RESUMO
Anaplasma marginale is the causative agent of the severe bovine anaplasmosis. The tick Rhipicephalus microplus is one of the main vectors of A. marginale in tropical and subtropical regions of the world. After the tick bite, the bacterium invades and proliferates within the bovine erythrocytes leading to anemia, impairment of milk production and weight loss. In addition, infection can cause abortion and high mortality in areas of enzootic instability. Immunization with live and inactivated vaccines are employed to control acute bovine anaplasmosis. However, they do not prevent persistent infection. Consequently, infected animals, even if immunized, are still reservoirs of the bacterium and contribute to its dissemination. Antimicrobials are largely employed for the prophylaxis of bovine anaplasmosis. However, they are often used in sublethal doses which may select pre-existing resistant bacteria and induce genetic or phenotypic variations. Therefore, we propose a new standardized in vitro assay to evaluate the susceptibility of A. marginale strains to different antimicrobials. This tool will help health professionals to choose the more adequate treatment for each herd which will prevent the selection and spread of resistant strains. For that, we initially evaluated the antimicrobial susceptibility of two field isolates of A. marginale (Jaboticabal and Palmeira) infecting bovines. The least susceptible strain (Jaboticabal) was used for the standardization of an antimicrobial assay using a culture of Ixodes scapularis-derived tick cell line, ISE6. Results showed that enrofloxacin (ENRO) at 0.25, 1 or 4 µg/mL and oxytetracycline (OTC) at 4 or 16 µg/mL are the most efficient treatments, followed by OTC at 1 µg/mL and imidocarb dipropionate (IMD) at 1 or 4 µg/mL. In addition, this proposed tool has technical advantages compared to the previously established bovine erythrocyte culture. Thereby, it may be used to guide cattle farmers to the correct use of antimicrobials. The choice of the most suitable antimicrobial is essential to eliminate persistent infections, prevent the spread of resistant strains and help controlling of bovine anaplasmosis.
Assuntos
Anaplasma marginale/efeitos dos fármacos , Anaplasmose/prevenção & controle , Antibacterianos/farmacologia , Vetores Aracnídeos/citologia , Doenças dos Bovinos/prevenção & controle , Rhipicephalus/citologia , Anaplasmose/tratamento farmacológico , Anaplasmose/microbiologia , Animais , Antibacterianos/uso terapêutico , Vetores Aracnídeos/parasitologia , Brasil , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/microbiologia , Linhagem Celular , Enrofloxacina/farmacologia , Eritrócitos/microbiologia , Imidocarbo/análogos & derivados , Imidocarbo/farmacologia , Imidocarbo/uso terapêutico , Masculino , Testes de Sensibilidade Microbiana , Oxitetraciclina/farmacologia , Oxitetraciclina/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Rhipicephalus/parasitologiaRESUMO
The present study analyzed the effects of different concentrations of the hexane extract of A. oleraceae (HEAO) (Jambú) on the germ cells of semi-engorged Rhipicephalus microplus female ticks, through a morpho-histological study, evaluating the effectiveness of the extract in the genesis of the individuals. To perform this analysis, 100 semi-engorged females were divided into five groups with 20 individuals each: groups I and II, respectively constituted by distilled water control and 50% ethanol + 1% DMSO, and groups III, IV, and V constituted by treatment with HEAO in the concentrations of 12.5, 25.0 and 50.0 mg/mL, respectively. All the ticks were immersed in the different concentrations of the extract or in distilled water for 5 minutes, dried and conditioned in BOD incubator for 7 days. The individuals of the treatment groups revealed the action of this extract showing alterations in the germ cells of the females from the different groups when compared with those from the groups I and II (control groups). These alterations were mainly related to the size and shape of the oocytes; number of yolk granules; presence, number, size and location of vacuoles in the cytoplasm of all the germ cells; and the presence of nuclear alterations in these cells as well. Thus, it was demonstrated that the concentrations of HEAO affected the germ cells of R. microplus ticks. The effects of the extract are similar to those caused by renowned and efficient chemical products used to control these ticks. Microsc. Res. Tech. 79:744-753, 2016. © 2016 Wiley Periodicals, Inc.
