Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Ecol ; 83(1): 34-47, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33811505

RESUMO

Diversity of microbial eukaryotes is estimated largely based on sequencing analysis of the hypervariable regions of 18S rRNA genes. But the use of different regions of 18S rRNA genes as molecular markers may generate bias in diversity estimation. Here, we compared the differences between the two most widely used markers, V4 and V9 regions of the 18S rRNA gene, in describing the diversity of epipelagic, bathypelagic, and hadal picoeukaryotes in the Challenger Deep of the Mariana Trench, which is a unique and little explored environment. Generally, the V9 region identified more OTUs in deeper waters than V4, while the V4 region provided greater Shannon diversity than V9. In the epipelagic zone, where Alveolata was the dominant group, picoeukaryotic community compositions identified by V4 and V9 markers are similar at different taxonomic levels. However, in the deep waters, the results of the two datasets show clear differences. These differences were mainly contributed by Retaria, Fungi, and Bicosoecida. The primer targeting the V9 region has an advantage in amplifying Bicosoecids in the bathypelagic and hadal zone of the Mariana Trench, and its high abundance in V9 dataset pointed out the possibility of Bicosoecids as a dominant group in this environment. Chrysophyceae, Fungi, MALV-I, and Retaria were identified as the dominant picoeukaryotes in the bathypelagic and hadal zone and potentially play important roles in deep-sea microbial food webs and biogeochemical cycling by their phagotrophic, saprotrophic, and parasitic life styles. Overall, the use of different markers of 18S rRNA gene allows a better assessment and understanding of the picoeukaryotic diversity in deep-sea environments.


Assuntos
Alveolados , Rhizaria , Água do Mar/microbiologia , Estramenópilas , Alveolados/classificação , Oceano Pacífico , RNA Ribossômico 18S/genética , Rhizaria/classificação , Estramenópilas/classificação
2.
Sci Rep ; 11(1): 6831, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767240

RESUMO

The biostratigraphically important Permian radiolarian genera Pseudoalbaillella sensu stricto and Follicucullus (Follicucullidae, Polycystinea) are discriminated by morphological gaps in their wings and segmentation. Previous statistical analyses demonstrated that Longtanella fills morphological gaps between these two genera. Longtanella has long been regarded as a junior synonym of Parafollicucullus, and only a few species have been described. Herein several true Longtanella species are recognized from South China, and eight new species and five indeterminate species are described and illustrated to prove the validity of the genus Longtanella. In addition, a new genus, Parafollicucullinoides gen. nov., is described. Their palaeogeographic distributions and living environments are explored by applying correspondence analysis (CA), with occurrence datasets of selected fusulinacean genera from the Japanese Islands, China and Sundaland. CA results indicate that Longtanella was present to a limited extent in warmer conditions in the fusulinacean Province B and C during Kungurian-Roadian time, and possibly lived above the thermocline and below the deepest limit of fusulinaceans. The Pseudoalbaillella and the Follicucullus group preferred open ocean conditions, living below the thermocline and distributed not only in the 'Equatorial Warm Water Province', but also the northern peri-Gondwana Cool Water Province and the southern North Cool Water Province.


Assuntos
Evolução Biológica , Paleontologia , Rhizaria , China , Ásia Oriental , Filogenia , Rhizaria/classificação , Rhizaria/genética
3.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33479184

RESUMO

In the open ocean, elevated carbon flux (ECF) events increase the delivery of particulate carbon from surface waters to the seafloor by severalfold compared to other times of year. Since microbes play central roles in primary production and sinking particle formation, they contribute greatly to carbon export to the deep sea. Few studies, however, have quantitatively linked ECF events with the specific microbial assemblages that drive them. Here, we identify key microbial taxa and functional traits on deep-sea sinking particles that correlate positively with ECF events. Microbes enriched on sinking particles in summer ECF events included symbiotic and free-living diazotrophic cyanobacteria, rhizosolenid diatoms, phototrophic and heterotrophic protists, and photoheterotrophic and copiotrophic bacteria. Particle-attached bacteria reaching the abyss during summer ECF events encoded metabolic pathways reflecting their surface water origins, including oxygenic and aerobic anoxygenic photosynthesis, nitrogen fixation, and proteorhodopsin-based photoheterotrophy. The abundances of some deep-sea bacteria also correlated positively with summer ECF events, suggesting rapid bathypelagic responses to elevated organic matter inputs. Biota enriched on sinking particles during a spring ECF event were distinct from those found in summer, and included rhizaria, copepods, fungi, and different bacterial taxa. At other times over our 3-y study, mid- and deep-water particle colonization, predation, degradation, and repackaging (by deep-sea bacteria, protists, and animals) appeared to shape the biotic composition of particles reaching the abyss. Our analyses reveal key microbial players and biological processes involved in particle formation, rapid export, and consumption, that may influence the ocean's biological pump and help sustain deep-sea ecosystems.


