Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 338
Filtrar
1.
Sci Rep ; 14(1): 4821, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413800

RESUMO

Abnormal mitochondria have been observed in bronchial- and alveolar epithelial cells of patients with chronic obstructive pulmonary disease (COPD). However, it is unknown if alterations in the molecular pathways regulating mitochondrial turnover (mitochondrial biogenesis vs mitophagy) are involved. Therefore, in this study, the abundance of key molecules controlling mitochondrial turnover were assessed in peripheral lung tissue from non-COPD patients (n = 6) and COPD patients (n = 11; GOLDII n = 4/11; GOLDIV n = 7/11) and in both undifferentiated and differentiated human primary bronchial epithelial cells (PBEC) from non-COPD patients and COPD patients (n = 4-7 patients/group). We observed significantly decreased transcript levels of key molecules controlling mitochondrial biogenesis (PPARGC1B, PPRC1, PPARD) in peripheral lung tissue from severe COPD patients. Interestingly, mRNA levels of the transcription factor TFAM (mitochondrial biogenesis) and BNIP3L (mitophagy) were increased in these patients. In general, these alterations were not recapitulated in undifferentiated and differentiated PBECs with the exception of decreased PPARGC1B expression in both PBEC models. Although these findings provide valuable insight in these pathways in bronchial epithelial cells and peripheral lung tissue of COPD patients, whether or not these alterations contribute to COPD pathogenesis, underlie changes in mitochondrial function or may represent compensatory mechanisms remains to be established.


Assuntos
Pulmão , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Renovação Mitocondrial , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
Biochem J ; 480(21): 1767-1789, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37965929

RESUMO

Mitochondrial dysfunction in skeletal muscle fibres occurs with both healthy aging and a range of neuromuscular diseases. The impact of mitochondrial dysfunction in skeletal muscle and the way muscle fibres adapt to this dysfunction is important to understand disease mechanisms and to develop therapeutic interventions. Furthermore, interactions between mitochondrial dysfunction and skeletal muscle biology, in mitochondrial myopathy, likely have important implications for normal muscle function and physiology. In this review, we will try to give an overview of what is known to date about these interactions including metabolic remodelling, mitochondrial morphology, mitochondrial turnover, cellular processes and muscle cell structure and function. Each of these topics is at a different stage of understanding, with some being well researched and understood, and others in their infancy. Furthermore, some of what we know comes from disease models. Whilst some findings are confirmed in humans, where this is not yet the case, we must be cautious in interpreting findings in the context of human muscle and disease. Here, our goal is to discuss what is known, highlight what is unknown and give a perspective on the future direction of research in this area.


Assuntos
Miopatias Mitocondriais , Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Renovação Mitocondrial , Biologia
3.
Sci Rep ; 13(1): 18822, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914850

RESUMO

A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes mitochondrial respiration and attenuates mitochondrial oxidative stress in cultured cardiomyocytes. We sought to determine whether AKIP1 influences mitochondrial function and the mitochondrial adaptation in response to exercise in vivo. We assessed mitochondrial respiratory capacity, as well as electron microscopy and mitochondrial targeted-proteomics in hearts from mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and their wild type (WT) littermates. These parameters were also assessed after four weeks of voluntary wheel running. In contrast to our previous in vitro study, respiratory capacity measured as state 3 respiration on palmitoyl carnitine was significantly lower in AKIP1-TG compared to WT mice, whereas state 3 respiration on pyruvate remained unaltered. Similar findings were observed for maximal respiration, after addition of FCCP. Mitochondrial DNA damage and oxidative stress markers were not elevated in AKIP1-TG mice and gross mitochondrial morphology was similar. Mitochondrial targeted-proteomics did reveal reductions in mitochondrial proteins involved in energy metabolism. Exercise performance was comparable between genotypes, whereas exercise-induced cardiac hypertrophy was significantly increased in AKIP1-TG mice. After exercise, mitochondrial state 3 respiration on pyruvate substrates was significantly lower in AKIP1-TG compared with WT mice, while respiration on palmitoyl carnitine was not further decreased. This was associated with increased mitochondrial fission on electron microscopy, and the activation of pathways associated with mitochondrial fission and mitophagy. This study suggests that AKIP1 regulates the mitochondrial proteome involved in energy metabolism and promotes mitochondrial turnover after exercise. Future studies are required to unravel the mechanistic underpinnings and whether the mitochondrial changes are required for the AKIP1-induced physiological cardiac growth.


