gene, but rather reflects a complex interplay of many genes, represented as gene modules. Here, we leverage the recent advances of model-agnostic interpretation approach and develop CGMega, an explainable and graph attention-based deep learning framework to perform cancer gene module dissection. CGMega outperforms current approaches in cancer gene prediction, and it provides a promising approach to integrate multi-omics information. We apply CGMega to breast cancer cell line and acute myeloid leukemia (AML) patients, and we uncover the high-order gene module formed by ErbB family and tumor factors NRG1, PPM1A and DLG2. We identify 396 candidate AML genes, and observe the enrichment of either known AML genes or candidate AML genes in a single gene module. We also identify patient-specific AML genes and associated gene modules. Together, these results indicate that CGMega can be used to dissect cancer gene modules, and provide high-order mechanistic insights into cancer development and heterogeneity.


Assuntos
Neoplasias da Mama , Aprendizado Profundo , Redes Reguladoras de Genes , Leucemia Mieloide Aguda , Redes Neurais de Computação , Humanos , Leucemia Mieloide Aguda/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Neuregulina-1/genética , Neuregulina-1/metabolismo
6.
Sci Rep ; 14(1): 16377, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013976

RESUMO

Accurate forecasting and analysis of emerging pandemics play a crucial role in effective public health management and decision-making. Traditional approaches primarily rely on epidemiological data, overlooking other valuable sources of information that could act as sensors or indicators of pandemic patterns. In this paper, we propose a novel framework, MGLEP, that integrates temporal graph neural networks and multi-modal data for learning and forecasting. We incorporate big data sources, including social media content, by utilizing specific pre-trained language models and discovering the underlying graph structure among users. This integration provides rich indicators of pandemic dynamics through learning with temporal graph neural networks. Extensive experiments demonstrate the effectiveness of our framework in pandemic forecasting and analysis, outperforming baseline methods across different areas, pandemic situations, and prediction horizons. The fusion of temporal graph learning and multi-modal data enables a comprehensive understanding of the pandemic landscape with less time lag, cheap cost, and more potential information indicators.


Assuntos
Big Data , Redes Neurais de Computação , Pandemias , Humanos , Mídias Sociais , COVID-19/epidemiologia , Previsões/métodos
7.
PLoS Comput Biol ; 20(7): e1012257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959262

RESUMO

Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.


Assuntos
Biologia Computacional , Eletromiografia , Movimento , Músculo Esquelético , Eletromiografia/métodos , Humanos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Potenciais de Ação/fisiologia , Modelos Neurológicos
8.
Sci Rep ; 14(1): 16304, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009636

RESUMO

This research paper introduces an efficient approach for the segmentation of active and inactive plaques within Fluid-attenuated inversion recovery (FLAIR) images, employing a convolutional neural network (CNN) model known as DeepLabV3Plus SE with the EfficientNetB0 backbone in Multiple sclerosis (MS), and demonstrates its superior performance compared to other CNN architectures. The study encompasses various critical components, including dataset pre-processing techniques, the utilization of the Squeeze and Excitation Network (SE-Block), and the atrous spatial separable pyramid Block to enhance segmentation capabilities. Detailed descriptions of pre-processing procedures, such as removing the cranial bone segment, image resizing, and normalization, are provided. This study analyzed a cross-sectional cohort of 100 MS patients with active brain plaques, examining 5000 MRI slices. After filtering, 1500 slices were utilized for labeling and deep learning. The training process adopts the dice coefficient as the loss function and utilizes Adam optimization. The study evaluated the model's performance using multiple metrics, including intersection over union (IOU), Dice Score, Precision, Recall, and F1-Score, and offers a comparative analysis with other CNN architectures. Results demonstrate the superior segmentation ability of the proposed model, as evidenced by an IOU of 69.87, Dice Score of 76.24, Precision of 88.89, Recall of 73.52, and F1-Score of 80.47 for the DeepLabV3+SE_EfficientNetB0 model. This research contributes to the advancement of plaque segmentation in FLAIR images and offers a compelling approach with substantial potential for medical image analysis and diagnosis.