Assuntos
Ciclo do Carbono/fisiologia , Carbono/metabolismo , Copépodes/química , Cianobactérias/química , Diatomáceas/química , Fungos/química , Rhizaria/química , Animais , Organismos Aquáticos , Carbono/química , Copépodes/classificação , Copépodes/genética , Copépodes/metabolismo , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/metabolismo , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/metabolismo , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Fixação de Nitrogênio/fisiologia , Oceanos e Mares , Fotossíntese/fisiologia , Rhizaria/classificação , Rhizaria/genética , Rhizaria/metabolismo , Estações do Ano , Água do Mar/química , Água do Mar/microbiologia
4.
Parasitology ; 147(14): 1614-1628, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32943127

RESUMO

This paper reviews current knowledge of the structure, genesis, cytochemistry and putative functions of the haplosporosomes of haplosporidians (Urosporidium, Haplosporidium, Bonamia, Minchinia) and paramyxids (Paramyxa, Paramyxoides, Marteilia, Marteilioides, Paramarteilia), and the sporoplasmosomes of myxozoans (Myxozoa - Malacosporea, Myxosporea). In all 3 groups, these bodies occur in plasmodial trophic stages, disappear at the onset of sporogony, and reappear in the spore. Some haplosporidian haplosporosomes lack the internal membrane regarded as characteristic of these bodies and that phylum. Haplosporidian haplosporogenesis is through the Golgi (spherulosome in the spore), either to form haplosporosomes at the trans-Golgi network, or for the Golgi to produce formative bodies from which membranous vesicles bud, thus acquiring the external membrane. The former method also forms sporoplasmosomes in malacosporeans, while the latter is the common method of haplosporogenesis in paramyxids. Sporoplasmogenesis in myxosporeans is largely unknown. The haplosporosomes of Haplosporidium nelsoni and sporoplasmosomes of malacosporeans are similar in arraying themselves beneath the plasmodial plasma membrane with their internal membranes pointing to the exterior, possibly to secrete their contents to lyse host cells or repel haemocytes. It is concluded that these bodies are probably multifunctional within and between groups, their internal membranes separating different functional compartments, and their origin may be from common ancestors in the Neoproterozoic.


Assuntos
Cercozoários/fisiologia , Haplosporídios/fisiologia , Myxozoa/fisiologia , Animais , Cercozoários/classificação , Haplosporídios/classificação , Interações Hospedeiro-Parasita , Myxozoa/classificação , Rhizaria/classificação , Rhizaria/fisiologia
5.
Nat Commun ; 11(1): 3831, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737305

RESUMO

Long-term time series have provided evidence that anthropogenic pressures can threaten lakes. Yet it remains unclear how and the extent to which lake biodiversity has changed during the Anthropocene, in particular for microbes. Here, we used DNA preserved in sediments to compare modern micro-eukaryotic communities with those from the end of the 19th century, i.e., before acceleration of the human imprint on ecosystems. Our results obtained for 48 lakes indicate drastic changes in the composition of microbial communities, coupled with a homogenization of their diversity between lakes. Remote high elevation lakes were globally less impacted than lowland lakes affected by local human activity. All functional groups (micro-algae, parasites, saprotrophs and consumers) underwent significant changes in diversity. However, we show that the effects of anthropogenic changes have benefited in particular phototrophic and mixotrophic species, which is consistent with the hypothesis of a global increase of primary productivity in lakes.