Assuntos
Proteínas Mitocondriais , Atividade Motora , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Metabolismo Energético , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Miócitos Cardíacos/metabolismo , Piruvatos/metabolismo
4.
Am J Physiol Endocrinol Metab ; 325(1): E83-E98, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224468

RESUMO

Lysine acetylation of proteins has emerged as a key posttranslational modification (PTM) that regulates mitochondrial metabolism. Acetylation may regulate energy metabolism by inhibiting and affecting the stability of metabolic enzymes and oxidative phosphorylation (OxPhos) subunits. Although protein turnover can be easily measured, due to the low abundance of modified proteins, it has been difficult to evaluate the effect of acetylation on the stability of proteins in vivo. We applied 2H2O-metabolic labeling coupled with immunoaffinity and high-resolution mass spectrometry method to measure the stability of acetylated proteins in mouse liver based on their turnover rates. As a proof-of-concept, we assessed the consequence of high-fat diet (HFD)-induced altered acetylation in protein turnover in LDL receptor-deficient (LDLR-/-) mice susceptible to diet-induced nonalcoholic fatty liver disease (NAFLD). HFD feeding for 12 wk led to steatosis, the early stage of NAFLD. A significant reduction in acetylation of hepatic proteins was observed in NAFLD mice, based on immunoblot analysis and label-free quantification with mass spectrometry. Compared with control mice on a normal diet, NAFLD mice had overall increased turnover rates of hepatic proteins, including mitochondrial metabolic enzymes (0.159 ± 0.079 vs. 0.132 ± 0.068 day-1), suggesting their reduced stability. Also, acetylated proteins had slower turnover rates (increased stability) than native proteins in both groups (0.096 ± 0.056 vs. 0.170 ± 0.059 day-1 in control, and 0.111 ± 0.050 vs. 0.208 ± 0.074 day-1 in NAFLD). Furthermore, association analysis revealed a relationship between the HFD-induced decrease in acetylation and increased turnover rates for hepatic proteins in NAFLD mice. These changes were associated with increased expressions of the hepatic mitochondrial transcriptional factor (TFAM) and complex II subunit without any changes to other OxPhos proteins, suggesting that enhanced mitochondrial biogenesis prevented restricted acetylation-mediated depletion of mitochondrial proteins. We conclude that decreased acetylation of mitochondrial proteins may contribute to adaptive improved hepatic mitochondrial function in the early stages of NAFLD.NEW & NOTEWORTHY This is the first method to quantify acetylome dynamics in vivo. This method revealed acetylation-mediated altered hepatic mitochondrial protein turnover in response to a high-fat diet in a mouse model of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Dieta Hiperlipídica , Acetilação , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Mitocondriais/metabolismo , Renovação Mitocondrial , Camundongos Endogâmicos C57BL
5.
Expert Rev Mol Med ; 24: e38, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36172898