Assuntos
Imageamento por Ressonância Magnética , Esclerose Múltipla , Redes Neurais de Computação , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Estudos Transversais , Masculino , Feminino , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Adulto , Pessoa de Meia-Idade
9.
Sci Rep ; 14(1): 16308, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009647

RESUMO

Vertebral compression fractures (VCFs) of the thoracolumbar spine are commonly caused by osteoporosis or result from traumatic events. Early diagnosis of vertebral compression fractures can prevent further damage to patients. When assessing these fractures, plain radiographs are used as the primary diagnostic modality. In this study, we developed a deep learning based fracture detection model that could be used as a tool for primary care in the orthopedic department. We constructed a VCF dataset using 487 lateral radiographs, which included 598 fractures in the L1-T11 vertebra. For detecting VCFs, Mask R-CNN model was trained and optimized, and was compared to three other popular models on instance segmentation, Cascade Mask R-CNN, YOLOACT, and YOLOv5. With Mask R-CNN we achieved highest mean average precision score of 0.58, and were able to locate each fracture pixel-wise. In addition, the model showed high overall sensitivity, specificity, and accuracy, indicating that it detected fractures accurately and without misdiagnosis. Our model can be a potential tool for detecting VCFs from a simple radiograph and assisting doctors in making appropriate decisions in initial diagnosis.


Assuntos
Aprendizado Profundo , Fraturas por Compressão , Fraturas da Coluna Vertebral , Fraturas por Compressão/diagnóstico por imagem , Humanos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/diagnóstico , Feminino , Masculino , Idoso , Vértebras Torácicas/lesões , Vértebras Torácicas/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/lesões , Pessoa de Meia-Idade , Radiografia/métodos , Redes Neurais de Computação
10.
Transl Vis Sci Technol ; 13(7): 15, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023443

RESUMO

Purpose: To train and validate a convolutional neural network to segment nonperfusion areas (NPAs) in multiple retinal vascular plexuses on widefield optical coherence tomography angiography (OCTA). Methods: This cross-sectional study included 202 participants with a full range of diabetic retinopathy (DR) severities (diabetes mellitus without retinopathy, mild to moderate non-proliferative DR, severe non-proliferative DR, and proliferative DR) and 39 healthy participants. Consecutive 6 × 6-mm OCTA scans at the central macula, optic disc, and temporal region in one eye from 202 participants in a clinical DR study were acquired with a 70-kHz OCT commercial system (RTVue-XR). Widefield OCTA en face images were generated by montaging the scans from these three regions. A projection-resolved OCTA algorithm was applied to remove projection artifacts at the voxel scale. A deep convolutional neural network with a parallel U-Net module was designed to detect NPAs and distinguish signal reduction artifacts from flow deficits in the superficial vascular complex (SVC), intermediate capillary plexus (ICP), and deep capillary plexus (DCP). Expert graders manually labeled NPAs and signal reduction artifacts for the ground truth. Sixfold cross-validation was used to evaluate the proposed algorithm on the entire dataset. Results: The proposed algorithm showed high agreement with the manually delineated ground truth for NPA detection in three retinal vascular plexuses on widefield OCTA (mean ± SD F-score: SVC, 0.84 ± 0.05; ICP, 0.87 ± 0.04; DCP, 0.83 ± 0.07). The extrafoveal avascular area in the DCP showed the best sensitivity for differentiating eyes with diabetes but no retinopathy (77%) from healthy controls and for differentiating DR by severity: DR versus no DR, 77%; referable DR (rDR) versus non-referable DR (nrDR), 79%; vision-threatening DR (vtDR) versus non-vision-threatening DR (nvtDR), 60%. The DCP also showed the best area under the receiver operating characteristic curve for distinguishing diabetes from healthy controls (96%), DR versus no DR (95%), and rDR versus nrDR (96%). The three-plexus-combined OCTA achieved the best result in differentiating vtDR and nvtDR (81.0%). Conclusions: A deep learning network can accurately segment NPAs in individual retinal vascular plexuses and improve DR diagnostic accuracy. Translational Relevance: Using a deep learning method to segment nonperfusion areas in widefield OCTA can potentially improve the diagnostic accuracy of diabetic retinopathy by OCT/OCTA systems.