Assuntos
DNA/genética , Eucariotos/genética , Sedimentos Geológicos/análise , Lagos/análise , Alveolados/classificação , Alveolados/genética , Alveolados/isolamento & purificação , Biodiversidade , Evolução Biológica , Ecossistema , Eucariotos/classificação , Eucariotos/isolamento & purificação , História do Século XIX , História do Século XX , História do Século XXI , Atividades Humanas/história , Humanos , Microalgas/classificação , Microalgas/genética , Microalgas/isolamento & purificação , Microbiota/genética , Processos Fototróficos/fisiologia , Rhizaria/classificação , Rhizaria/genética , Rhizaria/isolamento & purificação , Estramenópilas/classificação , Estramenópilas/genética , Estramenópilas/isolamento & purificação
6.
Protist ; 171(1): 125712, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31986337

RESUMO

Entactinaria, an order of Radiolaria, are defined by a specific skeletal structure called "initial spicular system (ISS)". The oldest entactinarians appeared in the Ordovician period, and the extant species are thought to have survived until today. However, the morphological observation revealed that the ISSs of entactinarian families are highly variable, and the validity of this characteristic is questionable. This is supported by the results of 18S and 28S rRNA molecular phylogenetic analysis that suggested the polyphyly of the four families analyzed in this study. Orosphaeridae, Rhizosphaeridae, Hexalonchidae and Hexastylidae should be excluded from the order Entactinaria. Considering the present results and the diversity in the ISS, it is also possible that "living entactinarians" are polyphyletic.


Assuntos
Filogenia , Rhizaria/classificação , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Especificidade da Espécie
7.
Mol Ecol Resour ; 20(2): 398-403, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31677344

RESUMO

We have compiled a database of functional traits for two widespread and ecologically important groups of protists, Cercozoa and Endomyxa (Rhizaria). The functional traits of microorganisms are crucially important for interpreting results from environmental sequencing surveys. Linking morphological and ecological traits to environmental factors is common practice in studies involving micro- and macroorganisms, but is rarely applied to protists. Our database provides functional and ecologically significant traits linked to morphology, nutrition, locomotion and habitats. We discuss how the use of functional traits may help to unveil underlying ecosystem processes. This database is intended as a common reference for the molecular ecology community and will boost the understanding of ecosystem functions, especially those driven by biological interactions.


Assuntos
Rhizaria/genética , Cercozoários/classificação , Cercozoários/genética , DNA Ambiental/genética , Bases de Dados Genéticas , Ecossistema , Fenótipo , Filogenia , Rhizaria/classificação , Análise de Sequência de DNA
8.
Protist ; 170(2): 187-208, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31055251

RESUMO

Nassellaria are marine protists belonging to the Radiolaria lineage (Rhizaria). Their skeleton, made of opaline silica, exhibit an excellent fossil record, extremely valuable in micro-paleontological studies for paleo-environmental reconstruction. Yet, to date very little is known about the extant diversity and ecology of Nassellaria in contemporary oceans, and most of it is inferred from their fossil record. Here we present an integrative classification of Nassellaria based on taxonomical marker genes (18S and 28S ribosomal DNA) and morphological characteristics obtained by optical and scanning electron microscopy imaging. Our phylogenetic analyses distinguished 11 main morpho-molecular clades relying essentially on the overall morphology of the skeleton and not on internal structures as previously considered. Using fossil calibrated molecular clock we estimated the origin of Nassellaria among radiolarians primitive forms in the Devonian (ca. 420 Ma), that gave rise to living nassellarian groups in the Triassic (ca. 250 Ma), during the biggest diversification event over their evolutionary history. This morpho-molecular framework provides both a new morphological classification easier to identify under light microscopy and the basis for future molecular ecology surveys. Altogether, it brings a new standpoint to improve our scarce understanding of the ecology and worldwide distribution of extant nassellarians.


