Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
Sci Rep ; 14(1): 12183, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806617

RESUMO

The fabrication of the first label-free electrochemical DNA probe biosensor for highly sensitive detection of Candidatus Liberibacter asiaticus (CLas), as the causal agent of citrus huanglongbing disease, is conducted here. An OMP probe was designed based on the hybridization with its target-specific sequence in the outer membrane protein (OMP) gene of CLas. The characterization of the steps of biosensor fabrication and hybridization process between the immobilized OMP-DNA probe and the target ssDNA oligonucleotides (OMP-complementary and three mismatches OMP or OMP-mutation) was monitored using cyclic voltammetry and electrochemical impedance spectroscopy based on increasing or decreasing in the electron transfer in [Fe (CN)6]3-/4- on the modified gold electrode surface. The biosensor sensitivity indicated that the peak currents were linear over ranges from 20 to 100 nM for OMP-complementary with the detection limit of 0.026 nM (S/N = 3). The absence of any cross-interference with other biological DNA sequences confirmed a high selectivity of fabricated biosensor. Likewise, it showed good specificity in discriminating the mutation oligonucleotides from complementary target DNAs. The functional performance of optimized biosensor was achieved via the hybridization of OMP-DNA probe with extracted DNA from citrus plant infected with CLas. Therefore, fabricated biosensor indicates promise for sensitivity and early detection of citrus huanglongbing disease.


Assuntos
Proteínas da Membrana Bacteriana Externa , Técnicas Biossensoriais , Citrus , Sondas de DNA , Técnicas Eletroquímicas , Doenças das Plantas , Técnicas Biossensoriais/métodos , Citrus/microbiologia , Doenças das Plantas/microbiologia , Sondas de DNA/genética , Proteínas da Membrana Bacteriana Externa/genética , Técnicas Eletroquímicas/métodos , Eletrodos , Hibridização de Ácido Nucleico , Espectroscopia Dielétrica , Limite de Detecção , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Liberibacter/genética
2.
Plant Dis ; 108(5): 1157-1164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38127630

RESUMO

Huanglongbing (HLB) is a citrus infectious disease caused by 'Candidatus Liberibacter' spp. Recently, it has begun to spread rapidly worldwide, causing significant losses to the citrus industry. Early diagnosis of HLB relies on quantitative real-time PCR assays. However, the PCR inhibitors found in the nucleic acid extracted from plant materials pose challenges for PCR assays because they may result in false-negative results. Internal standard (IS) can be introduced to establish a single-tube duplex PCR for monitoring the influence of the PCR inhibitor, but it also brings the risk of false-negative results because the amplification of IS may compete with the target. To solve this problem, we proposed a mutation-enhanced single-tube duplex PCR (mSTD-PCR) containing IS with mutant-type primers. By introducing the 3'-terminal mutation in the primer of IS to weaken its amplification reaction and its inhibition of 'Candidatus Liberibacter asiaticus' (CLas) detection, the sensitivity and quantitative accuracy of CLas detection will not be affected by IS. In evaluating the sensitivity of CLas detection using simulation samples, the mSTD-PCR showed consistent sensitivity at 25 copies per test compared with the single-plex CLas assay. The detection result of 30 leaves and 30 root samples showed that the mSTD-PCR could recognize false-negative results caused by the PCR inhibitors and reduce workload by 48% compared with the single-plex CLas assay. Generally, the proposed mSTD-PCR provides a reliable, efficient, inhibitor-monitorable, quantitative screening method for accurately controlling HLB and a universal method for establishing a PCR assay for various pathogens.


Assuntos
Citrus , Doenças das Plantas , Reação em Cadeia da Polimerase em Tempo Real , Rhizobiaceae , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças das Plantas/microbiologia , Citrus/microbiologia , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Primers do DNA/genética , Sensibilidade e Especificidade , Mutação , DNA Bacteriano/genética , Liberibacter/genética
3.
Appl Opt ; 60(20): 5846-5853, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34263804

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is a promising alternative to conventional methods in classifying citrus huanglongbing (HLB). Mature citrus fruits with similar features were picked and divided into healthy and HLB-asymptomatic groups. LIBS spectra and images were collected by focusing a laser on fresh fruit surfaces without sample preparation. The pH value and soluble solids content of juice as the indicators of acidity and sugar were detected, and the content of Ca, Zn, and K in peel and pulp was analyzed. The characteristic lines from LIBS spectra were extracted by continuous wavelet transform and principal component analysis (PCA). The t-test of these indicators displayed significant difference between the two groups. Fisher discriminant analysis and multilayer perception neural network (MLP) were applied to identify the disease. The classification accuracy reached 100% by PCA-MLP. The results show that LIBS can realize in situ detection of citrus HLB fruits.


