Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.613
Filtrar
1.
Biotechnol J ; 19(6): e2400082, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38896412

RESUMO

Saccharomyces cerevisiae is important for protein secretion studies, yet the complexities of protein synthesis and secretion under endoplasmic reticulum (ER) stress conditions remain not fully understood. ER stress, triggered by alterations in the ER protein folding environment, poses substantial challenges to cells, especially during heterologous protein production. In this study, we used RNA-seq to analyze the transcriptional responses of yeast strains to ER stress induced by reagents such as tunicamycin (Tm) or dithiothreitol (DTT). Our gene expression analysis revealed several crucial genes, such as HMO1 and BIO5, that are involved in ER-stress tolerance. Through metabolic engineering, the best engineered strain R23 with HMO1 overexpression and BIO5 deletion, showed enhanced ER stress tolerance and improved protein folding efficiency, leading to a 2.14-fold increase in α-amylase production under Tm treatment and a 2.04-fold increase in cell density under DTT treatment. Our findings contribute to the understanding of cellular responses to ER stress and provide a basis for further investigations into the mechanisms of ER stress at the cellular level.


Assuntos
Estresse do Retículo Endoplasmático , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Tunicamicina , Estresse do Retículo Endoplasmático/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tunicamicina/farmacologia , Regulação Fúngica da Expressão Gênica/genética , Ditiotreitol/farmacologia , Engenharia Metabólica/métodos , Dobramento de Proteína
2.
Fungal Genet Biol ; 172: 103897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750926

RESUMO

Long Terminal Repeat (LTR) retrotransposons are a class of repetitive elements that are widespread in the genomes of plants and many fungi. LTR retrotransposons have been associated with rapidly evolving gene clusters in plants and virulence factor transfer in fungal-plant parasite-host interactions. We report here the abundance and transcriptional activity of LTR retrotransposons across several species of the early-branching Neocallimastigomycota, otherwise known as the anaerobic gut fungi (AGF). The ubiquity of LTR retrotransposons in these genomes suggests key evolutionary roles in these rumen-dwelling biomass degraders, whose genomes also contain many enzymes that are horizontally transferred from other rumen-dwelling prokaryotes. Up to 10% of anaerobic fungal genomes consist of LTR retrotransposons, and the mapping of sequences from LTR retrotransposons to transcriptomes shows that the majority of clusters are transcribed, with some exhibiting expression greater than 104 reads per kilobase million mapped reads (rpkm). Many LTR retrotransposons are strongly differentially expressed upon heat stress during fungal cultivation, with several exhibiting a nearly three-log10 fold increase in expression, whereas growth substrate variation modulated transcription to a lesser extent. We show that some LTR retrotransposons contain carbohydrate-active enzymes (CAZymes), and the expansion of CAZymes within genomes and among anaerobic fungal species may be linked to retrotransposon activity. We further discuss how these widespread sequences may be a source of promoters and other parts towards the bioengineering of anaerobic fungi.


Assuntos
Genoma Fúngico , Retroelementos , Sequências Repetidas Terminais , Retroelementos/genética , Sequências Repetidas Terminais/genética , Genoma Fúngico/genética , Anaerobiose/genética , Neocallimastigomycota/genética , Regulação Fúngica da Expressão Gênica/genética , Filogenia , Transcrição Gênica , Transcriptoma/genética
3.
Fungal Genet Biol ; 172: 103894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657897

RESUMO

Inactivation of flbA in Aspergillus niger results in thinner cell walls, increased cell lysis, abolished sporulation, and an increased secretome complexity. A total of 36 transcription factor (TF) genes are differentially expressed in ΔflbA. Here, seven of these genes (abaA, aslA, aslB, azf1, htfA, nosA, and srbA) were inactivated. Inactivation of each of these genes affected sporulation and, with the exception of abaA, cell wall integrity and protein secretion. The impact on secretion was strongest in the case of ΔaslA and ΔaslB that showed increased pepsin, cellulase, and amylase activity. Biomass was reduced of agar cultures of ΔabaA, ΔaslA, ΔnosA, and ΔsrbA, while biomass was higher in liquid shaken cultures of ΔaslA and ΔaslB. The ΔaslA and ΔhtfA strains showed increased resistance to H2O2, while ΔaslB was more sensitive to this reactive oxygen species. Together, inactivation of the seven TF genes impacted biomass formation, sporulation, protein secretion, and stress resistance, and thereby these genes explain at least part of the pleiotropic phenotype of ΔflbA of A. niger.