Assuntos
Retinopatia Diabética , Redes Neurais de Computação , Vasos Retinianos , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/diagnóstico , Estudos Transversais , Vasos Retinianos/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Feminino , Angiofluoresceinografia/métodos , Idoso , Algoritmos , Adulto , Aprendizado Profundo
11.
J Transl Med ; 22(1): 658, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010084

RESUMO

INTRODUCTION: Hepatocellular carcinoma (HCC) is characterized by the complex pathogenesis, limited therapeutic methods, and poor prognosis. Endoplasmic reticulum stress (ERS) plays an important role in the development of HCC, therefore, we still need further study of molecular mechanism of HCC and ERS for early diagnosis and promising treatment targets. METHOD: The GEO datasets (GSE25097, GSE62232, and GSE65372) were integrated to identify differentially expressed genes related to HCC (ERSRGs). Random Forest (RF) and Support Vector Machine (SVM) machine learning techniques were applied to screen ERSRGs associated with endoplasmic reticulum stress, and an artificial neural network (ANN) diagnostic prediction model was constructed. The ESTIMATE algorithm was utilized to analyze the correlation between ERSRGs and the immune microenvironment. The potential therapeutic agents for ERSRGs were explored using the Drug Signature Database (DSigDB). The immunological landscape of the ERSRGs central gene PPP1R16A was assessed through single-cell sequencing and cell communication, and its biological function was validated using cytological experiments. RESULTS: An ANN related to the ERS model was constructed based on SRPX, THBS4, CTH, PPP1R16A, CLGN, and THBS1. The area under the curve (AUC) of the model in the training set was 0.979, and the AUC values in three validation sets were 0.958, 0.936, and 0.970, respectively, indicating high reliability and effectiveness. Spearman correlation analysis suggests that the expression levels of ERSRGs are significantly correlated with immune cell infiltration and immune-related pathways, indicating their potential as important targets for immunotherapy. Mometasone was predicted to be the most promising treatment drug based on its highest binding score. Among the six ERSRGs, PPP1R16A had the highest mutation rate, predominantly copy number mutations, which may be the core gene of the ERSRGs model. Single-cell analysis and cell communication indicated that PPP1R16A is predominantly distributed in liver malignant parenchymal cells and may reshape the tumor microenvironment by enhancing macrophage migration inhibitory factor (MIF)/CD74 + CXCR4 signaling pathways. Functional experiments revealed that after siRNA knockdown, the expression of PPP1R16A was downregulated, which inhibited the proliferation, migration, and invasion capabilities of HCCLM3 and Hep3B cells in vitro. CONCLUSION: The consensus of various machine learning algorithms and artificial intelligence neural networks has established a novel predictive model for the diagnosis of liver cancer associated with ERS. This study offers a new direction for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Redes Neurais de Computação , Análise de Célula Única , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Estresse do Retículo Endoplasmático/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral , Imunidade/genética , Bases de Dados Genéticas
12.
PLoS One ; 19(7): e0301692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39012881

RESUMO

Speech enhancement is crucial both for human and machine listening applications. Over the last decade, the use of deep learning for speech enhancement has resulted in tremendous improvement over the classical signal processing and machine learning methods. However, training a deep neural network is not only time-consuming; it also requires extensive computational resources and a large training dataset. Transfer learning, i.e. using a pretrained network for a new task, comes to the rescue by reducing the amount of training time, computational resources, and the required dataset, but the network still needs to be fine-tuned for the new task. This paper presents a novel method of speech denoising and dereverberation (SD&D) on an end-to-end frozen binaural anechoic speech separation network. The frozen network requires neither any architectural change nor any fine-tuning for the new task, as is usually required for transfer learning. The interaural cues of a source placed inside noisy and echoic surroundings are given as input to this pretrained network to extract the target speech from noise and reverberation. Although the pretrained model used in this paper has never seen noisy reverberant conditions during its training, it performs satisfactorily for zero-shot testing (ZST) under these conditions. It is because the pretrained model used here has been trained on the direct-path interaural cues of an active source and so it can recognize them even in the presence of echoes and noise. ZST on the same dataset on which the pretrained network was trained (homo-corpus) for the unseen class of interference, has shown considerable improvement over the weighted prediction error (WPE) algorithm in terms of four objective speech quality and intelligibility metrics. Also, the proposed model offers similar performance provided by a deep learning SD&D algorithm for this dataset under varying conditions of noise and reverberations. Similarly, ZST on a different dataset has provided an improvement in intelligibility and almost equivalent quality as provided by the WPE algorithm.