Assuntos
Filogenia , Rhizaria/classificação , DNA Ribossômico/genética , Microscopia Eletrônica de Varredura , Rhizaria/citologia , Rhizaria/genética , Rhizaria/ultraestrutura , Tempo
9.
ISME J ; 13(4): 964-976, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30538274

RESUMO

Passive sinking of particulate organic matter (POM) is the main mechanism through which the biological pump transports surface primary production to the ocean interior. However, the contribution and variability of different biological sources to vertical export is not fully understood. Here, we use DNA metabarcoding of the 18S rRNA gene and particle interceptor traps (PITs) to characterize the taxonomic composition of particles sinking out of the photic layer in the California Current Ecosystem (CCE), a productive system with high export potential. The PITs included formalin-fixed and 'live' traps to investigate eukaryotic communities involved in the export and remineralization of sinking particles. Sequences affiliated with Radiolaria dominated the eukaryotic assemblage in fixed traps (90%), with Dinophyta and Metazoa making minor contributions. The prominence of Radiolaria decreased drastically in live traps, possibly due to selective consumption by copepods, heterotrophic nanoflagellates, and phaeodarians that were heavily enriched in these traps. These patterns were consistent across the water masses surveyed extending from the coast to offshore, despite major differences in productivity and trophic structure of the epipelagic plankton community. Our findings identify Radiolaria as major actors in export fluxes in the CCE.


Assuntos
Código de Barras de DNA Taxonômico , Sedimentos Geológicos/microbiologia , Rhizaria/classificação , Rhizaria/isolamento & purificação , Água do Mar/microbiologia , California , Dinoflagellida/genética , Ecossistema , Plâncton/genética , RNA Ribossômico 18S/genética , Rhizaria/genética , Rhizaria/metabolismo
10.
J Eukaryot Microbiol ; 66(4): 560-573, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30372564

RESUMO

Vampyrellids (Vampyrellida, Rhizaria) are a major group of predatory amoebae known primarily from freshwater and soil. Environmental sequence data indicate that there is also a considerable diversity of vampyrellids inhabiting marine ecosystems, but their phenotypic traits and ecology remain largely unexplored. We discovered algivorous vampyrellids of the filoflabellate morphotype in coastal habitats in Atlantic Canada, established cultures by single-cell isolation, and characterised three strains using light microscopy, SSU rRNA gene sequencing, feeding experiments and growth experiments at various salinities. These strains exhibit orange, discoid trophozoites with ventral filopodia, moving granules ("membranosomes"), and rolling locomotion, similar to freshwater species previously assigned to Hyalodiscus Hertwig & Lesser, but here moved to Placopus Schulze (due to homonymy with Hyalodiscus Ehrenberg). SSU rRNA gene phylogenies place our strains in two distinct positions within "lineage B3" (here referred to as Placopodidae). Based on these morphological, habitat and molecular data, we describe two new species, Placopus melkoniani sp. nov. and Placopus pusillus sp. nov., both of which feed on chlorophyte flagellates (Tetraselmis, Pyramimonas) and the cryptophyte Chroomonas. They perforate the theca of Tetraselmis to extract the protoplast, and thereby represent the first vampyrellids known to degrade the biochemically exotic cell wall of the Chlorodendrales (Chlorophyta, Viridiplantae).


Assuntos
Cercozoários/classificação , Clorófitas/microbiologia , Interações Hospedeiro-Patógeno , Características de História de Vida , Cercozoários/fisiologia , Cercozoários/ultraestrutura , Microscopia , Microscopia Eletrônica de Varredura , Rhizaria/classificação , Rhizaria/fisiologia , Rhizaria/ultraestrutura , Salinidade
11.
Sci Rep ; 8(1): 15357, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337591

RESUMO

Picoeukaryotes play prominent roles in the biogeochemical cycles in marine ecosystems. However, their molecular diversity studies have been confined in marine surface waters or shallow coastal sediments. Here, we investigated the diversity and metabolic activity of picoeukaryotic communities at depths ranging from the surface to the abyssopelagic zone in the western Pacific Ocean above the north and south slopes of the Mariana Trench. This was achieved by amplifying and sequencing the V4 region of both 18S ribosomal DNA and cDNA using Illumina HiSeq sequencing. Our study revealed: (1) Four super-groups (i.e., Alveolata, Opisthokonta, Rhizaria and Stramenopiles) dominated the picoeukaryote assemblages through the water column, although they accounted for different proportions at DNA and cDNA levels. Our data expand the deep-sea assemblages from current bathypelagic to abyssopelagic zones. (2) Using the cDNA-DNA ratio as a proxy of relative metabolic activity, the highest activity for most subgroups was usually found in the mesopelagic zone; and (3) Population shift along the vertical scale was more prominent than that on the horizontal differences, which might be explained by the sharp physicochemical gradients along the water depths. Overall, our study provides a better understanding of the diversity and metabolic activity of picoeukaryotes in water columns of the deep ocean in response to varying environmental conditions.