Assuntos
Aspergillus niger , Parede Celular , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fenótipo , Esporos Fúngicos , Fatores de Transcrição , Aspergillus niger/genética , Aspergillus niger/metabolismo , Aspergillus niger/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Parede Celular/metabolismo , Parede Celular/genética , Peróxido de Hidrogênio/farmacologia , Pleiotropia Genética
4.
Fungal Genet Biol ; 172: 103890, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38503389

RESUMO

A sporeless strain is an important breeding target in the mushroom industry. However, basidiospore production in the oyster mushroom Pleurotus ostreatus has been shown to be impaired by single-gene mutations in only two meiosis-related genes, mer3 and msh4. This study proposed a strategy for identifying the genes essential for basidiospore formation after meiotic division to determine new targets for molecular breeding. RNA-seq analysis was performed to identify P. ostreatus genes that are specifically expressed in the gill tissue of fruiting bodies, where basidiospore formation occurs. Transcriptome data during fruiting development of Coprinopsis cinerea, in which the meiotic steps progress synchronously, were then used to identify genes that are active in the postmeiotic stages. Based on these comparative analyses, five P. ostreatus genes were identified. Plasmids containing expression cassettes for hygromycin B-resistance screening, Cas9, and single-guide RNA targeting each gene were introduced into the protoplasts of dikaryotic strain, PC9×#64, to generate dikaryotic gene disruptants. Among the obtained transformants, three dikaryotic pcl1 disruptants and two cro6c disruptants did not produce basidiospores. Microscopic analyses indicated that spore formation was arrested at particular stages in these gene disruptants. These results indicate that these two genes are essential for mature spore formation in this fungus.


Assuntos
Carpóforos , Meiose , Pleurotus , Esporos Fúngicos , Pleurotus/genética , Pleurotus/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Meiose/genética , Carpóforos/genética , Carpóforos/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Genes Essenciais/genética , Transcriptoma/genética
5.
Fungal Genet Biol ; 171: 103865, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38246260

RESUMO

As a prevalent pathogenic fungus, Aspergillus westerdijkiae poses a threat to both food safety and human health. The fungal growth, conidia production and ochratoxin A (OTA) in A. weterdijkiae are regulated by many factors especially transcription factors. In this study, a transcription factor AwSclB in A. westerdijkiae was identified and its function in asexual sporulation and OTA biosynthesis was investigated. In addition, the effect of light control on AwSclB regulation was also tested. The deletion of AwSclB gene could reduce conidia production by down-regulation of conidia genes and increase OTA biosynthesis by up-regulation of cluster genes, regardless under light or dark conditions. It is worth to note that the inhibitory effect of light on OTA biosynthesis was reversed by the knockout of AwSclB gene. The yeast one-hybrid assay indicated that AwSclB could interact with the promoters of BrlA, ConJ and OtaR1 genes. This result suggests that AwSclB in A. westerdijkiae can directly regulate asexual conidia formation by activating the central developmental pathway BrlA-AbaA-WetA through up-regulating the expression of AwBrlA, and promote the light response of the strain by activating ConJ. However, AwSclB itself is unable to respond to light regulation. This finding will deepen our understanding of the molecular regulation of A. westerdijkiae development and secondary metabolism, and provide potential targets for the development of new fungicides.