RESUMO

The maintenance of a healthy mitochondrial network and the ability to adjust organelle population in response to internal or external stimuli are essential for the function and the survival of eukaryotic cells. Over the last two decades several studies have demonstrated the paramount importance of mitophagy, a selective form of autophagy that removes damaged and/or superfluous organelles, in organismal physiology. Post-mitotic neuronal cells are particularly vulnerable to mitochondrial damage, and mitophagy impairment has emerged as a causative factor in multiple neurodegenerative pathologies, including Alzheimer's disease and Parkinson's disease among others. Although mitochondrial turnover is a multifaceted process, neurons have to tackle additional complications, arising from their pronounced bioenergetic demands and their unique architecture and cellular polarisation that render the degradation of distal organelles challenging. Mounting evidence indicates that despite the functional conservation of mitophagy pathways, the unique features of neuronal physiology have led to the adaptation of compartmentalised solutions, which serve to ensure seamless mitochondrial removal in every part of the cell. In this review, we summarise the current knowledge concerning the molecular mechanisms that mediate mitophagy compartmentalisation and discuss their implications in various human pathologies.


Assuntos
Mitocôndrias , Mitofagia , Humanos , Mitofagia/fisiologia , Mitocôndrias/metabolismo , Renovação Mitocondrial , Autofagia , Neurônios/metabolismo , Neurônios/patologia
7.
Hepatology ; 76(5): 1452-1465, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35000203

RESUMO

BACKGROUND AND AIMS: NAFLD and its more-advanced form, steatohepatitis (NASH), is associated with obesity and is an independent risk factor for cardiovascular, liver-related, and all-cause mortality. Available human data examining hepatic mitochondrial fatty acid oxidation (FAO) and hepatic mitochondrial turnover in NAFLD and NASH are scant. APPROACH AND RESULTS: To investigate this relationship, liver biopsies were obtained from patients with obesity undergoing bariatric surgery and data clustered into four groups based on hepatic histopathological classification: Control (CTRL; no disease); NAFL (steatosis only); Borderline-NASH (steatosis with lobular inflammation or hepatocellular ballooning); and Definite-NASH (D-NASH; steatosis, lobular inflammation, and hepatocellular ballooning). Hepatic mitochondrial complete FAO to CO2 and the rate-limiting enzyme in ß-oxidation (ß-hydroxyacyl-CoA dehydrogenase activity) were reduced by ~40%-50% with D-NASH compared with CTRL. This corresponded with increased hepatic mitochondrial reactive oxygen species production, as well as dramatic reductions in markers of mitochondrial biogenesis, autophagy, mitophagy, fission, and fusion in NAFL and NASH. CONCLUSIONS: These findings suggest that compromised hepatic FAO and mitochondrial turnover are intimately linked to increasing NAFLD severity in patients with obesity.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Espécies Reativas de Oxigênio , Dióxido de Carbono , Fígado/patologia , Biomarcadores , Obesidade/patologia , Inflamação/patologia , Renovação Mitocondrial , Ácidos Graxos , Oxirredutases , Coenzima A
8.
Life Sci ; 291: 119340, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33716067

RESUMO

AIMS: Hypoxic training promotes human cardiopulmonary function and exercise performance efficiently, but the myocellular mechanism has been less studied. We aimed to examine the effects of hypoxic trainings on mitochondrial turnover and vascular remodeling of skeletal muscle. MAIN METHODS: C57BL/6 J mice were divided into control, hypoxic exposure, exercise training, "live high-train low" (LHTL), and "live low-train high" (LLTH) groups (n = 8/group). Western blot and immunohistochemistry were used to evaluate mitochondrial turnover of gastrocnemius and angiogenesis of quadriceps after six weeks interventions. KEY FINDINGS: Compared with control group, both LHTL and LLTH increased phosphorylation levels of p38 MAPK markedly (p < 0.05). LLTH also elevated PGC-1α protein expression significantly (p < 0.05). All interventions did not influence Bnip3 and Drp-1 proteins levels (p > 0.05), while LLTH enhanced Parkin and Mff protein contents significantly (p < 0.05). Immunohistochemical analysis showed both LHTL and LLTH promoted CD31 and VEGF expressions (p < 0.05). ATP content, citrate synthase activities of gastrocnemius were robustly elevated in LHTL and LLTH groups (p < 0.01). The exercise training increased Mff protein and ATP content in gastrocnemius as well as VEGF expression in quadriceps (p < 0.05). The hypoxic exposure also increased ATP content, citrate synthase, and ATP synthase activities in gastrocnemius as well as VEGF expression in quadriceps (p < 0.01). SIGNIFICANCE: Our results suggested that hypoxic trainings, especially LLTH, promoted mitochondrial turnover and angiogenesis of skeletal muscle, which may be an underlying mechanism of hypoxic training-induced exercise capacity.


