Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.357
Filtrar
1.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950937

RESUMO

The capacity to regenerate lost tissues varies significantly among animals. Some phyla, such as the annelids, display substantial regenerating abilities, although little is known about the cellular mechanisms underlying the process. To precisely determine the origin, plasticity and fate of the cells participating in blastema formation and posterior end regeneration after amputation in the annelid Platynereis dumerilii, we developed specific tools to track different cell populations. Using these tools, we find that regeneration is partly promoted by a population of proliferative gut cells whose regenerative potential varies as a function of their position along the antero-posterior axis of the worm. Gut progenitors from anterior differentiated tissues are lineage restricted, whereas gut progenitors from the less differentiated and more proliferative posterior tissues are much more plastic. However, they are unable to regenerate the stem cells responsible for the growth of the worms. Those stem cells are of local origin, deriving from the cells present in the segment abutting the amputation plane, as are most of the blastema cells. Our results favour a hybrid and flexible cellular model for posterior regeneration in Platynereis relying on different degrees of cell plasticity.


Assuntos
Plasticidade Celular , Proliferação de Células , Poliquetos , Regeneração , Animais , Regeneração/fisiologia , Poliquetos/fisiologia , Poliquetos/citologia , Plasticidade Celular/fisiologia , Células-Tronco/citologia , Diferenciação Celular/fisiologia , Anelídeos/fisiologia
2.
J Exp Med ; 221(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38980292

RESUMO

In the vertebrate immune system, thymus stromal microenvironments support the generation of αßT cells from immature thymocytes. Thymic epithelial cells are of particular importance, and the generation of cortical and medullary epithelial lineages from progenitor stages controls the initiation and maintenance of thymus function. Here, we discuss the developmental pathways that regulate thymic epithelial cell diversity during both the embryonic and postnatal periods. We also examine how thymus microenvironments respond to injury, with particular focus on mechanisms that ensure regeneration of thymic epithelial cells for the restoration of thymus function.


Assuntos
Células Epiteliais , Timo , Timo/citologia , Timo/imunologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Animais , Humanos , Diferenciação Celular , Regeneração/fisiologia , Timócitos/citologia , Timócitos/metabolismo , Timócitos/imunologia
3.
Int J Biol Sci ; 20(9): 3530-3543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993551

RESUMO

During muscle regeneration, interferon-gamma (IFN-γ) coordinates inflammatory responses critical for activation of quiescent muscle stem cells upon injury via the Janus kinase (JAK) - signal transducer and activator of transcription 1 (STAT1) pathway. Dysregulation of JAK-STAT1 signaling results in impaired muscle regeneration, leading to muscle dysfunction or muscle atrophy. Until now, the underlying molecular mechanism of how JAK-STAT1 signaling resolves during muscle regeneration remains largely elusive. Here, we demonstrate that epithelial-stromal interaction 1 (Epsti1), an interferon response gene, has a crucial role in regulating the IFN-γ-JAK-STAT1 signaling at early stage of muscle regeneration. Epsti1-deficient mice exhibit impaired muscle regeneration with elevated inflammation response. In addition, Epsti1-deficient myoblasts display aberrant interferon responses. Epsti1 interacts with valosin-containing protein (VCP) and mediates the proteasomal degradation of IFN-γ-activated STAT1, likely contributing to dampening STAT1-mediated inflammation. In line with the notion, mice lacking Epsti1 exhibit exacerbated muscle atrophy accompanied by increased inflammatory response in cancer cachexia model. Our study suggests a crucial function of Epsti1 in the resolution of IFN-γ-JAK-STAT1 signaling through interaction with VCP which provides insights into the unexplored mechanism of crosstalk between inflammatory response and muscle regeneration.


Assuntos
Interferon gama , Regeneração , Fator de Transcrição STAT1 , Fator de Transcrição STAT1/metabolismo , Animais , Camundongos , Regeneração/fisiologia , Interferon gama/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Development ; 151(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39012059

RESUMO

Regeneration is the remarkable phenomenon through which an organism can regrow lost or damaged parts with fully functional replacements, including complex anatomical structures, such as limbs. In 2019, Development launched its 'Model systems for regeneration' collection, a series of articles introducing some of the most popular model organisms for studying regeneration in vivo. To expand this topic further, this Perspective conveys the voices of five expert biologists from the field of regenerative biology, each of whom showcases some less well-known, but equally extraordinary, species for studying regeneration.