Assuntos
Citrus/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Rhizobiaceae/isolamento & purificação , Espectrofotometria/métodos , Técnicas Bacteriológicas , Modelos Estatísticos , Reconhecimento Automatizado de Padrão , Análise de Componente Principal , Análise Espectral/métodos
4.
Syst Appl Microbiol ; 44(4): 126220, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34126328

RESUMO

The presence of effective microsymbionts in the soil and their compatibility with the host plant are the key determinants to the N2 fixation process. In Sub-Saharan Africa, nitrogen fixation in locally adapted cowpea and the distribution of their symbiovars are not well understood. The Aim of the study was to assess the distribution and symbiotic phylogenetic position of cowpea microsymbionts. Root nodules were sampled from various cowpea genotypes planted in Agro-Ecological Zone 7 and 8 (AEZ 7 and AEZ 8). Root-nodule bacteria were isolated and their molecular characterization was conducted. Physicochemical properties of soil were recorded. Enterobacterial Repetitive Intergenic Consensus (ERIC) distribution patterns in rhizobial genomes resulted in genetically diverse rhizobial population in Northern Mozambique. Principal component analysis showed that location-specific soil environment determined the presence of particular microsymbionts. Based on 16S rRNA and symbiotic gene analysis many diverse symbiovars were found in Mozambican soils. With few discrepancies, the results further confirmed the coevolution of the nifH, nodD, nodC and nodY/K genes, which was indicative of natural events such as vertical/horizontal gene transfer. The results suggested that ecological and phylogenetic studies of the microsymbionts are necessary to better reflect symbiovar identification and the ecological adaptation of the cowpea-nodulating rhizobial community.


Assuntos
Filogenia , Rhizobiaceae/classificação , Vigna , DNA Bacteriano/genética , Genes Bacterianos , Moçambique , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Microbiologia do Solo , Simbiose , Vigna/microbiologia
5.
World J Microbiol Biotechnol ; 37(6): 94, 2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-33963474

RESUMO

The application of plant growth-promoting bacteria in agricultural systems is an efficient and environment-friendly strategy to improve crop yields and maintain soil quality. However, as different soils have diverse and specific ecological characteristics and may represent adverse abiotic conditions, in vivo application requires the careful selection of the desired beneficial microorganisms. In this study we report Ensifer adhaerens SZMC 25856 and Pseudomonas resinovorans SZMC 25875 isolates recovered from glyphosate-treated soil to possess yet undiscovered plant growth-enhancing potential. The strains were found to promote the growth of tomato seedlings significantly, to have the ability of synthesizing indole-3-acetic acid and siderophores, to tolerate pH in the range of 6.59-7.96, salinity up to 12.5 g L-1 NaCl and drought up to 125 g L-1 polyethylene glycol 6000, as well as to survive in the presence of various pesticides including glyphosate, diuron, chlorotoluron, carbendazim and thiabendazole, and heavy metals such as Al, Fe, Mn, Zn, Pb and Cu. The plant growth-promoting traits of the examined E. adhaerens and P. resinovorans isolates and their tolerance to numerous abiotic stress factors make them promising candidates for application in different agricultural environments, including soils polluted with glyphosate.


Assuntos
Glicina/análogos & derivados , Pseudomonas/isolamento & purificação , Rhizobiaceae/isolamento & purificação , Solanum lycopersicum/crescimento & desenvolvimento , Glicina/farmacologia , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/microbiologia , Metais Pesados/farmacologia , Pseudomonas/metabolismo , Pseudomonas/fisiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/metabolismo , Rhizobiaceae/fisiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Sideróforos/metabolismo , Microbiologia do Solo , Estresse Fisiológico , Glifosato
6.
Microbiology (Reading) ; 167(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33656438

RESUMO

The compound 17α-ethinylestradiol (EE2) is a synthetic oestrogen which is classified as a group 1 carcinogen by the World Health Organization. Together with other endocrine disruptor compounds, EE2 has been included in the surface water Watch List by the European Commission, since it causes severe adverse effects in ecosystems. Thus, it became a high priority to find or improve processes such as biodegradation of EE2 to completely remove this drug from the wastewater treatment plants (WWTPs). The present study aimed at the isolation of bacteria capable of degrading EE2 using environmental samples, namely a sludge from the Faro Northwest WWTP. Four isolates with ability to grow in the presence of 50 mg l-1 EE2 were obtained. The analysis of 16SrRNA gene sequences identified the isolated bacteria as Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides. The results of biodegradation assays showed that Acinetobacter bouvetii, Acinetobacter kookii, Pantoea agglomerans and Shinella zoogloeoides were able to degrade 47±4 %, 55±3 %, 64±4% and 35±4 %, respectively of 13 mg l-1 EE2 after 168 h at 28 °C. To the best of our knowledge, these bacterial isolates were identified as EE2 degraders for the first time. In a preliminary experiment on the identification of metabolic products resulting from EE2 degradation products such as estrone (E1), γ-lactone compounds, 2-pentanedioic acid and 2-butenedioic acid an intermediate metabolite of the TCA cycle, were detected.