Assuntos
Hipóxia/fisiopatologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Renovação Mitocondrial/fisiologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Condicionamento Físico Animal/fisiologia
9.
J Cell Mol Med ; 25(15): 7157-7168, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34227740

RESUMO

Ageing is a crucial risk factor for the development of age-related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti-ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti-ageing drug to alleviate cardiac ageing. D-galactose (D-gal)-induced C57BL/6J ageing mice were established by subcutaneous injection of D-gal (200 mg·kg-1 ·d-1 ) for 8 weeks. AOS (50, 100 and 150 mg·kg-1 ·d-1 ) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D-gal-induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D-gal-induced up-regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose-dependent manner. To further explore the potential mechanisms contributing to the anti-ageing protective effect of AOS, the age-related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D-gal-induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.


Assuntos
Envelhecimento/metabolismo , Alginatos/farmacologia , Antioxidantes/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Envelhecimento/patologia , Animais , Galactose/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Renovação Mitocondrial , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Peptídeos Natriuréticos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
10.
Biochem Biophys Res Commun ; 568: 95-102, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217014

RESUMO

Sarcopenia is a syndrome characterized by progressive loss of muscle mass and function during aging. Although mitochondrial dysfunction and related metabolic defects precede age-related changes in muscle, their contributions to muscle aging are still not well known. In this study, we used a Drosophila model to investigate the role of lipophorin receptors (LpRs), a Drosophila homologue of the mammalian very low-density lipoprotein receptor (VLDLR), in mitochondrial dynamics and muscle aging. Muscle-specific knockdown of LpR1 or LpR2 resulted in mitochondrial dysfunction and reduced proteostasis, which contributed to muscle aging. Activation of AMP-activated protein kinase (AMPK) ameliorated muscle dysfunction induced by LpR1 knockdown. These results suggest that LpR1/VLDLR is a novel key target that modulates age-dependent lipid remodeling and muscle homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Drosophila/genética , Proteínas de Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Longevidade , Masculino , Mitocôndrias/genética , Renovação Mitocondrial , Receptores Citoplasmáticos e Nucleares/genética
11.
Endocrinology ; 162(8)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34086893

RESUMO

Skeletal muscle (SM) weakness occurs in hypothyroidism and resistance to thyroid hormone α (RTHα) syndrome. However, the cell signaling and molecular mechanism(s) underlying muscle weakness under these conditions is not well understood. We thus examined the role of thyroid hormone receptor α (TRα), the predominant TR isoform in SM, on autophagy, mitochondrial biogenesis, and metabolism to demonstrate the molecular mechanism(s) underlying muscle weakness in these two conditions. Two genetic mouse models were used in this study: TRα1PV/+ mice, which express the mutant Thra1PV gene ubiquitously, and SM-TRα1L400R/+ mice, which express TRα1L400R in a muscle-specific manner. Gastrocnemius muscle from TRα1PV/+, SM-TRα1L400R/+, and their control mice was harvested for analyses. We demonstrated that loss of TRα1 signaling in gastrocnemius muscle from both the genetic mouse models led to decreased autophagy as evidenced by accumulation of p62 and decreased expression of lysosomal markers (lysosomal-associated membrane protein [LAMP]-1 and LAMP-2) and lysosomal proteases (cathepsin B and cathepsin D). The expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α), mitochondrial transcription factor A (TFAM), and estrogen-related receptor α (ERRα), key factors contributing to mitochondrial biogenesis as well as mitochondrial proteins, were decreased, suggesting that there was reduced mitochondrial biogenesis due to the expression of mutant TRα1. Transcriptomic and metabolomic analyses of SM suggested that lipid catabolism was impaired and was associated with decreased acylcarnitines and tricarboxylic acid cycle intermediates in the SM from the mouse line expressing SM-specific mutant TRα1. Our results provide new insight into TRα1-mediated cell signaling, molecular, and metabolic changes that occur in SM when TR action is impaired.