Assuntos
Regeneração , Regeneração/fisiologia , Animais , Modelos Biológicos , Humanos , Extremidades/fisiologia
5.
Cells ; 13(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38995004

RESUMO

Dentin pulp has a complex function as a major unit in maintaining the vitality of teeth. In this sense, the Wnt/ß-Catenin pathway has a vital part in tooth development, maintenance, repair, and regeneration by controlling physiological activities such as growth, differentiation, and migration. This pathway consists of a network of proteins, such as Wnt signaling molecules, which interact with receptors of targeted cells and play a role in development and adult tissue homeostasis. The Wnt signals are specific spatiotemporally, suggesting its intricate mechanism in development, regulation, repair, and regeneration by the formation of tertiary dentin. This review provides an overview of the recent advances in the Wnt/ß-Catenin signaling pathway in dentin and pulp regeneration, how different proteins, molecules, and ligands influence this pathway, either upregulating or silencing it, and how it may be used in the future for clinical dentistry, in vital pulp therapy as an effective treatment for dental caries, as an alternative approach for root canal therapy, and to provide a path for therapeutic and regenerative dentistry.


Assuntos
Polpa Dentária , Dentina , Regeneração , Via de Sinalização Wnt , Humanos , Dentina/metabolismo , Polpa Dentária/metabolismo , Regeneração/fisiologia , Animais , beta Catenina/metabolismo
6.
Nat Commun ; 15(1): 5547, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956047

RESUMO

The meninges are critical for the brain functions, but the diversity of meningeal cell types and intercellular interactions have yet to be thoroughly examined. Here we identify a population of meningeal lymphatic supporting cells (mLSCs) in the zebrafish leptomeninges, which are specifically labeled by ependymin. Morphologically, mLSCs form membranous structures that enwrap the majority of leptomeningeal blood vessels and all the mural lymphatic endothelial cells (muLECs). Based on its unique cellular morphologies and transcriptional profile, mLSC is characterized as a unique cell type different from all the currently known meningeal cell types. Because of the formation of supportive structures and production of pro-lymphangiogenic factors, mLSCs not only promote muLEC development and maintain the dispersed distributions of muLECs in the leptomeninges, but also are required for muLEC regeneration after ablation. This study characterizes a newly identified cell type in leptomeninges, mLSC, which is required for muLEC development, maintenance, and regeneration.


Assuntos
Células Endoteliais , Meninges , Peixe-Zebra , Animais , Meninges/citologia , Meninges/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Animais Geneticamente Modificados , Linfangiogênese/fisiologia , Regeneração/fisiologia
7.
Stem Cell Res Ther ; 15(1): 205, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982541

RESUMO

Vascular tissue engineering is a promising approach for regenerating damaged blood vessels and developing new therapeutic approaches for heart disease treatment. To date, different sources of cells have been recognized that offer assistance within the recovery of heart supply routes and veins with distinctive capacities and are compelling for heart regeneration. However, some challenges still remain that need to be overcome to establish the full potential application of these cells. In this paper, we review the different cell sources used for vascular tissue engineering, focusing on extraembryonic tissue-derived cells (ESCs), and elucidate their roles in cardiovascular disease. In addition, we highlight the intricate interplay between mechanical and biochemical factors in regulating mesenchymal stem cell (MSC) differentiation, offering insights into optimizing their application in vascular tissues.


Assuntos
Diferenciação Celular , Células-Tronco Mesenquimais , Regeneração , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Regeneração/fisiologia , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/fisiologia , Vasos Sanguíneos/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia
8.
Circ Res ; 135(2): 353-371, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963865

RESUMO

The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.