Assuntos
Acinetobacter/metabolismo , Estrogênios/metabolismo , Etinilestradiol/metabolismo , Pantoea/metabolismo , Rhizobiaceae/metabolismo , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo , Acinetobacter/genética , Acinetobacter/isolamento & purificação , Biodegradação Ambiental , Pantoea/genética , Pantoea/isolamento & purificação , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação
7.
Arch Microbiol ; 203(5): 2689-2698, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33715029

RESUMO

A phytohormone producing, N2-fixing and 1-aminocyclopropane-1-carboxylate (ACC) deaminase synthesizing bacterium Ensifer adhaerens KS23 effectively increased the yield and nutritional contents of Pisum sativum var. Arkel. The isolate KS23 showed positive ACC deaminase activity with 174.2 (nmol of α-ketobutyrate/g-1 biomass½ h-1) a 9.7-fold increase in glutathione S-transferase activity. The proximate analysis exhibited an increased yield of protein (21.45%), carbohydrate (38.90%), sulphur (29.94%) starch (27.52%), total ash (35.57%), fat content (27.5%), nitrogen (24.06%) and hydrogen (17.91%) in treated seeds of P. sativum as compared to untreated crop seeds in field trials at Srikot village, Srinagar-246,174 (Garhwal) India. The most desirable essential and non-essential amino-acids content was also enhanced simultaneously by E. adhaerens KS23 as compared to non-treated crop seeds. This study revealed the enhancement of various nutritional contents resulting in quality improvement and an increase in growth productivity of pea. This study provides an encouraging result that may benefit the marginal income of farmers belonging mainly to hilly regions who are dependent on traditional methods of farming and thus improving their economy.


Assuntos
Carbono-Carbono Liases/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Rhizobiaceae/metabolismo , Sementes/crescimento & desenvolvimento , Agricultura , Altitude , Índia , Nitrogênio/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Rhizobiaceae/isolamento & purificação
8.
Nat Commun ; 11(1): 6381, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318506

RESUMO

A key feature that differentiates prokaryotic cells from eukaryotes is the absence of an intracellular membrane surrounding the chromosomal DNA. Here, we isolate a member of the ubiquitous, yet-to-be-cultivated phylum 'Candidatus Atribacteria' (also known as OP9) that has an intracytoplasmic membrane apparently surrounding the nucleoid. The isolate, RT761, is a subsurface-derived anaerobic bacterium that appears to have three lipid membrane-like layers, as shown by cryo-electron tomography. Our observations are consistent with a classical gram-negative structure with an additional intracytoplasmic membrane. However, further studies are needed to provide conclusive evidence for this unique intracellular structure. The RT761 genome encodes proteins with features that might be related to the complex cellular structure, including: N-terminal extensions in proteins involved in important processes (such as cell-division protein FtsZ); one of the highest percentages of transmembrane proteins among gram-negative bacteria; and predicted Sec-secreted proteins with unique signal peptides. Physiologically, RT761 primarily produces hydrogen for electron disposal during sugar degradation, and co-cultivation with a hydrogen-scavenging methanogen improves growth. We propose RT761 as a new species, Atribacter laminatus gen. nov. sp. nov. and a new phylum, Atribacterota phy. nov.


Assuntos
Estruturas da Membrana Celular/ultraestrutura , Rhizobiaceae/classificação , Rhizobiaceae/citologia , Rhizobiaceae/isolamento & purificação , Bactérias Anaeróbias , Composição de Bases , Estruturas da Membrana Celular/genética , DNA Bacteriano/genética , Ácidos Graxos , Fermentação , Genoma Bacteriano , Sedimentos Geológicos/microbiologia , Japão , Filogenia , RNA Ribossômico 16S , Rhizobiaceae/genética , Análise de Sequência de DNA
9.
BMC Microbiol ; 20(1): 291, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32957914