Assuntos
Aspergillus , Fatores de Transcrição , Humanos , Metabolismo Secundário/genética , Aspergillus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética
6.
Mol Microbiol ; 120(5): 645-657, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37525511

RESUMO

In the fission yeast Schizosaccharomyces pombe, the duration of survival in the stationary phase, termed the chronological lifespan (CLS), is affected by various environmental factors and the corresponding gene activities. The ecl family genes were identified in the genomic region encoding non-coding RNA as positive regulators of CLS in S. pombe, and subsequently shown to encode relatively short proteins. Several studies revealed that ecl family genes respond to various nutritional starvation conditions via different mechanisms, and they are additionally involved in stress resistance, autophagy, sexual differentiation, and cell cycle control. Recent studies reported that Ecl family proteins strongly suppress target of rapamycin complex 1, which is a conserved eukaryotic nutrient-sensing kinase complex that also regulates longevity in a variety of organisms. In this review, we introduce the regulatory mechanisms of Ecl family proteins and discuss their emerging findings.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Longevidade/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ciclo Celular , Regulação Fúngica da Expressão Gênica/genética
7.
Int J Mol Sci ; 24(13)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37446163

RESUMO

Fusarium pseudograminearum is one of the major fungal pathogens that cause Fusarium crown rot (FCR) worldwide and can lead to a substantially reduced grain yield and quality. Transcription factors play an important role in regulating growth and pathogenicity in plant pathogens. In this study, we identified a putative Zn(II)2Cys6 fungal-type domain-containing transcription factor and named it FpUme18. The expression of FpUME18 was induced during the infection of wheat by F. pseudograminearum. The ΔFpume18 deletion mutant showed defects in growth, conidial production, and conidial germination. In the responses to the cell wall, salt and oxidative stresses, the ΔFpume18 mutant inhibited the rate of mycelial growth at a higher rate compared with the wild type. The staining of conidia and mycelia with lipophilic dye FM4-64 revealed a delay in endocytosis when FpUME18 was deleted. FpUME18 also positively regulated the expression of phospholipid-related synthesis genes. The deletion of FpUME18 attenuated the pathogenicity of wheat coleoptiles. FpUME18 also participated in the production of the DON toxin by regulating the expression of TRI genes. Collectively, FpUme18 is required for vegetative growth, conidiation, stress response, endocytosis, and full virulence in F. pseudograminearum.


Assuntos
Fusarium , Parede Celular/genética , Endocitose/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/patogenicidade , Regulação Fúngica da Expressão Gênica/genética , Doenças das Plantas/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Virulência/genética , Esporos Fúngicos/genética , Deleção de Sequência/genética
8.
J Biol Chem ; 299(9): 105092, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507017

RESUMO

In budding yeast cells, much of the inner surface of the plasma membrane (PM) is covered with the endoplasmic reticulum (ER). This association is mediated by seven ER membrane proteins that confer cortical ER-PM association at membrane contact sites (MCSs). Several of these membrane "tether" proteins are known to physically interact with the phosphoinositide phosphatase Sac1p. However, it is unclear how or if these interactions are necessary for their interdependent functions. We find that SAC1 inactivation in cells lacking the homologous synaptojanin-like genes INP52 and INP53 results in a significant increase in cortical ER-PM MCSs. We show in sac1Δ, sac1tsinp52Δ inp53Δ, or Δ-super-tether (Δ-s-tether) cells lacking all seven ER-PM tethering genes that phospholipid biosynthesis is disrupted and phosphoinositide distribution is altered. Furthermore, SAC1 deletion in Δ-s-tether cells results in lethality, indicating a functional overlap between SAC1 and ER-PM tethering genes. Transcriptomic profiling indicates that SAC1 inactivation in either Δ-s-tether or inp52Δ inp53Δ cells induces an ER membrane stress response and elicits phosphoinositide-dependent changes in expression of autophagy genes. In addition, by isolating high-copy suppressors that rescue sac1Δ Δ-s-tether lethality, we find that key phospholipid biosynthesis genes bypass the overlapping function of SAC1 and ER-PM tethers and that overexpression of the phosphatidylserine/phosphatidylinositol-4-phosphate transfer protein Osh6 also provides limited suppression. Combined with lipidomic analysis and determinations of intracellular phospholipid distributions, these results suggest that Sac1p and ER phospholipid flux controls lipid distribution to drive Osh6p-dependent phosphatidylserine/phosphatidylinositol-4-phosphate counter-exchange at ER-PM MCSs.