Assuntos
Alveolados , Biodiversidade , Biota , Células Eucarióticas , Rhizaria , Estramenópilas , Alveolados/classificação , Alveolados/genética , Alveolados/crescimento & desenvolvimento , Organismos Aquáticos/classificação , Organismos Aquáticos/genética , Organismos Aquáticos/crescimento & desenvolvimento , Biota/fisiologia , Demografia , Ecossistema , Células Eucarióticas/classificação , Oceano Pacífico , Filogenia , RNA Ribossômico 18S/genética , Rhizaria/classificação , Rhizaria/genética , Rhizaria/crescimento & desenvolvimento , Água do Mar/química , Análise de Sequência de DNA , Estramenópilas/classificação , Estramenópilas/genética , Estramenópilas/crescimento & desenvolvimento
12.
Protoplasma ; 255(5): 1517-1574, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29666938

RESUMO

Infrakingdom Rhizaria is one of four major subgroups with distinct cell body plans that comprise eukaryotic kingdom Chromista. Unlike other chromists, Rhizaria are mostly heterotrophic flagellates, amoebae or amoeboflagellates, commonly with reticulose (net-like) or filose (thread-like) feeding pseudopodia; uniquely for eukaryotes, cilia have proximal ciliary transition-zone hub-lattices. They comprise predominantly flagellate phylum Cercozoa and reticulopodial phylum Retaria, whose exact phylogenetic relationship has been uncertain. Given even less clear relationships amongst cercozoan classes, we sequenced partial transcriptomes of seven Cercozoa representing five classes and endomyxan retarian Filoreta marina to establish 187-gene multiprotein phylogenies. Ectoreta (retarian infraphyla Foraminifera, Radiozoa) branch within classical Cercozoa as sister to reticulose Endomyxa. This supports recent transfer of subphylum Endomyxa from Cercozoa to Retaria alongside subphylum Ectoreta which embraces classical retarians where capsules or tests subdivide cells into organelle-containing endoplasm and anastomosing pseudopodial net-like ectoplasm. Cercozoa are more homogeneously filose, often with filose pseudopodia and/or posterior ciliary gliding motility: zooflagellate Helkesimastix and amoeboid Guttulinopsis form a strongly supported clade, order Helkesida. Cercomonads are polyphyletic (Cercomonadida sister to glissomonads; Paracercomonadida deeper). Thecofilosea are a clade, whereas Imbricatea may not be; Sarcomonadea may be paraphyletic. Helkesea and Metromonadea are successively deeper outgroups within cercozoan subphylum Monadofilosa; subphylum Reticulofilosa (paraphyletic on site-heterogeneous trees) branches earliest, Granofilosea before Chlorarachnea. Our multiprotein trees confirm that Rhizaria are sisters of infrakingdom Halvaria (Alveolata, Heterokonta) within chromist subkingdom Harosa (= SAR); they further support holophyly of chromist subkingdom Hacrobia, and are consistent with holophyly of Chromista as sister of kingdom Plantae. Site-heterogeneous rDNA trees group Kraken with environmental DNA clade 'eSarcomonad', not Paracercomonadida. Ectoretan fossil dates evidence ultrarapid episodic stem sequence evolution. We discuss early rhizarian cell evolution and multigene tree coevolutionary patterns, gene-paralogue evidence for chromist monophyly, and integrate this with fossil evidence for the age of Rhizaria and eukaryote cells, and revise rhizarian classification.