Assuntos
Pericárdio , Regeneração , Pericárdio/metabolismo , Pericárdio/citologia , Animais , Humanos , Regeneração/fisiologia , Transdução de Sinais , Miócitos Cardíacos/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(29): e2322864121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976727

RESUMO

Animals capable of whole-body regeneration can replace any missing cell type and regenerate fully functional new organs, including new brains, de novo. The regeneration of a new brain requires the formation of diverse neural cell types and their assembly into an organized structure with correctly wired circuits. Recent work in various regenerative animals has revealed transcriptional programs required for the differentiation of distinct neural subpopulations, however, how these transcriptional programs are initiated in response to injury remains unknown. Here, we focused on the highly regenerative acoel worm, Hofstenia miamia, to study wound-induced transcriptional regulatory events that lead to the production of neurons and subsequently a functional brain. Footprinting analysis using chromatin accessibility data on a chromosome-scale genome assembly revealed that binding sites for the Nuclear Factor Y (NFY) transcription factor complex were significantly bound during regeneration, showing a dynamic increase in binding within one hour upon amputation specifically in tail fragments, which will regenerate a new brain. Strikingly, NFY targets were highly enriched for genes with neuronal function. Single-cell transcriptome analysis combined with functional studies identified soxC+ stem cells as a putative progenitor population for multiple neural subtypes. Further, we found that wound-induced soxC expression is likely under direct transcriptional control by NFY, uncovering a mechanism for the initiation of a neural differentiation pathway by early wound-induced binding of a transcriptional regulator.


Assuntos
Diferenciação Celular , Neurônios , Animais , Neurônios/metabolismo , Neurônios/citologia , Regeneração/fisiologia , Regeneração/genética , Encéfalo/metabolismo , Encéfalo/citologia
10.
J Orthop Surg Res ; 19(1): 382, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943181

RESUMO

BACKGROUND: Tendon stem/progenitor cell (TSPC) senescence contributes to tendon degeneration and impaired tendon repair, resulting in age-related tendon disorders. Ferroptosis, a unique iron-dependent form of programmed cell death, might participate in the process of senescence. However, whether ferroptosis plays a role in TSPC senescence and tendon regeneration remains unclear. Recent studies reported that Platelet-derived exosomes (PL-Exos) might provide significant advantages in musculoskeletal regeneration and inflammation regulation. The effects and mechanism of PL-Exos on TSPC senescence and tendon regeneration are worthy of further study. METHODS: Herein, we examined the role of ferroptosis in the pathogenesis of TSPC senescence. PL-Exos were isolated and determined by TEM, particle size analysis, western blot and mass spectrometry identification. We investigated the function and underlying mechanisms of PL-Exos in TSPC senescence and ferroptosis via western blot, real-time quantitative polymerase chain reaction, and immunofluorescence analysis in vitro. Tendon regeneration was evaluated by HE staining, Safranin-O staining, and biomechanical tests in a rotator cuff tear model in rats. RESULTS: We discovered that ferroptosis was involved in senescent TSPCs. Furthermore, PL-Exos mitigated the aging phenotypes and ferroptosis of TSPCs induced by t-BHP and preserved their proliferation and tenogenic capacity. The in vivo animal results indicated that PL-Exos improved tendon-bone healing properties and mechanical strength. Mechanistically, PL-Exos activated AMPK phosphorylation and the downstream nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway, leading to the suppression of lipid peroxidation. AMPK inhibition or GPX4 inhibition blocked the protective effect of PL-Exos against t-BHP-induced ferroptosis and senescence. CONCLUSION: In conclusion, ferroptosis might play a crucial role in TSPC aging. AMPK/Nrf2/GPX4 activation by PL-Exos was found to inhibit ferroptosis, consequently leading to the suppression of senescence in TSPCs. Our results provided new theoretical evidence for the potential application of PL-Exos to restrain tendon degeneration and promote tendon regeneration.