Assuntos
Membrana Celular , Fosfatases de Fosfoinositídeos , Proteínas de Saccharomyces cerevisiae , Membrana Celular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Fosfatases de Fosfoinositídeos/genética , Fosfatases de Fosfoinositídeos/metabolismo , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Inativação Gênica , Autofagia/genética , Transcriptoma , Regulação Fúngica da Expressão Gênica/genética , Membranas Intracelulares/metabolismo
9.
ACS Synth Biol ; 12(6): 1859-1867, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37224271

RESUMO

Galactose-inducible (GAL) promoters have been widely used in metabolic engineering in Saccharomyces cerevisiae for production of valuable products. Endogenous GAL promoters and GAL transcription factors have often been engineered to improve GAL promoter activities. Heterologous GAL promoters and GAL activator (Gal4p-like transcriptional activators), although existing in other yeasts or fungi, have not been well explored. In this study, we comprehensively characterized the activation effects of Gal4p activators from different yeasts or fungi on a variant of GAL promoters. Overexpressing endogenous Gal4p driven by PHHF1 increased the activities of native PGAL1 and heterologous PSkGAL2 by 131.20% and 72.45%, respectively. Furthermore, eight transcriptional activators from different organisms were characterized and most of them exhibited functions that were consistent with ScGal4p. Expression of KlLac9p from Kluyveromyces lactis further increased the activity of PScGAL1 and PSkGAL2 by 41.56% and 100.63%, respectively, compared to ScGal4p expression, and was able to evade Gal80p inhibition. This optimized GAL expression system can be used to increase the production of ß-carotene by 9.02-fold in S. cerevisiae. Our study demonstrated that a combination of heterologous transcriptional activators and GAL promoters provided novel insights into the optimization of the GAL expression system.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Galactose/metabolismo , Regulação Fúngica da Expressão Gênica/genética
10.
J Biol Chem ; 299(5): 104647, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965615

RESUMO

Calcium is ubiquitously present in all living cells and plays important regulatory roles in a wide variety of biological processes. In yeast, many effects of calcium are mediated via the action of calcineurin, a calcium/calmodulin-dependent protein phosphatase. Proper signaling of calcium and calcineurin is important in yeast, and the calcineurin pathway has emerged as a valuable target for developing novel antifungal drugs. Here, we report a role of YDL206W in calcium and calcineurin signaling in yeast. YDL206W is an uncharacterized gene in yeast, encoding a protein with two sodium/calcium exchange domains. Disrupting the YDL206W gene leads to a diminished level of calcium-induced activation of calcineurin and a reduced accumulation of cytosolic calcium. Consistent with a role of calcineurin in regulating pheromone and cell wall integrity signaling, the ydl206wΔ mutants display an enhanced growth arrest induced by pheromone treatment and poor growth at elevated temperature. Subcellular localization studies indicate that YDL206W is localized in endoplasmic reticulum and Golgi. Together, our results reveal YDL206W as a new regulator for calcineurin signaling in yeast and suggest a role of the endoplasmic reticulum and Golgi in regulating cytosolic calcium in yeast.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Transdução de Sinais , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Quitina/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/genética
11.
Mol Microbiol ; 119(1): 126-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36537557