Assuntos
Cercozoários/genética , Rhizaria/genética , Cercozoários/classificação , DNA de Protozoário/genética , Filogenia , Rhizaria/classificação , Análise de Sequência de DNA
13.
J Eukaryot Microbiol ; 65(6): 828-842, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29658156

RESUMO

Rhizarian 'Novel Clade 10' (NC10) is frequently detected by 18S rRNA gene sequencing studies in freshwater planktonic samples. We describe a new genus and two species of eukaryovorous biflagellate protists, Aquavolon hoantrani n. gen. n. sp. and A. dientrani n. gen. n. sp., which represent the first morphologically characterized members of NC10, here named Aquavolonida ord. nov. The slightly metabolic cells possess naked heterodynamic flagella, whose kinetosomes lie at a right angle to each other and are connected by at least one fibril. Unlike their closest known relative Tremula longifila, they rotate around their longitudinal axis when swimming and only very rarely glide on surfaces. Screening of a wide range of environmental DNA extractions with lineage-specific PCR primers reveals that Aquavolonida consists of a large radiation of protists, which are most diversified in freshwater planktonic habitats and as yet undetected in marine environments. Earlier-branching lineages in Aquavolonida include less frequently detected organisms from soils and freshwater sediments. The 18S rRNA gene phylogeny suggests that Aquavolonida forms a common evolutionary lineage with tremulids and uncharacterized 'Novel Clade 12', which likely represents one of the deepest lineages in the Rhizaria, separate from Cercozoa (Filosa), Endomyxa, and Retaria.


Assuntos
Filogenia , Rhizaria/classificação , Rhizaria/genética , Corpos Basais/ultraestrutura , Evolução Biológica , Cercozoários/classificação , DNA de Protozoário/genética , DNA Ribossômico/genética , Eucariotos/classificação , Eucariotos/genética , Flagelos/ultraestrutura , Água Doce/parasitologia , Sedimentos Geológicos , Plâncton , RNA Ribossômico 18S/genética , Rhizaria/citologia , Rhizaria/isolamento & purificação , Análise de Sequência de DNA
14.
Eur J Protistol ; 61(Pt A): 76-84, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28992521

RESUMO

The genus Euglypha contains the largest number of filose testate amoeba taxa which were mainly described based on the morphological characteristics of shells. Despite the increasing amount of molecular data, the phylogenetic relationships within the genus Euglypha remain unresolved. In this work we provide new data on SSU rRNA gene sequences, light and electron microscopy for the two euglyphid species Euglypha bryophilaBrown, 1911 and Euglypha cristataLeidy, 1874. Both species are characterised by the presence of a turf of spines on the aboral pole of the shells but differ in shell cross sections (elliptical and circular, respectively). A newly revealed feature of E. bryophila is a three-lobed thickening at the anterior margin and an elongated lobe at the posterior margin of apertural plates. The phylogenetic analysis shows that the species group together with the previously sequenced taxa of the genus Euglypha according to the shell cross-section. The subdivision of the genus based on the shell symmetry may reflect evolutionary trends to complication of the shell from radial to biradial symmetry. We also suggest that the shape of the anterior thickening of apertural plates and the lobe at the posterior margin can be used to distinguish Euglypha at the species level.


Assuntos
Filogenia , Rhizaria/classificação , DNA de Protozoário/genética , Rhizaria/citologia , Rhizaria/genética , Rhizaria/ultraestrutura , Especificidade da Espécie
15.
Protist ; 168(4): 468-480, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28822911

RESUMO

Phytomyxea are obligate endoparasites of angiosperm plants and Stramenopiles characterised by a complex life cycle. Here Maullinia braseltonii sp. nov., an obligate parasite infecting the bull kelp Durvillaea (Phaeophyceae, Fucales) from the South-Eastern Pacific (Central Chile and Chiloe Island) and South-Western Atlantic (Falkland Islands, UK) is described. M. braseltonii causes distinct hypertrophies (galls) on the host thalli making it easily identifiable in the field. Sequence comparisons based on the partial 18S and the partial 18S-5.8S-28S regions confirmed its placement within the order Phagomyxida (Phytomyxea, Rhizaria), as a sister species of the marine parasite Maullinia ectocarpii, which is also a parasite of brown algae. The development of resting spores in M. braseltonii is described by light and electron microscopy and confirmed by FISH experiments, which visually showed the differential expression of the 28S non-coding gene, strongly in early plasmodia and weakly in late cysts. M. braseltonii is, so far, the only phytomyxean parasite of brown algae for which the formation of resting spores has been reported, and which is widely distributed in Durvillaea stocks from the Southeastern Pacific and Southwestern Atlantic.