Assuntos
Autofagia , Metabolismo dos Lipídeos , Renovação Mitocondrial , Músculo Esquelético/metabolismo , Receptores alfa dos Hormônios Tireóideos/metabolismo , Animais , Metabolismo Energético , Hipotireoidismo/metabolismo , Masculino , Camundongos , Músculo Esquelético/citologia , Mutação , Receptores alfa dos Hormônios Tireóideos/genética
12.
J Cell Mol Med ; 25(15): 7110-7121, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160885

RESUMO

Mitochondria are important organelles in eukaryotic cells. Normal mitochondrial homeostasis is subject to a strict mitochondrial quality control system, including the strict regulation of mitochondrial production, fission/fusion and mitophagy. The strict and accurate modulation of the mitochondrial quality control system, comprising the mitochondrial fission/fusion, mitophagy and other processes, can ameliorate the myocardial injury of myocardial ischaemia and ischaemia-reperfusion after myocardial infarction, which plays an important role in myocardial protection after myocardial infarction. Further research into the mechanism will help identify new therapeutic targets and drugs for the treatment of myocardial infarction. This article aims to summarize the recent research regarding the mitochondrial quality control system and its molecular mechanism involved in myocardial infarction, as well as the potential therapeutic targets in the future.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Humanos , Mitocôndrias Cardíacas/efeitos dos fármacos , Renovação Mitocondrial , Infarto do Miocárdio/tratamento farmacológico
13.
Mech Ageing Dev ; 198: 111518, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139214

RESUMO

INTRODUCTION: Aging represents a major risk factors for metabolic diseases, such as diabetes, obesity, or neurodegeneration. Polyphenols and their metabolites, especially simple phenolic acids, gained growing attention as a preventive strategy against age-related, non-communicable diseases, due to their hormetic potential. Using Caenorhabditis elegans (C. elegans) we investigate the effect of protocatechuic, gallic, and vanillic acid on mitochondrial function, health parameters, and the induction of potential hormetic pathways. METHODS: Lifespan, heat-stress resistance and chemotaxis of C. elegans strain P X 627, a specific model for aging, were assessed in 2-day and 10-day old nematodes. Mitochondrial membrane potential (ΔΨm) and ATP generation were measured. mRNA expression levels of longevity and energy metabolism-related genes were determined using qRT-PCR. RESULTS: All phenolic acids were able to significantly increase the nematodes lifespan, heat-stress resistance and chemotaxis at micromolar concentrations. While ΔΨm was only affected by age, vanillic acid (VA) significantly decreased ATP concentrations in aged nematodes. Longevity pathways, were activated by all phenolic acids, while VA also induced glycolytic activity and response to cold. CONCLUSION: While life- and health span parameters are positively affected by the investigated phenolic acids, the concentrations applied were unable to affect mitochondrial performance. Therefore we suggest a hormetic mode of action, especially by activation of the sirtuin-pathway.