Assuntos
Ruído , Humanos , Fala , Aprendizado Profundo , Razão Sinal-Ruído , Redes Neurais de Computação , Percepção da Fala/fisiologia , Algoritmos , Processamento de Sinais Assistido por Computador
13.
PLoS Biol ; 22(7): e3002700, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013163

RESUMO

The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales provides a unique perspective on forest ecosystems, forest restoration, and responses to disturbance. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual canopy tree species through labeled data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees across 24 sites in the National Ecological Observatory Network (NEON). Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1 km2 shapefiles with individual tree species prediction, as well as crown location, crown area, and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of 6 species per site, ranging from 3 to 15 species per site. All predictions are openly archived and have been uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. We outline the potential utility and limitations of these data in ecology and computer vision research, as well as strategies for improving predictions using targeted data sampling.


Assuntos
Ecossistema , Florestas , Árvores , Redes Neurais de Computação , Ecologia/métodos
14.
Transl Vis Sci Technol ; 13(7): 13, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39017629

RESUMO

Purpose: Several machine learning studies have used optical coherence tomography (OCT) for multiple sclerosis (MS) classification with promising outcomes. Infrared reflectance scanning laser ophthalmoscopy (IR-SLO) captures high-resolution fundus images, commonly combined with OCT for fixed B-scan positions. However, no machine learning research has utilized IR-SLO images for automated MS diagnosis. Methods: This study utilized a dataset comprised of IR-SLO images and OCT data from Isfahan, Iran, encompassing 32 MS and 70 healthy individuals. A number of convolutional neural networks (CNNs)-namely, VGG-16, VGG-19, ResNet-50, ResNet-101, and a custom architecture-were trained with both IR-SLO images and OCT thickness maps as two separate input datasets. The highest performing models for each modality were then integrated to create a bimodal model that receives the combination of OCT thickness maps and IR-SLO images. Subject-wise data splitting was employed to prevent data leakage among training, validation, and testing sets. Results: Overall, images of the 102 patients from the internal dataset were divided into test, validation, and training subsets. Subsequently, we employed a bootstrapping approach on the training data through iterative sampling with replacement. The performance of the proposed bimodal model was evaluated on the internal test dataset, demonstrating an accuracy of 92.40% ± 4.1% (95% confidence interval [CI], 83.61-98.08), sensitivity of 95.43% ± 5.75% (95% CI, 83.71-100.0), specificity of 92.82% ± 3.72% (95% CI, 81.15-96.77), area under the receiver operating characteristic (AUROC) curve of 96.99% ± 2.99% (95% CI, 86.11-99.78), and area under the precision-recall curve (AUPRC) of 97.27% ± 2.94% (95% CI, 86.83-99.83). Furthermore, to assess the model generalization ability, we examined its performance on an external test dataset following the same bootstrap methodology, achieving promising results, with accuracy of 85.43% ± 0.08% (95% CI, 71.43-100.0), sensitivity of 97.33% ± 0.06% (95% CI, 83.33-100.0), specificity of 84.6% ± 0.10% (95% CI, 71.43-100.0), AUROC curve of 99.67% ± 0.02% (95% CI, 95.63-100.0), and AUPRC of 99.65% ± 0.02% (95% CI, 94.90-100.0). Conclusions: Incorporating both modalities improves the performance of automated diagnosis of MS, showcasing the potential of utilizing IR-SLO as a complementary tool alongside OCT. Translational Relevance: Should the results of our proposed bimodal model be validated in future work with larger and more diverse datasets, diagnosis of MS based on both OCT and IR-SLO can be reliably integrated into routine clinical practice.


Assuntos
Esclerose Múltipla , Redes Neurais de Computação , Oftalmoscopia , Tomografia de Coerência Óptica , Humanos , Tomografia de Coerência Óptica/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla/diagnóstico , Feminino , Oftalmoscopia/métodos , Adulto , Masculino , Curva ROC , Pessoa de Meia-Idade , Aprendizado de Máquina , Raios Infravermelhos
15.
BMC Med Imaging ; 24(1): 174, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009978