Assuntos
Kelp/parasitologia , RNA de Algas/genética , Rhizaria/classificação , Rhizaria/fisiologia , Chile , Ilhas Malvinas , Filogenia , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , RNA Ribossômico 5,8S/genética , Rhizaria/genética , Análise de Sequência de RNA
16.
Mol Biol Evol ; 34(7): 1557-1573, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28333264

RESUMO

The innovation of the eukaryote cytoskeleton enabled phagocytosis, intracellular transport, and cytokinesis, and is largely responsible for the diversity of morphologies among eukaryotes. Still, the relationship between phenotypic innovations in the cytoskeleton and their underlying genotype is poorly understood. To explore the genetic mechanism of morphological evolution of the eukaryotic cytoskeleton, we provide the first single cell transcriptomes from uncultured, free-living unicellular eukaryotes: the polycystine radiolarian Lithomelissa setosa (Nassellaria) and Sticholonche zanclea (Taxopodida). A phylogenomic approach using 255 genes finds Radiolaria and Foraminifera as separate monophyletic groups (together as Retaria), while Cercozoa is shown to be paraphyletic where Endomyxa is sister to Retaria. Analysis of the genetic components of the cytoskeleton and mapping of the evolution of these on the revised phylogeny of Rhizaria reveal lineage-specific gene duplications and neofunctionalization of α and ß tubulin in Retaria, actin in Retaria and Endomyxa, and Arp2/3 complex genes in Chlorarachniophyta. We show how genetic innovations have shaped cytoskeletal structures in Rhizaria, and how single cell transcriptomics can be applied for resolving deep phylogenies and studying gene evolution in uncultured protist species.


Assuntos
Rhizaria/classificação , Rhizaria/genética , Teorema de Bayes , Evolução Biológica , Eucariotos/genética , Células Eucarióticas , Evolução Molecular , Filogenia , Rhizaria/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Análise de Célula Única/métodos , Transcriptoma/genética , Tubulina (Proteína)/genética
17.
J Eukaryot Microbiol ; 64(3): 370-382, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27687286

RESUMO

Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area.


Assuntos
Biodiversidade , Eucariotos/classificação , Filogenia , China , Classificação , DNA de Protozoário , DNA Ribossômico/genética , DNA Ribossômico/isolamento & purificação , Eucariotos/genética , Família Multigênica , Rhizaria/classificação , Rhizaria/genética , Água do Mar/química
18.
FEMS Microbiol Ecol ; 93(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677681

RESUMO

We tracked temporal changes in protist diversity at the Long Term Ecological Research (LTER) station MareChiara in the Gulf of Naples (Mediterranean Sea) on eight dates in 2011 using a metabarcoding approach. Illumina analysis of the V4 and V9 fragments of the 18S rDNA produced 869 522 and 1 410 071 sequences resulting in 6517 and 6519 OTUs, respectively. Marked compositional variations were recorded across the year, with less than 2% of OTUs shared among all samples and similar patterns for the two marker tags. Alveolata, Stramenopiles and Rhizaria were the most represented groups. A comparison with light microscopy data indicated an over-representation of Dinophyta in the sequence dataset, whereas Bacillariophyta showed comparable taxonomic patterns between sequence and light microscopy data. Shannon diversity values were stable from February to September, increasing thereafter with a peak in December. Community variance was mainly explained by seasonality (as temperature), trophic status (as chlorophyll a), and influence of coastal waters (as salinity). Overall, the background knowledge of the system provided a sound context for the result interpretation, showing that LTER sites provide an ideal setting for high-throughput sequencing (HTS) metabarcoding characterisation of protist assemblages and their relationships with environmental variations.