RESUMO

In dimorphic fungi, the yeast-to-filament transition critical for cell survival under nutrient starvation is controlled by both activators and repressors. However, very few filamentation repressors are known. Here we report that, in the dimorphic yeast Yarrowia lipolytica, the conserved transcription factor YlNrg1 plays a minor role whereas Fts1, a newly identified Zn(II)2 Cys6 zinc cluster transcription factor, plays a key role in filamentation repression. FTS1 deletion caused hyperfilamentation whereas Fts1 overexpression drastically reduced filamentation. The expression of FTS1 is downregulated substantially during the yeast-to-filament transition. Transcriptome sequencing revealed that Fts1 represses 401 genes, including the filamentation-activating transcription factor genes MHY1, YlAZF1, and YlWOR4 and key cell wall protein genes. Tup1-Ssn6, a general transcriptional corepressor, is involved in the repression of many cellular functions in fungi. We show that both YlTup1 and YlSsn6 strongly repress filamentation in Y. lipolytica. YlTup1 and YlSsn6 together repress 1383 genes, including a large number of transcription factor and cell wall protein genes, which overlap substantially with Fts1-repressed genes. Fts1 interacts with both YlTup1 and YlSsn6, and LexA-Fts1 fusion represses a lexAop-promoter-lacZ reporter in a Tup1-Ssn6-dependent manner. Our findings suggest that Fts1 functions as a transcriptional repressor, directing the repression of target genes through the Tup1-Ssn6 corepressor.


Assuntos
Yarrowia , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
12.
PLoS Comput Biol ; 18(10): e1010640, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36256678

RESUMO

Cells must continuously adjust to changing environments and, thus, have evolved mechanisms allowing them to respond to repeated stimuli. While faster gene induction upon a repeated stimulus is known as reinduction memory, responses to repeated repression have been less studied so far. Here, we studied gene repression across repeated carbon source shifts in over 1,500 single Saccharomyces cerevisiae cells. By monitoring the expression of a carbon source-responsive gene, galactokinase 1 (Gal1), and fitting a mathematical model to the single-cell data, we observed a faster response upon repeated repressions at the population level. Exploiting our single-cell data and quantitative modeling approach, we discovered that the faster response is mediated by a shortened repression response delay, the estimated time between carbon source shift and Gal1 protein production termination. Interestingly, we can exclude two alternative hypotheses, i) stronger dilution because of e.g., increased proliferation, and ii) a larger fraction of repressing cells upon repeated repressions. Collectively, our study provides a quantitative description of repression kinetics in single cells and allows us to pinpoint potential mechanisms underlying a faster response upon repeated repression. The computational results of our study can serve as the starting point for experimental follow-up studies.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Fungal Genet Biol ; 163: 103731, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36087858

RESUMO

SreA has been identified as a GATA-type transcription factor that represses iron uptake to avoid iron excess during iron sufficiency. However, knowledge about whether SreA also affects the homeostasis of other divalent metal ions is limited. In this study, by screening Aspergillus fumigatus transcription factor deletion mutant libraries, we demonstrate that the sreA deletion mutant shows the greatest tolerance to MnCl2 among the tested divalent metal ions. Fe and Mn stimuli are able to enhance the expression of SreA with the different time-dependent manner, while the expression of SreA contributes to Mn2+ tolerance. Lack of SreA results in abnormally increased expression of a series of siderophore biosynthesis genes and iron transport-related genes, especially under MnCl2 treatment. Further mechanistic exploration indicated that lack of SreA exacerbates abnormal iron uptake, and iron excess inhibits cellular Mn content; thus, deletion of sreA results in Mn tolerance. Thus, findings in this study have demonstrated a new unexplored function for the transcription factor SreA in regulation of the Mn2+ tolerance.