RESUMO

BACKGROUND: The dried roots and rhizomes of medicinal licorices are widely used worldwide as a traditional medicinal herb, which are mainly attributed to a variety of bioactive compounds that can be extracted from licorice root. Endophytes and plants form a symbiotic relationship, which is an important source of host secondary metabolites. RESULTS: In this study, we used high-throughput sequencing technology and high-performance liquid chromatography to explore the composition and structure of the endophytic bacterial community and the content of bioactive compounds (glycyrrhizic acid, liquiritin and total flavonoids) in different species of medicinal licorices (Glycyrrhiza uralensis, Glycyrrhiza glabra, and Glycyrrhiza inflata) and in different planting years (1-3 years). Our results showed that the contents of the bioactive compounds in the roots of medicinal licorices were not affected by the species, but were significantly affected by the main effect growing year (1-3) (P < 0.05), and with a trend of stable increase in the contents observed with each growing year. In 27 samples, a total of 1,979,531 effective sequences were obtained after quality control, and 2432 effective operational taxonomic units (OTUs) were obtained at 97% identity. The phylum Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes, and the genera unified-Rhizobiaceae, Pseudomonas, Novosphingobium, and Pantoea were significantly dominant in the 27 samples. Distance-based redundancy analysis (db-RDA) showed that the content of total flavonoids explained the differences in composition and distribution of endophytic bacterial communities in roots of cultivated medicinal liquorices to the greatest extent. Total soil salt was the most important factor that significantly affected the endophytic bacterial community in soil factors, followed by ammonium nitrogen and nitrate nitrogen. Among the leaf nutrition factors, leaf water content had the most significant effect on the endophytic bacterial community, followed by total phosphorus and total potassium. CONCLUSIONS: This study not only provides information on the composition and distribution of endophytic bacteria in the roots of medicinal licorices, but also reveals the influence of abiotic factors on the community of endophytic bacteria and bioactive compounds, which provides a reference for improving the quality of licorice.


Assuntos
Flavonoides/biossíntese , Glycyrrhiza uralensis/microbiologia , Glycyrrhiza/microbiologia , Raízes de Plantas/microbiologia , Rizoma/microbiologia , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Amônia/farmacologia , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Código de Barras de DNA Taxonômico , DNA Bacteriano/genética , Endófitos/fisiologia , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Flavanonas/biossíntese , Flavanonas/isolamento & purificação , Flavonoides/classificação , Flavonoides/isolamento & purificação , Glucosídeos/biossíntese , Glucosídeos/isolamento & purificação , Glycyrrhiza/efeitos dos fármacos , Glycyrrhiza/metabolismo , Glycyrrhiza uralensis/efeitos dos fármacos , Glycyrrhiza uralensis/metabolismo , Ácido Glicirrízico/isolamento & purificação , Ácido Glicirrízico/metabolismo , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , Nitratos/farmacologia , Filogenia , Raízes de Plantas/metabolismo , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Rhizobiaceae/classificação , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação , Rizoma/metabolismo , Estações do Ano , Metabolismo Secundário , Solo/química , Microbiologia do Solo , Simbiose
10.
Chemosphere ; 260: 127532, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32683017

RESUMO

Acetaminophen (APAP), a widely used analgesic-antipyretic drug, is frequently detected in the environment and may pose ecological risks to aquatic communities. In this work, an APAP-degrading organism, designated as Ensifer sp. POKHU, was isolated from activated sludge (AS) enriched with APAP. POKHU degraded up to 630 mg/L of APAP without substrate inhibition. The bacterium metabolized APAP to hydroquinone (HQ) via 4-aminophenol (4-AP). APAP derivatives, 4AP, HQ, and 1,4-benzoquinone (BQ), frequently detected in the environment, were found to inhibit nitrogen metabolism (ammonium oxidation) to a greater extent than APAP. POKHU had the ability to degrade varying levels (0.4-40 mg/L) of 4-AP, HQ, and BQ, which indicated a great potential for detoxification in environments contaminated with both APAP and its derivatives. The addition of POKHU to fresh AS samples taken from a wastewater treatment plant greatly increased the biotransformation rates of APAP from 5.6 d-1 (no POKHU augmentation) to >20.0 d-1 (5% POKHU). Bioaugmentation with POKHU reduced 400 µg/L of APAP to levels below its ecotoxicity threshold within 4 h, which is shorter than the typical hydraulic retention times for full-scale AS processing. Overall, this study identified a new auxiliary biological agent for APAP detoxification, which could degrade both APAP and its metabolic derivatives (those that can be more toxic than the parent contaminant, APAP). The results have practical implications for developing a biological means (detoxification and bioaugmentation) of treating high-strength pharmaceutical waste streams, such as wastewater from hospitals and drug manufactures, and of landfill leachates.