Assuntos
Asteraceae/química , Oócitos/efeitos dos fármacos , Ovário/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rhipicephalus/citologia , Rhipicephalus/efeitos dos fármacos , Animais , Brasil , Feminino , Controle de Insetos , Oócitos/citologia , Ovário/citologia , FotomicrografiaRESUMO
In this work we evaluated several genes involved in gluconeogenesis, glycolysis and glycogen metabolism, the major pathways for carbohydrate catabolism and anabolism, in the BME26 Rhipicephalus microplus embryonic cell line. Genetic and catalytic control of the genes and enzymes associated with these pathways are modulated by alterations in energy resource availability (primarily glucose). BME26 cells in media were investigated using three different glucose concentrations, and changes in the transcription levels of target genes in response to carbohydrate utilization were assessed. The results indicate that several genes, such as glycogen synthase (GS), glycogen synthase kinase 3 (GSK3), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6 phosphatase (GP) displayed mutual regulation in response to glucose treatment. Surprisingly, the transcription of gluconeogenic enzymes was found to increase alongside that of glycolytic enzymes, especially pyruvate kinase, with high glucose treatment. In addition, RNAi data from this study revealed that the transcription of gluconeogenic genes in BME26 cells is controlled by GSK-3. Collectively, these results improve our understanding of how glucose metabolism is regulated at the genetic level in tick cells.
Assuntos
Gluconeogênese , Glucose/metabolismo , Rhipicephalus/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Glucose/genética , Rhipicephalus/citologia , Rhipicephalus/embriologia , Rhipicephalus/genéticaRESUMO
Cattle ticks of the subgenus Rhipicephalus (Boophilus) are major agricultural pests worldwide, causing billions of dollars in losses annually. Rhipicephalus (Boophilus) annulatus and R. microplus are the most well-known and widespread species, and a third species, R. australis, was recently reinstated for 'R. microplus' from Australia and parts of Southeast Asia. We use mitochondrial genome sequences to address the phylogenetic relationships among the species of the subgenus Boophilus. We sequenced the complete or partial mitochondrial genomes of R. annulatus, R. australis, R. kohlsi, R. geigyi, and of three geographically disparate specimens of R. microplus from Brazil, Cambodia and China. Phylogenetic analyses of mitochondrial genomes, as well as cox1 and 16S rRNA sequences, reveals a species complex of R. annulatus, R. australis, and two clades of R. microplus, which we call the R. microplus complex. We show that cattle ticks morphologically identified as R. microplus from Southern China and Northern India (R. microplus clade B) are more closely related to R. annulatus than other specimens of R. microplus s.s. from Asia, South America and Africa (R. microplus clade A). Our analysis suggests that ticks reported as R. microplus from Southern China and Northern India are a cryptic species. This highlights the need for further molecular, morphological and crossbreeding studies of the R. microplus complex, with emphasis on specimens from China and India. We found that cox1 and, to a lesser extent, 16S rRNA were far more successful in resolving the phylogenetic relationships within the R. microplus complex than 12S rRNA or the nuclear marker ITS2. We suggest that future molecular studies of the R. microplus complex should focus on cox1, supplemented by 16S rRNA, and develop nuclear markers alternative to ITS2 to complement the mitochondrial data.
Assuntos
Genoma Mitocondrial/genética , Filogenia , Rhipicephalus/classificação , Rhipicephalus/genética , Animais , Brasil , Camboja , Bovinos , China , DNA Espaçador Ribossômico/genética , Índia , RNA Ribossômico/genética , Rhipicephalus/citologia , Análise de Sequência de DNARESUMO
Chelicerates, which include spiders, ticks, mites, scorpions, and horseshoe crabs, are members of the phylum Arthropoda. In recent years, several molecular experimental studies of chelicerates have examined the embryology of spiders; however, the embryology of other groups, such as ticks (Acari: Parasitiformes), has been largely neglected. Ticks and mites are believed to constitute a monophyletic group, the Acari. Due to their blood-sucking activities, ticks are also known to be vectors of several diseases. In this study, we analyzed the embryonic development of the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). First, we developed an embryonic staging system consisting of 14 embryonic stages. Second, histological analysis and antibody staining unexpectedly revealed the presence of a population of tick cells with similar characteristics to the spider cumulus. Cumulus cell populations also exist in other chelicerates; these cells are responsible for the breaking of radial symmetry through bone morphogenetic protein signaling. Third, it was determined that the posterior (opisthosomal) embryonic region of R. microplus is segmented. Finally, we identified the presence of a transient ventral midline furrow and the formation and regression of a fourth leg pair; these features may be regarded as hallmarks of late tick embryogenesis. Importantly, most of the aforementioned features are absent from mite embryos, suggesting that mites and ticks do not constitute a monophyletic group or that mites have lost these features. Taken together, our findings provide fundamental common ground for improving knowledge regarding tick embryonic development, thereby facilitating the establishment of a new chelicerate model system.