Assuntos
Envelhecimento , Ácido Gálico/farmacologia , Hormese , Hidroxibenzoatos/farmacologia , Polifenóis/farmacologia , Ácido Vanílico/farmacologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Anticarcinógenos/farmacologia , Caenorhabditis elegans , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Aromatizantes/farmacologia , Resposta ao Choque Térmico/efeitos dos fármacos , Hormese/efeitos dos fármacos , Hormese/fisiologia , Longevidade/efeitos dos fármacos , Longevidade/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Renovação Mitocondrial/efeitos dos fármacos , Renovação Mitocondrial/fisiologia
14.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924874

RESUMO

Hematopoietic stem cells (HSCs) reside in a hypoxic microenvironment that enables glycolysis-fueled metabolism and reduces oxidative stress. Nonetheless, metabolic regulation in organelles such as the mitochondria and lysosomes as well as autophagic processes have been implicated as essential for the determination of HSC cell fate. This review encompasses the current understanding of anaerobic metabolism in HSCs as well as the emerging roles of mitochondrial metabolism and lysosomal regulation for hematopoietic homeostasis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Lisossomos/metabolismo , Renovação Mitocondrial , Anaerobiose , Animais , Diferenciação Celular , Estrona/metabolismo , Glicólise , Humanos , Tamanho Mitocondrial , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
15.
Biochem J ; 478(4): 749-764, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33626141

RESUMO

The incidence of cocaine abuse is increasing especially in the U.K. where the rates are among the highest in Europe. In addition to its role as a psychostimulant, cocaine has profound effect on brain metabolism, impacting glycolysis and impairing oxidative phosphorylation. Cocaine exposure alters metabolic gene expression and protein networks in brain regions including the prefrontal cortex, the ventral tegmental area and the nucleus accumbens, the principal nuclei of the brain reward system. Here, we focus on how cocaine impacts mitochondrial function, in particular through alterations in electron transport chain function, reactive oxygen species (ROS) production and oxidative stress (OS), mitochondrial dynamics and mitophagy. Finally, we describe the impact of cocaine on brain energy metabolism in the developing brain following prenatal exposure. The plethora of mitochondrial functions altered following cocaine exposure suggest that therapies maintaining mitochondrial functional integrity may hold promise in mitigating cocaine pathology and addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/metabolismo , Mitocôndrias/fisiologia , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Cocaína/farmacologia , Cocaína/toxicidade , Metabolismo Energético/efeitos dos fármacos , Feminino , Glicólise/efeitos dos fármacos , Humanos , Camundongos , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria/efeitos dos fármacos , Renovação Mitocondrial/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Biogênese de Organelas , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo , Gravidez , Complicações na Gravidez/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal , Ratos , Espécies Reativas de Oxigênio , Recompensa , Síndrome de Abstinência a Substâncias/metabolismo
16.
J Mol Neurosci ; 71(1): 42-54, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32535714

RESUMO

Autophagy/mitophagy, a cellular catabolic process necessary for sustaining normal cellular function, has emerged as a potential therapeutic strategy against numerous obstinate diseases. In this regard, endurance exercise (EXE)-induced autophagy/mitophagy (EIAM) has been considered as a potential health-enriching factor in various tissues including the brain; however, underlying mechanisms of EIAM in the brain has not been fully defined yet. This study investigated the molecular signaling nexus of EIAM pathways in the cortex of the brain. C57BL/6 young male mice were randomly assigned to a control group (CON, n = 12) and an endurance exercise group (EXE, n = 12). Our data demonstrated that exercise-induced autophagy coincided with an enhanced anabolic state (p-AKT, p-mTOR, and p-p70S6K); furthermore, mitophagy concurred with enhanced mitochondrial turnover: increases in both fission (DRP1, BNIP3, and PINK1) and fusion (OPA1 and MFN2) proteins. In addition, neither oxidative stress nor sirtuins (SIRT) 1 and 3 were associated with EIAM; instead, the activation of AMPK as well as a JNK-BCL2 axis was linked to EIAM promotion. Collectively, our results demonstrated that EXE-induced anabolic enrichment did not hinder autophagy/mitophagy and that the concurrent augmentation of mitochondrial fusion and fusion process contributed to sustaining mitophagy in the cortex of the brain. Our findings suggest that the EXE-induced concomitant potentiation of the catabolic and anabolic state is a unique molecular mechanism that simultaneously contributes to recycling and rebuilding the cellular structure, leading to upholding healthy cellular environment. Thus, the current study provides a novel autophagy/mitophagy mechanism, from which groundbreaking pharmacological strategies of autophagy can be developed.