Assuntos
Acetaminofen/metabolismo , Biodegradação Ambiental , Rhizobiaceae/isolamento & purificação , Esgotos/microbiologia , Purificação da Água/métodos , Acetaminofen/análogos & derivados , Acetaminofen/química , Analgésicos não Narcóticos/metabolismo , Biotransformação , Hidroquinonas/metabolismo , Cinética , Rhizobiaceae/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/química
11.
Neotrop Entomol ; 49(5): 780-782, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32557201

RESUMO

The state of Bahia ranks fourth in the national rank for citrus production, and the region of Chapada Diamantina is emerging an important producer of orange for fresh fruit market. Huanglongbing (HLB) is the major phytosanitary threat to Bahia citriculture. In Brazil, the disease was first reported in 2004 in São Paulo state. The bacterium Candidatus Liberibacter asiaticus (CLas) is one of the causal agents of HLB, which is transmitted by the insect vector Diaphorina citri Kuwayama (Hemiptera: Liviidae). Bahia is a HLB-free area; therefore, it is essential to monitor its citrus-producing areas to early detect any possible introduction of the CLas. This study aimed to monitor the presence of the bacteria in the insect vector. Diaphorina citri samples were collected from 2011 to 2014 in different cities located at Chapada Diamantina region and tested by qPCR for the presence of CLas. Three samples were considered positive to bacterium, and all from psyllids collected on Murraya paniculata in the city of Seabra.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Rhizobiaceae/isolamento & purificação , Animais , Brasil , Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/patogenicidade
12.
Arch Microbiol ; 202(7): 1809-1816, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32436039

RESUMO

Pigeon pea (Cajanus cajan (L.) Millspaugh) is among the top ten legumes grown globally not only having high tolerance to environmental stresses along, but also has the high biomass and productivity with optimal nutritional profiles. In the present study, 55 isolates of rhizobia were identified from 22 nodule samples of pigeon pea collected from semi-arid regions of India on the basis of morphological, biochemical, plant growth promoting activities and their ability to tolerate the stress conditions viz. pH, salt, temperature and drought stress. Amongst all the 55 isolates, 37 isolates showed effective nodulation under in vitro conditions in pigeon pea. Further, five isolates having multiple PGP activities and high in vitro symbiotic efficiency were subjected to 16S rRNA sequencing and confirmed their identities as Rhizobium, Mesorhizobium, Sinorhizobium sp. Further these 37 isolates were characterized at molecular level using ARDRA and revealed significant molecular diversity. Based on UPGMA clustering analysis, these isolates showed significant molecular diversity. The high degree of molecular diversity is due to mixed cropping of legumes in the region. The assessment of genetic diversity and molecular characterization of novel strains is a very important tool for the replacement of ineffective rhizobial strains with the efficient strains for the improvement in the nodulation and pigeon pea quality. The pigeon pea isolates with multiple PGPR activities could be further used for commercial production.


Assuntos
Cajanus/microbiologia , Clima Desértico , Variação Genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Índia , Mesorhizobium/classificação , Mesorhizobium/genética , Mesorhizobium/metabolismo , Pisum sativum , Filogenia , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/metabolismo , Rhizobium/classificação , Rhizobium/genética , Rhizobium/metabolismo , Sinorhizobium/classificação , Sinorhizobium/genética , Sinorhizobium/metabolismo , Simbiose
13.
J Microbiol ; 58(5): 350-356, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32342339

RESUMO

A nitrate-reducing Fe(II)-oxidizing bacterial strain, F8825T, was isolated from the Fe(II)-rich sediment of an urban creek in Pearl River Delta, China. The strain was Gram-negative, facultative chemolithotrophic, facultative anaerobic, non-spore-forming, and rod-shaped with a single flagellum. Phy-logenetic analysis based on 16S rRNA gene sequencing indicated that it belongs to the genus Ciceribacter and is most closely related to C. lividus MSSRFBL1T (99.4%), followed by C. thiooxidans F43bT (98.8%) and C. azotifigens A.slu09T (98.0%). Fatty acid, polar lipid, respiratory quinone, and DNA G + C content analyses supported its classification in the genus Ciceribacter. Multilocus sequence analysis of concatenated 16S rRNA, atpD, glnII, gyrB, recA, and thrC suggested that the isolate was a novel species. DNA-DNA hybridization and genome sequence comparisons (90.88 and 89.86%, for values of ANIm and ANIb between strains F8825T with MSSRFBL1T, respectively) confirmed that strain F8825T was a novel species, different from C. lividus MSSRFBL1T, C. thiooxidans F43bT, and C. azotifigens A.slu09T. The physiological and biochemical properties of the strain, such as carbon source utilization, nitrate reduction, and ferrous ion oxidation, further supported that this is a novel species. Based on the polyphasic taxonomic results, strain F8825T was identified as a novel species in the genus Ciceribacter, for which the name Ciceribacter ferrooxidans sp. nov. is proposed. The type strain is F8825T (= CCTCC AB 2018196T = KCTC 62948T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Rhizobiaceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Compostos Ferrosos/metabolismo , Genes Bacterianos , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Oxirredução , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Rios/microbiologia , Análise de Sequência de DNA
14.
BMC Microbiol ; 20(1): 38, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085752