Assuntos
Proteínas Quinases Ativadas por AMP , Senescência Celular , Exossomos , Ferroptose , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Regeneração , Transdução de Sinais , Células-Tronco , Tendões , Animais , Ferroptose/fisiologia , Exossomos/metabolismo , Exossomos/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Senescência Celular/fisiologia , Ratos , Transdução de Sinais/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Regeneração/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Tendões/metabolismo , Tendões/fisiologia , Masculino , Plaquetas/metabolismo , Ratos Sprague-Dawley , Lesões do Manguito Rotador/metabolismo , Lesões do Manguito Rotador/terapia , Lesões do Manguito Rotador/patologia , Modelos Animais de Doenças
12.
Elife ; 132024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828844

RESUMO

Muscle regeneration is a complex process due to dynamic and multiscale biochemical and cellular interactions, making it difficult to identify microenvironmental conditions that are beneficial to muscle recovery from injury using experimental approaches alone. To understand the degree to which individual cellular behaviors impact endogenous mechanisms of muscle recovery, we developed an agent-based model (ABM) using the Cellular-Potts framework to simulate the dynamic microenvironment of a cross-section of murine skeletal muscle tissue. We referenced more than 100 published studies to define over 100 parameters and rules that dictate the behavior of muscle fibers, satellite stem cells (SSCs), fibroblasts, neutrophils, macrophages, microvessels, and lymphatic vessels, as well as their interactions with each other and the microenvironment. We utilized parameter density estimation to calibrate the model to temporal biological datasets describing cross-sectional area (CSA) recovery, SSC, and fibroblast cell counts at multiple timepoints following injury. The calibrated model was validated by comparison of other model outputs (macrophage, neutrophil, and capillaries counts) to experimental observations. Predictions for eight model perturbations that varied cell or cytokine input conditions were compared to published experimental studies to validate model predictive capabilities. We used Latin hypercube sampling and partial rank correlation coefficient to identify in silico perturbations of cytokine diffusion coefficients and decay rates to enhance CSA recovery. This analysis suggests that combined alterations of specific cytokine decay and diffusion parameters result in greater fibroblast and SSC proliferation compared to individual perturbations with a 13% increase in CSA recovery compared to unaltered regeneration at 28 days. These results enable guided development of therapeutic strategies that similarly alter muscle physiology (i.e. converting extracellular matrix [ECM]-bound cytokines into freely diffusible forms as studied in cancer therapeutics or delivery of exogenous cytokines) during regeneration to enhance muscle recovery after injury.


Assuntos
Músculo Esquelético , Regeneração , Animais , Regeneração/fisiologia , Camundongos , Músculo Esquelético/fisiologia , Músculo Esquelético/metabolismo , Citocinas/metabolismo , Modelos Biológicos , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Macrófagos/metabolismo
13.
Front Endocrinol (Lausanne) ; 15: 1397783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846497

RESUMO

Objective: Various stem cell-loaded scaffolds have demonstrated promising endometrial regeneration and fertility restoration. This study aimed to evaluate the efficacy of stem cell-loaded scaffolds in treating uterine injury in animal models. Methods: The PubMed, Embase, Scopus, and Web of Science databases were systematically searched. Data were extracted and analyzed using Review Manager version 5.4. Improvements in endometrial thickness, endometrial glands, fibrotic area, and number of gestational sacs/implanted embryos were compared after transplantation in the stem cell-loaded scaffolds and scaffold-only group. The standardized mean difference (SMD) and confidence interval (CI) were calculated using forest plots. Results: Thirteen studies qualified for meta-analysis. Overall, compared to the scaffold groups, stem cell-loaded scaffolds significantly increased endometrial thickness (SMD = 1.99, 95% CI: 1.54 to 2.44, P < 0.00001; I² = 16%) and the number of endometrial glands (SMD = 1.93, 95% CI: 1.45 to 2.41, P < 0.00001; I² = 0). Moreover, stem cell-loaded scaffolds present a prominent effect on improving fibrosis area (SMD = -2.50, 95% CI: -3.07 to -1.93, P < 0.00001; I² = 36%) and fertility (SMD = 3.34, 95% CI: 1.58 to 5.09, P = 0.0002; I² = 83%). Significant heterogeneity among studies was observed, and further subgroup and sensitivity analyses identified the source of heterogeneity. Moreover, stem cell-loaded scaffolds exhibited lower inflammation levels and higher angiogenesis, and cell proliferation after transplantation. Conclusion: The evidence indicates that stem cell-loaded scaffolds were more effective in promoting endometrial repair and restoring fertility than the scaffold-only groups. The limitations of the small sample sizes should be considered when interpreting the results. Thus, larger animal studies and clinical trials are needed for further investigation. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024493132.