Assuntos
Rhipicephalus/embriologia , Animais , Evolução Biológica , Bovinos , Células do Cúmulo/citologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Feminino , Modelos Animais , Filogenia , Rhipicephalus/citologiaRESUMO
Cyclin-dependent kinases (CDKs) are a family of serine/threonine kinases essential for cell cycle progression. Herein, we describe the participation of CDKs in the physiology of Rhipicephalus microplus, the southern cattle tick and an important disease vector. Firstly, amino acid sequences homologous with CDKs of other organisms were identified from a R. microplus transcriptome database in silico. The analysis of the deduced amino acid sequences of CDK1 and CDK10 from R. microplus showed that both have caspase-3/7 cleavage motifs despite their differences in motif position and length of encoded proteins. CDK1 has two motifs (DKRGD and SAKDA) located opposite to the ATP binding site while CDK10 has only one motif (SLLDN) for caspase 3-7 near the ATP binding site. Roscovitine (Rosco), a purine derivative that inhibits CDK/cyclin complexes by binding to the catalytic domain of the CDK molecule at the ATP binding site, which prevents the transfer of ATP's γphosphoryl group to the substrate. To determine the effect of Rosco on tick CDKs, BME26 cells derived from R. microplus embryo cells were utilized in vitro inhibition assays. Cell viability decreased in the Rosco-treated groups after 24 hours of incubation in a concentration-dependent manner and this was observed up to 48 hours following incubation. To our knowledge, this is the first report on characterization of a cell cycle protein in arachnids, and the sensitivity of BME26 tick cell line to Rosco treatment suggests that CDKs are potential targets for novel drug design to control tick infestation.
Assuntos
Proteínas de Artrópodes/química , Proteína Quinase CDC2/química , Quinases Ciclina-Dependentes/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Rhipicephalus/efeitos dos fármacos , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Animais , Proteínas de Artrópodes/antagonistas & inibidores , Proteínas de Artrópodes/classificação , Proteínas de Artrópodes/metabolismo , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/classificação , Proteína Quinase CDC2/metabolismo , Caspases/química , Caspases/metabolismo , Domínio Catalítico , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/classificação , Quinases Ciclina-Dependentes/metabolismo , Escherichia coli/química , Escherichia coli/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Inibidores de Proteínas Quinases/química , Purinas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/metabolismo , Rhipicephalus/citologia , Rhipicephalus/enzimologia , Roscovitina , Glândulas Salivares/citologia , Glândulas Salivares/efeitos dos fármacos , Alinhamento de Sequência , Homologia Estrutural de ProteínaRESUMO
Borrelia burgdorferi, the agent of Lyme borreliosis, is a spirochetes transmitted by ticks to humans and animals. Its cultivation in vitro in tick cells allows studies of its biology and provides methodology for future research in Brazil, and for the isolation of Borrelia spp. We examined in vitro the characteristics of embryonic cells of Rhipicephalus microplus and Amblyomma cajennense in cell culture and investigated the suitability of embryonic cells as a substrate for cultivation of B. burgdorferi. Subcultures were prepared from primary cultures of embrionary cells of R. microplus and A. cajennense maintained in Leibovitz's (L-15) complete medium at 28 ºC and 31 ºC, respectively. When a monolayer had formed, the L-15 was replaced with Barbour-Stoener-Kelly medium for experiments to infect cell cultures with B. burgdorferi. After 72 hours of cultivation, the spirochetes were counted using an inverted phase contrast microscope and dark-field illumination (400×). Survival, multiplication and the adherence of B. burgdorferi for embryonic cells of R. microplus and A. cajennense were observed. B. burgdorferi cultured with embryonic cells of R. microplus grew on average to a density (final count) of 2.4 × 10(7) spirochetes/mL, whereas in cell-free culture, an average of 2.5 × 10(7) spirochetes/mL were counted. When cultivated with A. cajennense cells, the final count of spirochetes was on average 1.7 × 10(7) spirochetes/mL, while spirochetes cultured under cell-free conditions replicated on average of 2.2 × 10(7) spirochetes/mL. Similar results were observed in the final count of Spirochetes cultivated in cells of R. microplus and A. cajennense, when compared with cell-free control. These results demonstrated that cells of R. microplus and A. cajennense have the potential to be used as growth substrate for B. burgdorferi in the study of its interaction with host cells.