RESUMO

BACKGROUND: Excessive application of chemical fertilizer has exerted a great threat to soil quality and the environment. The inoculation of plants with plant-growth-promoting rhizobacteria (PGPR) has emerged as a great prospect for ecosystem recovery. The aim of this work to isolate PGPRs and highlights the effect of bacterial inoculants on available N/P/K content in soil and on the growth of wheat under conditions of reduced fertilizer application. RESULTS: Thirty-nine PGPRs were isolated and tested for their growth-promoting potential. Thirteen isolates had nitrogen fixation ability, of which N9 (Azotobacter chroococcum) had the highest acetylene reduction activity of 156.26 nmol/gh. Eleven isolates had efficient phosphate solubilizing ability, of which P5 (Klebsiella variicola) released the most available phosphorus in liquid medium (231.68 mg/L). Fifteen isolates had efficient potassium solubilizing ability, of which K13 (Rhizobium larrymoorei) released the most available potassium in liquid medium (224.66 mg/L). In culture medium supplemented with tryptophan, P9 (Klebsiella pneumoniae) produced the greatest amount of IAA. Inoculation with the bacterial combination K14 + 176 + P9 + N8 + P5 increased the alkali-hydrolysed nitrogen, available phosphorus and available potassium in the soil by 49.46, 99.51 and 19.38%, respectively, and enhanced the N, P, and K content of wheat by 97.7, 96.4 and 42.1%, respectively. Moreover, reducing fertilizer application by 25% did not decrease the available nitrogen, phosphorus, and potassium in the soil and N/P/K content, plant height, and dry weight of wheat. CONCLUSIONS: The bacterial combination K14 + 176 + P9 + N8 + P5 is superior candidates for biofertilizers that may reduce chemical fertilizer application without influencing the normal growth of wheat.


Assuntos
Meios de Cultura/química , Rhizobiaceae/classificação , Rhizobiaceae/fisiologia , Triticum/crescimento & desenvolvimento , Fertilizantes/análise , Fixação de Nitrogênio , Fósforo/metabolismo , Filogenia , Potássio/metabolismo , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Análise de Sequência de DNA , Microbiologia do Solo , Triticum/microbiologia
15.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086307

RESUMO

Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable "Candidatus Liberibacter asiaticus" bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium Purified bioactive natural products with anti-"Ca. Liberibacter asiaticus" activity were identified from the fungus C. cladosporioides Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-"Ca Liberibacter asiaticus" bioinoculants that thrive in the citrus holosystem.IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium "Candidatus Liberibacter asiaticus," we tested the hypothesis that members of the citrus microbiome produce potential anti-"Ca Liberibacter asiaticus" natural products with potential anti-"Ca Liberibacter asiaticus" activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens.


Assuntos
Citrus/microbiologia , Microbiota , Doenças das Plantas/microbiologia , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/fisiologia , Microbiologia do Solo , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia
16.
Proc Natl Acad Sci U S A ; 117(7): 3492-3501, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015115

RESUMO

Early detection and rapid response are crucial to avoid severe epidemics of exotic pathogens. However, most detection methods (molecular, serological, chemical) are logistically limited for large-scale survey of outbreaks due to intrinsic sampling issues and laboratory throughput. Evaluation of 10 canines trained for detection of a severe exotic phytobacterial arboreal pathogen, Candidatus Liberibacter asiaticus (CLas), demonstrated 0.9905 accuracy, 0.8579 sensitivity, and 0.9961 specificity. In a longitudinal study, cryptic CLas infections that remained subclinical visually were detected within 2 wk postinfection compared with 1 to 32 mo for qPCR. When allowed to interrogate a diverse range of in vivo pathogens infecting an international citrus pathogen collection, canines only reacted to Liberibacter pathogens of citrus and not to other bacterial, viral, or spiroplasma pathogens. Canines trained to detect CLas-infected citrus also alerted on CLas-infected tobacco and periwinkle, CLas-bearing psyllid insect vectors, and CLas cocultured with other bacteria but at CLas titers below the level of molecular detection. All of these observations suggest that canines can detect CLas directly rather than only host volatiles produced by the infection. Detection in orchards and residential properties was real time, ∼2 s per tree. Spatiotemporal epidemic simulations demonstrated that control of pathogen prevalence was possible and economically sustainable when canine detection was followed by intervention (i.e., culling infected individuals), whereas current methods of molecular (qPCR) and visual detection failed to contribute to the suppression of an exponential trajectory of infection.