RESUMO

Polypharmacy involves an individual using many medications at the same time and is a frequent healthcare technique used to treat complex medical disorders. Nevertheless, it also presents substantial risks of negative medication responses and interactions. Identifying and addressing adverse effects caused by polypharmacy is crucial to ensure patient safety and improve healthcare results. This paper introduces a new method using Graph Convolutional Networks (GCN) to identify polypharmacy side effects. Our strategy involves developing a medicine interaction graph in which edges signify drug-drug intuitive predicated on pharmacological properties and hubs symbolize drugs. GCN is a well-suited profound learning procedure for graph-based representations of social information. It can be used to anticipate the probability of medicate unfavorable impacts and to memorize important representations of sedate intuitive. Tests were conducted on a huge dataset of patients' pharmaceutical records commented on with watched medicate unfavorable impacts in arrange to approve our strategy. Execution of the GCN show, which was prepared on a subset of this dataset, was evaluated through a disarray framework. The perplexity network shows the precision with which the show categories occasions. Our discoveries demonstrate empowering advance within the recognizable proof of antagonistic responses related with polypharmaceuticals. For cardiovascular system target drugs, GCN technique achieved an accuracy of 94.12%, precision of 86.56%, F1-Score of 88.56%, AUC of 89.74% and recall of 87.92%. For respiratory system target drugs, GCN technique achieved an accuracy of 93.38%, precision of 85.64%, F1-Score of 89.79%, AUC of 91.85% and recall of 86.35%. And for nervous system target drugs, GCN technique achieved an accuracy of 95.27%, precision of 88.36%, F1-Score of 86.49%, AUC of 88.83% and recall of 84.73%. This research provides a significant contribution to pharmacovigilance by proposing a data-driven method to detect and reduce polypharmacy side effects, thereby increasing patient safety and healthcare decision-making.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Redes Neurais de Computação , Polimedicação , Humanos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle
16.
BMC Public Health ; 24(1): 1880, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009998

RESUMO

The following article presents an analysis of the impact of the Environmental, Social and Governance-ESG determinants on Hospital Emigration to Another Region-HEAR in the Italian regions in the period 2004-2021. The data are analysed using Panel Data with Random Effects, Panel Data with Fixed Effects, Pooled Ordinary Least Squares-OLS, Weighted Least Squares-WLS, and Dynamic Panel at 1 Stage. Furthermore, to control endogeneity we also created instrumental variable models for each component of the ESG model. Results show that HEAR is negatively associated to the E, S and G component within the ESG model. The data were subjected to clustering with a k-Means algorithm optimized with the Silhouette coefficient. The optimal clustering with k=2 is compared to the sub-optimal cluster with k=3. The results suggest a negative relationship between the resident population and hospital emigration at regional level. Finally, a prediction is proposed with machine learning algorithms classified based on statistical performance. The results show that the Artificial Neural Network-ANN algorithm is the best predictor. The ANN predictions are critically analyzed in light of health economic policy directions.


Assuntos
Hospitais , Itália , Humanos , Hospitais/estatística & dados numéricos , Redes Neurais de Computação , Emigração e Imigração/estatística & dados numéricos , Algoritmos , Meio Ambiente , Análise por Conglomerados
17.
Trop Anim Health Prod ; 56(6): 192, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954103

RESUMO

Accurate breed identification in dairy cattle is essential for optimizing herd management and improving genetic standards. A smart method for correctly identifying phenotypically similar breeds can empower farmers to enhance herd productivity. A convolutional neural network (CNN) based model was developed for the identification of Sahiwal and Red Sindhi cows. To increase the classification accuracy, first, cows's pixels were segmented from the background using CNN model. Using this segmented image, a masked image was produced by retaining cows' pixels from the original image while eliminating the background. To improve the classification accuracy, models were trained on four different images of each cow: front view, side view, grayscale front view, and grayscale side view. The masked images of these views were fed to the multi-input CNN model which predicts the class of input images. The segmentation model achieved intersection-over-union (IoU) and F1-score values of 81.75% and 85.26%, respectively with an inference time of 296 ms. For the classification task, multiple variants of MobileNet and EfficientNet models were used as the backbone along with pre-trained weights. The MobileNet model achieved 80.0% accuracy for both breeds, while MobileNetV2 and MobileNetV3 reached 82.0% accuracy. CNN models with EfficientNet as backbones outperformed MobileNet models, with accuracy ranging from 84.0% to 86.0%. The F1-scores for these models were found to be above 83.0%, indicating effective breed classification with fewer false positives and negatives. Thus, the present study demonstrates that deep learning models can be used effectively to identify phenotypically similar-looking cattle breeds. To accurately identify zebu breeds, this study will reduce the dependence of farmers on experts.