Assuntos
Borrelia burgdorferi/crescimento & desenvolvimento , Ixodidae/citologia , Animais , Bovinos , Células Cultivadas , Feminino , Ixodidae/embriologia , Coelhos , Rhipicephalus/citologia , Rhipicephalus/embriologiaRESUMO
Borrelia burgdorferi, the agent of Lyme borreliosis, is a spirochetes transmitted by ticks to humans and animals. Its cultivation in vitro in tick cells allows studies of its biology and provides methodology for future research in Brazil, and for the isolation of Borrelia spp. We examined in vitro the characteristics of embryonic cells of Rhipicephalus microplus and Amblyomma cajennense in cell culture and investigated the suitability of embryonic cells as a substrate for cultivation of B. burgdorferi. Subcultures were prepared from primary cultures of embrionary cells of R. microplus and A. cajennense maintained in Leibovitz's (L-15) complete medium at 28 ºC and 31 ºC, respectively. When a monolayer had formed, the L-15 was replaced with Barbour-Stoener-Kelly medium for experiments to infect cell cultures with B. burgdorferi. After 72 hours of cultivation, the spirochetes were counted using an inverted phase contrast microscope and dark-field illumination (400×). Survival, multiplication and the adherence of B. burgdorferi for embryonic cells of R. microplus and A. cajennense were observed. B. burgdorferi cultured with embryonic cells of R. microplus grew on average to a density (final count) of 2.4 × 10(7) spirochetes/mL, whereas in cell-free culture, an average of 2.5 × 10(7) spirochetes/mL were counted. When cultivated with A. cajennense cells, the final count of spirochetes was on average 1.7 × 10(7) spirochetes/mL, while spirochetes cultured under cell-free conditions replicated on average of 2.2 × 10(7) spirochetes/mL. Similar results were observed in the final count of Spirochetes cultivated in cells of R. microplus and A. cajennense, when compared with cell-free control. These results demonstrated that cells of R. microplus and A. cajennense have the potential to be used as growth substrate for B. burgdorferi in the study of its interaction with host cells.
Borrelia burgodorferi, o agente da borreliose de Lyme, é uma espiroqueta transmitida por carrapatos aos seres humanos e animais. Seu cultivo in vitro em células de carrapato permite estudos de sua biologia e propicia metodologia para futuras pesquisas no Brasil, para o isolamento de Borrelia spp. Nós examinamos in vitro as características de células embrionárias de Rhipicephalus microplus e Amblyomma cajennense, e a viabilidade de utilização dessas células embrionárias como um substrato para cultivo de B.burgdorferi. Subculturas foram preparadas a partir de culturas primárias de células embrionárias de R. microplus e A. cajennense mantidas em meio Leibovitz's (L-15) completo, a 28 ºC e 31 ºC, respectivamente. Com a formação da monocamada, o L-15 foi substituído pelo meio Barbour-Stoener-Kelly, para o experimento de infecção com B. burgdorferi nas culturas de células. Após 72 horas de cultivo, realizou-se a contagem das espiroquetas, as quais foram avaliadas sob microscópio invertido de contraste de fase e campo escuro (400×). Verificou-se a sobrevivência, a multiplicação e a aderência de B. burgdorferi em células embrionárias de R. microplus e A. cajennense. No estudo da cultura de B. burgdorferi com células embrionárias de R. microplus, observou-se, na contagem final, média de 2,4 × 10(7) espiroquetas/mL; no cultivo livre de células, verificou-se média de 2,5 × 10(7) espiroquetas/mL. No cultivo de A. cajennense, a contagem final de espiroquetas foi, em média, 1,7 × 10(7) espiroquetas/mL, enquanto que, para as cultivadas livres de células, se verificou média de 2,2 × 10(7) espiroquetas/mL. Resultado semelhante foi observado na contagem final de espiroquetas cultivadas em células de R. microplus e A. cajennense, quando comparado com o controle livre de células. Estes resultados demonstraram que células de R. microplus e A. cajennense têm o potencial para serem utilizadas como substrato para o crescimento de B. burgdorferi no estudo da interação com as células do hospedeiro.