Assuntos
Citrus/microbiologia , Cães/fisiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/fisiologia , Olfato , Animais , Hemípteros/microbiologia , Hemípteros/fisiologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Estudos Longitudinais , Rhizobiaceae/genética , Rhizobiaceae/isolamento & purificação
17.
Insect Sci ; 27(3): 475-486, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30663253

RESUMO

Immunofluorescence has been widely used to localize microbes or specific molecules in insect tissues or cells. However, significant autofluorescence is frequently observed in tissues which can interfere with the fluorescent identification of target antigens, leading to inaccurate or even false positive fluorescent labeling. The alimentary canal of the potato psyllid, Bactericera cockerelli Sulc, exhibits intense autofluorescence, hindering the application of immunolocalization for the detection and localization of the economically important pathogen transmitted by this insect, "Candidatus Liberibacter solanacearum" (Lso). In the present study, we tested the use of irradiation, hydrogen peroxide (H2 O2 ) and Sudan black B (SBB) treatments to reduce the autofluorescence in the B. cockerelli alimentary canal tissues. Furthermore, we assessed the compatibility of the above-mentioned treatments with Lso immunolocalization and actin staining using phalloidin. Our results showed that the autofluorescence in the alimentary canal was reduced by irradiation, H2 O2 , or SBB treatments. The compatibility assays indicated that irradiation and H2 O2 treatment both greatly reduced the fluorescent signal associated with Lso and actin. However, the SBB incubation preserved those target signals, while efficiently eliminating autofluorescence in the psyllid alimentary canal. Therefore, herein we propose a robust method for reducing the autofluorescence in the B. cockerelli alimentary canal with SBB treatment, which may improve the use of immunofluorescence labeling in this organism. This method may also have a wide range of uses by reducing the autofluorescence in other arthropod species.


Assuntos
Compostos Azo , Imunofluorescência/métodos , Trato Gastrointestinal/microbiologia , Hemípteros/anatomia & histologia , Naftalenos , Coloração e Rotulagem/métodos , Animais , Hemípteros/microbiologia , Imagem Óptica/métodos , Rhizobiaceae/isolamento & purificação
18.
Int J Syst Evol Microbiol ; 70(1): 397-405, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31626583

RESUMO

A polyphasic taxonomic approach was used to characterize a nitrogen-fixing bacterium, designated strain CC-HIH110T, isolated from paddy soil in Taiwan. Cells of strain CC-HIH110T were Gram-stain-negative, rod-shaped, motile with polar flagella, catalase-positive and oxidase-positive. Optimal growth occurred at 30 °Ð¡, pH 7 and 1 % NaCl. Phylogenetic analyses based on 16S rRNA genes revealed a distinct taxonomic position attained by strain CC-HIH110T associated with Rhizobium oryziradicis (98.4 % sequence identity), Allorhizobium vitis (97.8 %), Allorhizobium taibaishanense (97.7 %) and Allorhizobium undicola (96.0 %), and lower sequence similarity to other species. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain CC-HIH110T and the type strains of other closely related species were 71.5-88.6 % and 19.6-35.5 %, respectively. Strain CC-HIH110T contained C16 : 0 3-OH, C14 : 0 3-OH/iso C16 : 1 I and C18 : 1 ω7c/C18  : 1 ω6c as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, phosphatidylcholine, three unknown aminophospholipids, two unknown phospholipids and an unknown lipid. The major polyamine was homospermidine. The DNA G+C content was 55.0 mol% and the predominant quinone was ubiquinone (Q-10). Based on its distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence, ANI and dDDH analyses, strain CC-HIH110T is proposed to represent a novel Allorhizobium species, for which the name Allorhizobium terrae sp. nov. (type strain CC-HIH110T=BCRC 80932T=JCM 31228T). In addition, Rhizobium oryziradicis is reclassified as Allorhizobium oryziradicis (type strain N19T=ACCC 19962T=KCTC 52413T) comb. nov.