Assuntos
Alveolados/classificação , Biodiversidade , Plâncton/classificação , Rhizaria/classificação , Estramenópilas/classificação , Alveolados/genética , Alveolados/isolamento & purificação , Clorofila/metabolismo , Clorofila A , Ecologia , Mar Mediterrâneo , Filogenia , Plâncton/genética , Plâncton/isolamento & purificação , Plâncton/metabolismo , Rhizaria/genética , Rhizaria/isolamento & purificação , Estramenópilas/genética
19.
Microb Ecol ; 73(4): 801-814, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27796418

RESUMO

In this study, changes in eukaryotic community structure and water quality were investigated in an aerobic trickling filter (down-flow hanging sponge, DHS) treating domestic sewage under different organic loading rates (OLRs). The OLR clearly influenced both sponge pore water quality and relative flagellates and ciliates (free-swimming, carnivorous, crawling, and stalked protozoa) abundances in the retained sludge. Immediately after the OLR was increased from 1.05 to 1.97 kg chemical oxygen demand (COD) m-3 day-1, COD and NH4+-N treatment efficiencies both deteriorated, and relative flagellates and ciliates abundances then increased from 2-8 % to 51-65 % total cells in the middle-bottom part of the DHS reactor. In a continuous operation at a stable OLR (2.01 kg COD m-3 day-1), effluent water quality improved, and relative flagellates and ciliates abundances decreased to 15-46 % total cells in the middle-bottom part of the DHS reactor. This result may indicate that flagellates and ciliates preferentially graze on dispersed bacteria, thus, stabilizing effluent water quality. Additionally, to investigate eukaryotic community structure, clone libraries based on the 18S ribosomal ribonucleic acid (rRNA) gene of the retained sludge were constructed. The predominant group was Nucletmycea phylotypes, representing approximately 29-56 % total clones. Furthermore, a large proportion of the clones had <97 % sequence identity in the NCBI database. This result indicates that phylogenetically unknown eukaryotes were present in the DHS reactor. These results provide insights into eukaryotic community shift in the DHS reactor treating domestic sewage.


Assuntos
Aerobiose , Reatores Biológicos/microbiologia , Reatores Biológicos/parasitologia , Eucariotos/classificação , Esgotos/microbiologia , Esgotos/parasitologia , Alveolados/classificação , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Contagem de Células , Eucariotos/genética , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Poríferos , RNA Ribossômico 18S/genética , Rhizaria/classificação , Eliminação de Resíduos Líquidos , Purificação da Água , Qualidade da Água
20.
Mol Phylogenet Evol ; 101: 1-7, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27132173

RESUMO

Rhizaria is a major eukaryotic group of tremendous diversity, including amoebae with spectacular skeletons or tests (Radiolaria and Foraminifera), plasmodial parasites (Plasmodiophorida) and secondary endosymbionts (Chlorarachniophyta). Current phylogeny places Rhizaria in an unresolved trichotomy with Stramenopila and Alveolata (supergroup "SAR"). We assembled a 147-protein data set with extensive rhizarian coverage (M147), including the first transcriptomic data for a euglyphid amoeba. Phylogenetic pre-screening of individual proteins indicated potential problems with radically misplaced sequences due either to contamination of rhizarian sequences amplified from wild collected material and/or extremely long branches (xLBs). Therefore, two data subsets were extracted containing either all proteins consistently recovering rhizarian monophyly (M34) or excluding all proteins with ⩾3 xLBs (defined as ⩾2× the average terminal branch length for the tree). Phylogenetic analyses of M147 give conflicting results depending on the outgroup and method of analysis but strongly support an exclusive Rhizaria+Alveolata (R+A) clade with both data subsets (M34 and M37) regardless of phylogenetic method used. Support for an R+A clade is most consistent when a close outgroup is used and decreases with more distant outgroups, suggesting that support for alternative SAR topologies may reflect a long-branch attraction artifact. A survey of xLB distribution among taxa and protein functional category indicates that small "informational" proteins in particular have highly variable evolutionary rates with no consistent pattern among taxa.


Assuntos
Alveolados/classificação , Alveolados/metabolismo , Bases de Dados de Proteínas , Filogenia , Rhizaria/classificação , Rhizaria/metabolismo , Alveolados/genética , Genômica , Rhizaria/genética , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...