Assuntos
Endométrio , Regeneração , Alicerces Teciduais , Feminino , Endométrio/fisiologia , Endométrio/citologia , Regeneração/fisiologia , Alicerces Teciduais/química , Animais , Humanos , Fertilidade/fisiologia , Células-Tronco/citologia , Infertilidade Feminina/terapia , Transplante de Células-Tronco/métodos
14.
J Orthop Surg Res ; 19(1): 377, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926735

RESUMO

BACKGROUND: Achilles tendon is vital in maintaining the stability and function of ankle joint. It is quite difficult to achieve the structural and functional repair of Achilles tendon in tissue engineering. METHODS: A tissue-engineered tendon micro-tissue was prepared using rat tail tendon extracellular matrix (TECM) combined with rat adipose stem cells (ADSCs) to repair Achilles tendon injuries. The TECM was prepared by repeated freezing and thawing. The in vitro characteristics of TECM and its effect on ADSCs proliferation were detected. This tissue-engineered tendon micro-tissue for Achilles tendon repair in vivo was evaluated based on general characteristics, gait analysis, ultrasound findings, histological analysis, and biomechanical testing. RESULTS: The results showed that the TECM scaffold had good biocompatibility for ADSCs. At 2 weeks post-surgery, collagen types I and III and tenomodulin expression were higher, and vascular endothelial growth factor expression was lower in the micro-tissue group than other groups. At 4 and 8 weeks post-surgery, the results of histological analysis and ultrasound findings showed that the repaired tendon tissue was smooth and lustrous, and was arranged regularly and evenly in the micro-tissue group. Gait analysis confirmed that better motor function recovery was noted in micro-tissue group than other groups. In addition, the mechanical properties of the repaired tendon tissue in micro-tissue group were better than other groups. CONCLUSION: Tissue-engineered tendon micro-tissue fabricated by TECM and ADSCs has good biocompatibility and can promote structural and functional repair of tendon in vivo. This composite biomaterial has broad application prospects in tissue engineering.


Assuntos
Tendão do Calcâneo , Matriz Extracelular , Ratos Sprague-Dawley , Regeneração , Traumatismos dos Tendões , Engenharia Tecidual , Alicerces Teciduais , Animais , Engenharia Tecidual/métodos , Tendão do Calcâneo/lesões , Tendão do Calcâneo/fisiologia , Traumatismos dos Tendões/terapia , Regeneração/fisiologia , Ratos , Masculino , Tecido Adiposo/citologia
15.
J Biomech ; 171: 112174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38852483

RESUMO

We have studied wound contraction in three model wounds in animals: excised skin (guinea pig), transected peripheral nerve (rat) and the excised conjunctiva (rabbit). Wound contraction is driven by myofibroblasts bound together by adherens junctions (AJ) that confer cooperative activity to myofibroblasts during wound contraction and synthesis of scar. Grafting with the dermis regeneration template (DRT) cancels cell cooperativity by abolishing AJ connections in myofibroblasts, while also cancelling wound contraction, preventing synthesis of scar and inducing regeneration of excised tissues. The observed definitive prevention of scar synthesis suggests the exploration of DRT scaffolds to regenerate tissues in several other organs and to prevent fibrosis in humans.


Assuntos
Miofibroblastos , Regeneração , Cicatrização , Animais , Ratos , Regeneração/fisiologia , Miofibroblastos/fisiologia , Cicatrização/fisiologia , Coelhos , Comunicação Celular/fisiologia , Junções Aderentes/fisiologia , Cicatriz/fisiopatologia
16.
Sci China Life Sci ; 67(7): 1338-1367, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833085

RESUMO

Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.