Assuntos
Oryza , Filogenia , Rhizobiaceae/classificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Poliaminas/química , RNA Ribossômico 16S/genética , Rhizobiaceae/isolamento & purificação , Rhizobium , Análise de Sequência de DNA , Taiwan , Ubiquinona/análogos & derivados , Ubiquinona/química
19.
Arch Microbiol ; 202(3): 609-616, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31768560

RESUMO

A novel gram-negative, aerobic, non-spore-forming, rod-shaped and non-nitrogen fixing bacterium named strain 24NRT was isolated from wild Lilium pumilum bulbs in Fuping, Baoding City, Hebei province, PR China. The 16S rRNA gene sequences of strains 24NRT showed the highest similarity to Neorhizobium alkalisoli DSM 21826T (98.5%) and N. galegae HAMBI 540T (98.1%). Phylogenetic analysis based on 16S rRNA genes and multilocus sequence analysis (MLSA) based on the partial sequences of atpD-glnII-glnA-recA-ropD-thrC housekeeping genes both indicated that strain 24NRT is a member of the genus Neorhizobium. The average nucleotide identity between the genome sequence of strain 24NRT and that of the isolate N. alkalisoli DSM 21826T was 83.1%, and the digital DNA-DNA hybridization was 20.1%. The G+C content of strain 24NRT was 60.3 mol %. The major cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. Based on phenotypic, phylogenetic, and genotypic data, strain 24NRT is considered to represent a novel species of the genus Neorhizobium, for which the name Neorhizobium lilium sp. nov. is proposed. The type strain is 24NRT (= ACCC 61588T = JCM 33731T).


Assuntos
Endófitos/isolamento & purificação , Lilium/microbiologia , Rhizobiaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rhizobiaceae/classificação , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Análise de Sequência de DNA
20.
Microbiol Res ; 232: 126388, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865223

RESUMO

Induction of systemic tolerance in sorghum [Sorghum bicolor (L.) Moench] against drought stress was studied by screening a large collection of rhizobacterial isolates for their potential to exhibit this essential plant growth-promoting trait. This was done by means of a greenhouse assay that measured the relative change in both plant height and -biomass (roots and shoots) between rhizobacteria-primed versus non-primed (naïve) plants under drought stress conditions. In order to elucidate the metabolomic changes in S. bicolor that conferred the drought stress tolerance after treatment (priming) with selected isolates, untargeted ultra-high performance liquid chromatography-high definition mass spectrometry (UHPLC-HDMS)-based metabolomics was carried out. Intracellular metabolites were methanol-extracted from rhizobacteria-primed and naïve S. bicolor roots and shoots. Extracts were analysed on a UHPLC-HDMS system and the generated data were chemometrically mined to determine signatory metabolic profiles and bio-markers related to induced systemic tolerance. The metabolomic results showed significant treatment-related differential metabolic reprogramming between rhizobacteria-primed and naïve plants, correlating to the ability of the selected isolates to protect S. bicolor against drought stress. The selected isolates, identified by means of 16S rRNA gene sequencing as members of the genera Bacillus and Pseudomonas, were screened for 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity by means of an in vitro assay and the presence of the acdS gene was subsequently confirmed by PCR for strain N66 (Pseudomonas sp.). The underlying key metabolic changes in the enhanced drought stress tolerance observed in rhizobacteria-primed S. bicolor plants included (1) augmented antioxidant capacity; (2) growth promotion and root architecture modification as a result of the upregulation of the hormones gibberellic acid, indole acetic acid and cytokinin; (3) the early activation of induce systemic tolerance through the signalling hormones brassinolides, salicylic acid and jasmonic acid and signalling molecules sphingosine and psychosine; (4) the production of the osmolytes proline, glutamic acid and choline; (5) the production of the epicuticular wax docosanoic acid and (6) ACC deaminase activity resulting in lowered ethylene levels. These results unravelled key molecular details underlying the PGPR-induced systemic tolerance in sorghum plants, providing insights for the plant priming for abiotic stress.


Assuntos
Adaptação Fisiológica , Secas , Desenvolvimento Vegetal , Rhizobiaceae/fisiologia , Sorghum/microbiologia , Sorghum/fisiologia , Bacillus/isolamento & purificação , Bacillus/fisiologia , Biomassa , Raízes de Plantas/microbiologia , Pseudomonas/isolamento & purificação , Pseudomonas/fisiologia , RNA Ribossômico 16S , Rhizobiaceae/isolamento & purificação , Rhizobium , Solo/química , Microbiologia do Solo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...