Assuntos
Autofagia , Córtex Cerebral/metabolismo , Metabolismo/fisiologia , Renovação Mitocondrial/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Condicionamento Físico Animal , Quinases Proteína-Quinases Ativadas por AMP , Animais , Córtex Cerebral/ultraestrutura , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Mitofagia , Oxirredução , Estresse Oxidativo , Proteínas Quinases/metabolismo , Distribuição Aleatória , Corrida , Sirtuína 1/análise , Sirtuína 3/análise , Serina-Treonina Quinases TOR/metabolismo
17.
Biochim Biophys Acta Gene Regul Mech ; 1864(2): 194598, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32599084

RESUMO

General control of amino acid synthesis 5 like 1 (GCN5L1) was named due to its loose sequence alignment to GCN5, a catalytic subunit of numerous histone N-acetyltransferase complexes. Further studies show that GCN5L1 has mitochondrial and cytosolic isoforms, although functional-domain sequence alignment and experimental studies show that GCN5L1 itself does not possess intrinsic acetyltransferase activity. Nevertheless, GCN5L1 does support protein acetylation in the mitochondria and cytosol and functions as a subunit of numerous intracellular multiprotein complexes that control intracellular vacuolar organelle positioning and function. The majority of GCN5L1 studies have focused on distinct intracellular functions and in this review, we summarize these findings as well as postulate what may be common features of the diverse phenotypes linked to GCN5L1.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Vacúolos/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Endossomos/metabolismo , Humanos , Lisossomos/metabolismo , Renovação Mitocondrial , Processamento de Proteína Pós-Traducional
18.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374852

RESUMO

Sarcopenia is a chronic disease characterized by the progressive loss of skeletal muscle mass, force, and function during aging. It is an emerging public problem associated with poor quality of life, disability, frailty, and high mortality. A decline in mitochondria quality control pathways constitutes a major mechanism driving aging sarcopenia, causing abnormal organelle accumulation over a lifetime. The resulting mitochondrial dysfunction in sarcopenic muscles feedbacks systemically by releasing the myomitokines fibroblast growth factor 21 (FGF21) and growth and differentiation factor 15 (GDF15), influencing the whole-body homeostasis and dictating healthy or unhealthy aging. This review describes the principal pathways controlling mitochondrial quality, many of which are potential therapeutic targets against muscle aging, and the connection between mitochondrial dysfunction and the myomitokines FGF21 and GDF15 in the pathogenesis of aging sarcopenia.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Renovação Mitocondrial , Sarcopenia/metabolismo , Animais , Humanos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Músculo Esquelético/metabolismo , Sarcopenia/patologia
20.
Mech Ageing Dev ; 192: 111362, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33010305

RESUMO

Calorie restriction is known to promote healthy aging, which includes prevention of muscle loss. We investigated the effect of rodent calorie restriction on mitochondrial respiration and clonogenic capacity of muscle satellite stem cells, since metabolic alterations are known to regulate stem cell activity. Surprisingly, short or long-term calorie restriction do not change mitochondrial or glycolytic function. Nevertheless, both short- and long-term calorie restriction enhance myogenic colony formation. Overall, our results show that not all changes in satellite stem cell function are accompanied by metabolic remodeling.


Assuntos
Envelhecimento/fisiologia , Restrição Calórica/métodos , Proliferação de Células/fisiologia , Metabolismo Energético/fisiologia , Músculo Esquelético/metabolismo , Sarcopenia/prevenção & controle , Células Satélites de Músculo Esquelético/metabolismo , Animais , Masculino , Renovação Mitocondrial , Modelos Animais , Consumo de Oxigênio , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...