Assuntos
Arabidopsis , Biotecnologia , Regeneração , Regeneração/genética , Regeneração/fisiologia , Biotecnologia/métodos , Arabidopsis/genética , Arabidopsis/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Epigênese Genética , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo
18.
Int J Med Sci ; 21(8): 1529-1540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903926

RESUMO

Introduction: Skin, being the body's largest organ, is susceptible to injuries. Despite the adoption of common treatments such as debridement, wound dressing, and infection control measures for skin injuries, the outcomes remain unsatisfactory, especially in diabetic patients or elderly patients. The use of adipose stem cell-derived apoptotic extracellular vesicles (apoEVs-ASCs) has been shown great therapeutic potential in wound repair. The effect of the donor age on the biological properties and functions of apoEVs-ASCs has not been reported. Methods: In this study, we isolated apoEVs-ASCs from young and aged rats. Transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) were applied for the characteristics of apoEVs-ASCs. For aged and young apoEVs-ASCs groups, the proliferative and migration abilities in vitro, and wound healing function in vivo were contrastively evaluated and quantified for statistical analysis. Results: Our results showed that both young and aged apoEVs-ASCs induced skin healing and reduced scar formation. In addition, young apoEVs-ASCs had significantly higher proliferation, migration of fibroblasts and endothelial cells, and increased neo-angiogenesis ability, when compared with that of aged apoEVs-ASCs. Conclusion: Young apoEVs-ASCs should be employed for wound repair, which is associated with its superior promoting effect on wound healing.


Assuntos
Apoptose , Proliferação de Células , Vesículas Extracelulares , Pele , Cicatrização , Animais , Cicatrização/fisiologia , Vesículas Extracelulares/transplante , Vesículas Extracelulares/metabolismo , Ratos , Pele/lesões , Pele/patologia , Tecido Adiposo/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Humanos , Masculino , Movimento Celular , Fatores Etários , Regeneração/fisiologia , Ratos Sprague-Dawley
19.
Development ; 151(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38895963

RESUMO

The sixth SY-Stem Symposium, jointly organized by the Research Institute of Molecular Pathology and the Institute of Molecular Biotechnology took place in Vienna in March 2024. Again, aspiring new group leaders were given a stage to present their work and vision of their labs. To round up the excellent program, the scientific organizers included renowned keynote speakers. Here, we provide a summary of the talks covering topics such as early embryogenesis, nervous system development and disease, regeneration and the latest technologies.


Assuntos
Desenvolvimento Embrionário , Humanos , Animais , Regeneração/fisiologia , Células-Tronco/citologia , Sistema Nervoso/embriologia , Diferenciação Celular
20.
J Vis Exp ; (207)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38884461

RESUMO

Craniofacial volumetric muscle loss (VML) injuries can occur as a result of severe trauma, surgical excision, inflammation, and congenital or other acquired conditions. Treatment of craniofacial VML involves surgical, functional muscle transfer. However, these procedures are unable to restore normal function, sensation, or expression, and more commonly, these conditions go untreated. Very little research has been conducted on skeletal muscle regeneration in animal models of craniofacial VML. This manuscript describes a rat model for the study of craniofacial VML injury and a protocol for the histological evaluation of biomaterials in the treatment of these injuries. Liquid hydrogel and freeze-dried scaffolds are applied at the time of surgical VML creation, and masseters are excised at terminal time points up to 12 weeks with high retention rates and negligible complications. Hematoxylin and eosin (HE), Masson's Trichrome, and immunohistochemical analysis are used to evaluate parameters of skeletal muscle regeneration as well as biocompatibility and immunomodulation. While we demonstrate the study of a hyaluronic-acid-based hydrogel, this model provides a means for evaluating subsequent iterations of materials in VML injuries.


Assuntos
Modelos Animais de Doenças , Hidrogéis , Músculo Masseter , Animais , Ratos , Músculo Masseter/patologia , Hidrogéis/química , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Regeneração/fisiologia , Ratos Sprague-Dawley , Bioengenharia/métodos , Ácido Hialurônico/química , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...