Assuntos
Fatores de Transcrição GATA , Ferro , Fatores de Transcrição GATA/genética , Ferro/metabolismo , Manganês/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Íons/metabolismo
14.
Int J Mol Sci ; 23(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35886947

RESUMO

Gene expression is mediated by a series of regulatory proteins, i.e., transcription factors. Under different growth conditions, the transcriptional regulation of structural genes is associated with the recognition of specific regulatory elements (REs) in promoter DNA. The manner by which transcription factors recognize distinctive REs is a key question in structural biology. Previous research has demonstrated that Ino2p/Ino4p heterodimer is associated with the transcriptional regulation of phospholipid biosynthetic genes. Mechanistically, Ino2p/Ino4p could specifically recognize the inositol/choline-responsive element (ICRE), followed by the transcription activation of the phospholipid biosynthetic gene. While the promoter DNA sequence for Ino2p has already been characterized, the structural basis for the mutual interaction between Ino2p/Ino4p and their binding interface with promoter DNA remain relatively unexplored. Here, we have determined the crystalline structure of the Ino2pDBD/Ino4pDBD/DNA ternary complex, which highlights some residues (Ino2pHis12/Glu16/Arg20/Arg44 and Ino4pHis12/Glu16/Arg19/Arg20) associated with the sequence-specific recognition of promoter DNA. Our biochemical analysis showed that mutating these residues could completely abolish protein-DNA interaction. Despite the requirement of Ino2p and Ino4p for interprotein-DNA interaction, both proteins can still interact-even in the absence of DNA. Combined with the structural analysis, our in vitro binding analysis demonstrated that residues (Arg35, Asn65, and Gln69 of Ino2pDBD and Leu59 of Ino4pDBD) are critical for interprotein interactions. Together, these results have led to the conclusion that these residues are critical to establishing interprotein-DNA and protein-DNA mutual interactions.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , DNA/genética , DNA/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Fosfolipídeos/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Fungal Genet Biol ; 162: 103726, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35843417

RESUMO

Depending on the prevailing environmental, developmental and nutritional conditions, fungi activate biosynthetic gene clusters (BGCs) to produce condition-specific secondary metabolites (SMs). For activation, global chromatin-based de-repression must be integrated with pathway-specific induction signals. Here we describe a new global regulator needed to activate starvation-induced SMs. In our transcriptome dataset, we found locus AN7572 strongly transcribed solely under conditions of starvation-induced SM production. The predicted AN7572 protein is most similar to the stress and nutritional regulator Rim15 of Saccharomyces cerevisiae, and to STK-12 of Neurospora crassa. Based on this similarity and on stress and nutritional response phenotypes of A. nidulans knock-out and overexpression strains, AN7572 is designated rimO. In relation to SM production, we found that RimO is required for the activation of starvation-induced BGCs, including the sterigmatocystin (ST) gene cluster. Here, RimO regulates the pathway-specific transcription factor AflR both at the transcriptional and post-translational level. At the transcriptional level, RimO mediates aflR induction following carbon starvation and at the post-translational level, RimO is required for nuclear accumulation of the AflR protein. Genome-wide transcriptional profiling showed that cells lacking rimO fail to adapt to carbon starvation that, in the wild type, leads to down-regulation of genes involved in basic metabolism, membrane biogenesis and growth. Consistently, strains overexpressing rimO are more resistant to oxidative and osmotic stress, largely insensitive to glucose repression and strongly overproduce several SMs. Our data indicate that RimO is a positive regulator within the SM and stress response network, but this requires nutrient depletion that triggers both, rimO gene transcription and activation of the RimO protein.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Esterigmatocistina
16.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163951