Assuntos
Animais , Bovinos , Feminino , Coelhos , Borrelia burgdorferi/crescimento & desenvolvimento , Ixodidae/citologia , Células Cultivadas , Ixodidae/embriologia , Rhipicephalus/citologia , Rhipicephalus/embriologiaRESUMO
We investigated the interaction of Rhipicephalus microplus midgut cells with Babesia bigemina sexual stages using a proteomic approach. A polypeptide from the R. microplus midgut that binds to proteins from B. bigemina sexual stages was identified and sequenced. Combining 2D overlay and tandem mass spectrometry (MS/MS) techniques, we determined that this polypeptide corresponds to a mitochondrial voltage-dependent anion-selective channel (VDAC). The vdac gene encoding the sequenced polypeptide was identified and sequenced. This is the first report of a VDAC-like protein in R. microplus, and a possible role for this protein in the B. bigemina infection process is suggested.
Assuntos
Babesia/fisiologia , Rhipicephalus/parasitologia , Canais de Ânion Dependentes de Voltagem/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Trato Gastrointestinal/citologia , Trato Gastrointestinal/parasitologia , Regulação da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Proteômica , Reprodução/fisiologia , Rhipicephalus/citologia , Canais de Ânion Dependentes de Voltagem/genéticaRESUMO
Anaplasma marginale is a tick-borne pathogen of cattle responsible for the disease anaplasmosis. Data suggest that Rhipicephalus (Boophilus) microplus and R. annulatus may be the major tick vectors of A. marginale in tropical and subtropical regions of the world. In this work we demonstrated the first infection and propagation of a Brazilian isolate of A. marginale (UFMG1) in the BME26 cell line derived originally from embryos of R. (Boophilus) microplus. The establishment of A. marginale infection in a cell line derived from R. (Boophilus) microplus is relevant for studying the A. marginale/tick interface.
Assuntos
Anaplasma marginale/fisiologia , Rhipicephalus/citologia , Animais , Brasil , Técnicas de Cultura de Células , Linhagem CelularRESUMO
An aspartic endopeptidase was purified in our laboratory from Rhipicephalus (Boophilus) microplus eggs [Logullo, C., Vaz, I.S., Sorgine, M.H., Paiva-Silva, G.O., Faria, F.S., Zingali, R.B., De Lima, M.F., Abreu, L., Oliveira, E.F., Alves, E.W., Masuda, H., Gonzales, J.C., Masuda, A., and Oliveira, P.L., 1998. Isolation of an aspartic proteinase precursor from the egg of a hard tick, Rhipicephalus (Boophilus) microplus. Parasitology 116, 525-532]. Boophilus yolk cathepsin (BYC) was tested as component of a protective vaccine against the tick, inducing a significant immune response in cattle [da Silva, V.I., Jr., Logullo, C., Sorgine, M., Velloso, F.F., Rosa de Lima, M.F., Gonzales, J.C., Masuda, H., Oliveira, P.L., and Masuda, A., 1998. Immunization of bovines with an aspartic proteinase precursor isolated from Rhipicephalus (Boophilus) microplus eggs. Vet. Immunol. Immunopathol. 66, 331-341]. In this work, BYC was cloned and its primary sequence showed high similarity with other aspartic endopeptidases. In spite of this similarity, BYC sequence shows many important differences in relation to other aspartic peptidases, the most important being the lack of the second catalytic Asp residue, considered to be essential for the catalysis of this class of endopeptidases. When we determined BYC cleavage specificity by LC-MS, we found out that it presents a preference for hydrophobic residues in P1 and P1' in accordance to most aspartic endopeptidases. Also, when analyzed by circular dicroism, BYC presented high beta sheet content, also a characteristic of aspartic endopeptidases. On the other hand, although both native and recombinant BYC are catalytically active, they present a very low specific activity, what seems to indicate that this peptidase will digest its natural substrate, vitellin, very slowly. We speculate that such a slow Vn degradative process might constitute an important strategy to preserve egg protein content to the hatching larvae.