Assuntos
Aprendizado Profundo , Fenótipo , Animais , Bovinos , Cruzamento , Redes Neurais de Computação , Feminino , Indústria de Laticínios/métodos
18.
IEEE J Biomed Health Inform ; 28(7): 3872-3881, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954558

RESUMO

Electroencephalogram (EEG) has been widely utilized in emotion recognition due to its high temporal resolution and reliability. However, the individual differences and non-stationary characteristics of EEG, along with the complexity and variability of emotions, pose challenges in generalizing emotion recognition models across subjects. In this paper, an end-to-end framework is proposed to improve the performance of cross-subject emotion recognition. A novel evolutionary programming (EP)-based optimization strategy with neural network (NN) as the base classifier termed NN ensemble with EP (EPNNE) is designed for cross-subject emotion recognition. The effectiveness of the proposed method is evaluated on the publicly available DEAP, FACED, SEED, and SEED-IV datasets. Numerical results demonstrate that the proposed method is superior to state-of-the-art cross-subject emotion recognition methods. The proposed end-to-end framework for cross-subject emotion recognition aids biomedical researchers in effectively assessing individual emotional states, thereby enabling efficient treatment and interventions.


Assuntos
Eletroencefalografia , Emoções , Processamento de Sinais Assistido por Computador , Humanos , Eletroencefalografia/métodos , Emoções/fisiologia , Redes Neurais de Computação , Aprendizado de Máquina , Algoritmos , Reconhecimento Automatizado de Padrão/métodos , Bases de Dados Factuais , Adulto , Feminino , Masculino
19.
IEEE J Biomed Health Inform ; 28(7): 3997-4009, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954559

RESUMO

Magnetic resonance imaging (MRI)-based deep neural networks (DNN) have been widely developed to perform prostate cancer (PCa) classification. However, in real-world clinical situations, prostate MRIs can be easily impacted by rectal artifacts, which have been found to lead to incorrect PCa classification. Existing DNN-based methods typically do not consider the interference of rectal artifacts on PCa classification, and do not design specific strategy to address this problem. In this study, we proposed a novel Targeted adversarial training with Proprietary Adversarial Samples (TPAS) strategy to defend the PCa classification model against the influence of rectal artifacts. Specifically, based on clinical prior knowledge, we generated proprietary adversarial samples with rectal artifact-pattern adversarial noise, which can severely mislead PCa classification models optimized by the ordinary training strategy. We then jointly exploited the generated proprietary adversarial samples and original samples to train the models. To demonstrate the effectiveness of our strategy, we conducted analytical experiments on multiple PCa classification models. Compared with ordinary training strategy, TPAS can effectively improve the single- and multi-parametric PCa classification at patient, slice and lesion level, and bring substantial gains to recent advanced models. In conclusion, TPAS strategy can be identified as a valuable way to mitigate the influence of rectal artifacts on deep learning models for PCa classification.


Assuntos
Artefatos , Imageamento por Ressonância Magnética , Neoplasias da Próstata , Reto , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Reto/diagnóstico por imagem , Redes Neurais de Computação , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado Profundo
20.
IEEE J Biomed Health Inform ; 28(7): 4170-4183, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38954557

RESUMO

Efficient medical image segmentation aims to provide accurate pixel-wise predictions with a lightweight implementation framework. However, existing lightweight networks generally overlook the generalizability of the cross-domain medical segmentation tasks. In this paper, we propose Generalizable Knowledge Distillation (GKD), a novel framework for enhancing the performance of lightweight networks on cross-domain medical segmentation by generalizable knowledge distillation from powerful teacher networks. Considering the domain gaps between different medical datasets, we propose the Model-Specific Alignment Networks (MSAN) to obtain the domain-invariant representations. Meanwhile, a customized Alignment Consistency Training (ACT) strategy is designed to promote the MSAN training. Based on the domain-invariant vectors in MSAN, we propose two generalizable distillation schemes, Dual Contrastive Graph Distillation (DCGD) and Domain-Invariant Cross Distillation (DICD). In DCGD, two implicit contrastive graphs are designed to model the intra-coupling and inter-coupling semantic correlations. Then, in DICD, the domain-invariant semantic vectors are reconstructed from two networks (i.e., teacher and student) with a crossover manner to achieve simultaneous generalization of lightweight networks, hierarchically. Moreover, a metric named Fréchet Semantic Distance (FSD) is tailored to verify the effectiveness of the regularized domain-invariant features. Extensive experiments conducted on the Liver, Retinal Vessel and Colonoscopy segmentation datasets demonstrate the superiority of our method, in terms of performance and generalization ability on lightweight networks.


Assuntos
Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Redes Neurais de Computação , Bases de Dados Factuais , Aprendizado Profundo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...