RESUMO

Phosphorus in the form of phosphate (Pi) is an essential element for metabolic processes, including lipid metabolism. In yeast, the inositol polyphosphate kinase vip1 mediated synthesis of inositol heptakisphosphate (IP7) regulates the phosphate-responsive (PHO) signaling pathway, which plays an important role in response to Pi stress. The role of vip1 in Pi stress and lipid metabolism of Candida albicans has not yet been studied. We found that when vip1Δ/Δ was grown in glucose medium, if Pi was supplemented in the medium or mitochondrial Pi transporter was overexpressed in the strain, the lipid droplet (LD) content was reduced and membrane damage was alleviated. However, further studies showed that neither the addition of Pi nor the overexpression of the Pi transporter affected the energy balance of vip1Δ/Δ. In addition, the LD content of vip1Δ/Δ grown in Pi limitation medium PNMC was lower than that grown in SC, and the metabolic activity of vip1Δ/Δ grown in PNMC was also lower than that grown in SC medium. This suggests that the increase in Pi demand by a high energy metabolic rate is the cause of LD accumulation in vip1Δ/Δ. In addition, in the vip1Δ/Δ strains, the core transcription factor PHO4 in the PHO pathway was transported to the vacuole and degraded, which reduced the pathway activity. However, this does not mean that knocking out vip1 completely blocks the activation of the PHO pathway, because the LD content of vip1Δ/Δ grown in the medium with ß-glycerol phosphate as the Pi source was significantly reduced. In summary, the increased Pi demand and the decreased PHO pathway activity in vip1Δ/Δ ultimately lead to LD accumulation and cell membrane damage.


Assuntos
Metabolismo Energético/fisiologia , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Candida albicans/metabolismo , Membrana Celular/metabolismo , Expressão Gênica/genética , Regulação Fúngica da Expressão Gênica/genética , Fosfatos de Inositol , Gotículas Lipídicas/metabolismo , Fosfatos/metabolismo , Fosforilação , Fosfotransferases (Aceptor do Grupo Fosfato)/fisiologia , Transdução de Sinais , Fatores de Transcrição/metabolismo , Vacúolos/metabolismo
17.
ACS Synth Biol ; 11(3): 1228-1239, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35195994

RESUMO

A wide dynamic range of promoters is necessary for fine-tuning transcription levels. However, weak intensity and narrow dynamic range limit transcriptional regulation via constitutive promoters. The upstream activation sequence (UAS) located upstream of the core promoter is a crucial region that could obviously enhance promoter strength. Herein, we created a random mutagenesis library consisting of 330 different variants based on the UAS of the TDH3 promoter with an ∼37-fold dynamic range by error-prone polymerase chain reaction (PCR) and obtained strong intensity mutant UAS, which was ∼12-fold greater than the wild-type UASTDH3. Analysis of the mutant library revealed 15 strength-enhancing sites and their corresponding bases of the UASTDH3 regions, which provided the impetus for a synthetic library. The resulting 32 768 mutant UAS library was constructed by permutation and combination of the bases of the 15 enhancing sites. To characterize the library, a strength prediction model was built by correlating DNA structural features and UAS strength, which provided a model between UAS sequence and intensity. Following characterization, the UAS library was applied to precisely regulate gene expression in the production of ß-carotene, proving that the UAS library would be a useful tool for gene tuning in metabolic engineering. In summary, we designed, constructed, and characterized a UAS library that facilitated precise tuning of transcription levels of target proteins.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae , Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Biblioteca Gênica , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
18.
Fungal Genet Biol ; 159: 103664, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026387

RESUMO

The diploid fungal pathogen Candida albicans has three configurations at the mating type locus (MTL): heterozygous (a/α) and homozygous (a/a or α/α). C. albicans MTL locus encodes four transcriptional regulators (MTLa1, a2, α1, and α2). The conserved a1/α2 heterodimer controls not only mating competency but also white-opaque heritable phenotypic switching. However, the regulatory roles of MTLa2 and α1 are more complex and remain to be investigated. MTLa/a cells often express a cell type-specific genes and mate as the a-type partner, whereas MTLα/α cells express α-specific genes and mate as the α-type partner. In this study, we report that the MTLa2 regulator controls the formation of mating projections through both the a- and α-pheromone-sensing pathways and thus results in the bi-mater feature of "α cells" of C. albicans. Ectopic expression of MTLa2 in opaque α cells activates the expression of not only MFA1 and STE3 (a-pheromone receptor) but also MFα1 and STE2 (α-pheromone receptor). Inactivation of either the MFa-Ste3 or MFα-Ste2 pheromone-sensing pathway cannot block the MTLa2-induced development of mating projections. However, the case is different in MTLα1-ectopically expressed opaque a cells. Inactivation of the MFα-Ste2 but not the MFa-Ste3 pheromone-sensing pathway blocks MTLα1-induced development of mating projections. Therefore, MTLa2 and MTLα1 exhibit distinct regulatory features that control the mating response in C. albicans. These findings shed new light on the regulatory mechanism of bi-mating behaviors and sexual reproduction in C. albicans.


Assuntos
Candida albicans , Genes Fúngicos Tipo Acasalamento , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos Tipo Acasalamento/genética , Feromônios/genética , Receptores de Feromônios/genética , Receptores de Feromônios/metabolismo , Reprodução
19.
Mol Cell Biol ; 42(1): e0024421, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34723653

RESUMO

Ded1 is a conserved RNA helicase that promotes translation initiation in steady-state conditions. Ded1 has also been shown to regulate translation during cellular stress and affect the dynamics of stress granules (SGs), accumulations of RNA and protein linked to translation repression. To better understand its role in stress responses, we examined Ded1 function in two different models: DED1 overexpression and oxidative stress. DED1 overexpression inhibits growth and promotes the formation of SGs. A ded1 mutant lacking the low-complexity C-terminal region (ded1-ΔCT), which mediates Ded1 oligomerization and interaction with the translation factor eIF4G1, suppressed these phenotypes, consistent with other stresses. During oxidative stress, a ded1-ΔCT mutant was defective in growth and in SG formation compared to wild-type cells, although SGs were increased rather than decreased in these conditions. Unlike stress induced by direct TOR inhibition, the phenotypes in both models were only partially dependent on eIF4G1 interaction, suggesting an additional contribution from Ded1 oligomerization. Furthermore, examination of the growth defects and translational changes during oxidative stress suggested that Ded1 plays a role during recovery from stress. Integrating these disparate results, we propose that Ded1 controls multiple aspects of translation and RNP dynamics in both initial stress responses and during recovery.


Assuntos
RNA Helicases DEAD-box/metabolismo , RNA Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/genética , Regulação Fúngica da Expressão Gênica/genética , Biossíntese de Proteínas/fisiologia , RNA Mensageiro/genética , Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico/fisiologia
20.
FEBS J ; 289(2): 457-472, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34492164

RESUMO

Saccharomyces cerevisiae LIP1 encodes a regulatory subunit that forms a complex with the ceramide synthase catalytic subunits, Lag1/Lac1, which is localized on the membrane of endoplasmic reticulum. To understand the underlying regulatory mechanism of sphingolipid biosynthesis, we generated strains upon replacing the chromosomal LIP1 promoter with a Tet-off promoter, which enables the expression in Dox-dependent manner. The lip1-1 strain, obtained through the promoter substitution, exhibits severe growth inhibition and remarkable decrease in sphingolipid synthesis in the presence of Dox. Using this strain, we investigated the effect of a decrease in ceramide synthesis on TOR complex 2 (TORC2)-Ypk1 signaling, which senses the complex sphingolipid level at the plasma membrane and promotes sphingolipid biosynthesis. In lip1-1 cells, Ypk1 was activated via both upstream kinases, TORC2 and yeast PDK1 homologues, Pkh1/2, thereby inducing hyperphosphorylation of Lag1, but not of another Ypk1-substrate, Orm1, which is a known negative regulator of the first step of sphingolipid metabolism, in the presence of Dox. Therefore, our data suggest that the metabolic enzyme activities at each step of the sphingolipid biosynthetic pathway are controlled through a fine regulatory mechanism.


Assuntos
Quinase 3 da Glicogênio Sintase/genética , Proteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolipídeos/biossíntese , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Domínio Catalítico/genética , Membrana Celular/genética , Retículo Endoplasmático/genética , Regulação Fúngica da Expressão Gênica/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Oxirredutases/genética , Oxirredutases/ultraestrutura , Fosforilação/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Esfingolipídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...