RESUMO
Perchlorate is a persistent pollutant, generated via natural and anthropogenic processes, that possesses a high potential for endocrine disruption in humans and biota. It inhibits iodine fixation, a major reason for eliminating this pollutant from ecosystems. Remediation of perchlorate can be achieved with various physicochemical treatments, especially at low concentrations. However, microbiological approaches using microorganisms, such as those from the genera Dechloromonas, Serratia, Propionivibrio, Wolinella, and Azospirillum, are promising when perchlorate pollution is extensive. Perchlorate-reducing bacteria, isolated from harsh environments, for example saline soils, mine sediments, thermal waters, wastewater treatment plants, underground gas storage facilities, and remote areas, including the Antarctica, can provide removal yields from 20 to 100%. Perchlorate reduction, carried out by a series of enzymes, such as perchlorate reductase and superoxide chlorite, depends on pH, temperature, salt concentration, metabolic inhibitors, nutritional conditions, time of contact, and cellular concentration. Microbial degradation is cost-effective, simple to implement, and environmentally friendly, rendering it a viable method for alleviating perchlorate pollution in the environment.
Assuntos
Poluentes Ambientais , Percloratos , Ecossistema , Humanos , Percloratos/toxicidade , Rhodocyclaceae , SoloRESUMO
Among other attributes, the Betaproteobacterial genus Azoarcus has biotechnological importance for plant growth-promotion and remediation of petroleum waste-polluted water and soils. It comprises at least two phylogenetically distinct groups. The "plant-associated" group includes strains that are isolated from the rhizosphere or root interior of the C4 plant Kallar Grass, but also strains from soil and/or water; all are considered to be obligate aerobes and all are diazotrophic. The other group (now partly incorporated into the new genus Aromatoleum) comprises a diverse range of species and strains that live in water or soil that is contaminated with petroleum and/or aromatic compounds; all are facultative or obligate anaerobes. Some are diazotrophs. A comparative genome analysis of 32 genomes from 30 Azoarcus-Aromatoleum strains was performed in order to delineate generic boundaries more precisely than the single gene, 16S rRNA, that has been commonly used in bacterial taxonomy. The origin of diazotrophy in Azoarcus-Aromatoleum was also investigated by comparing full-length sequences of nif genes, and by physiological measurements of nitrogenase activity using the acetylene reduction assay. Based on average nucleotide identity (ANI) and whole genome analyses, three major groups could be discerned: (i) Azoarcus comprising Az. communis, Az. indigens and Az. olearius, and two unnamed species complexes, (ii) Aromatoleum Group 1 comprising Ar. anaerobium, Ar. aromaticum, Ar. bremense, and Ar. buckelii, and (iii) Aromatoleum Group 2 comprising Ar. diolicum, Ar. evansii, Ar. petrolei, Ar. toluclasticum, Ar. tolulyticum, Ar. toluolicum, and Ar. toluvorans. Single strain lineages such as Azoarcus sp. KH32C, Az. pumilus, and Az. taiwanensis were also revealed. Full length sequences of nif-cluster genes revealed two groups of diazotrophs in Azoarcus-Aromatoleum with nif being derived from Dechloromonas in Azoarcus sensu stricto (and two Thauera strains) and from Azospira in Aromatoleum Group 2. Diazotrophy was confirmed in several strains, and for the first time in Az. communis LMG5514, Azoarcus sp. TTM-91 and Ar. toluolicum TT. In terms of ecology, with the exception of a few plant-associated strains in Azoarcus (s.s.), across the group, most strains/species are found in soil and water (often contaminated with petroleum or related aromatic compounds), sewage sludge, and seawater. The possession of nar, nap, nir, nor, and nos genes by most Azoarcus-Aromatoleum strains suggests that they have the potential to derive energy through anaerobic nitrate respiration, so this ability cannot be usefully used as a phenotypic marker to distinguish genera. However, the possession of bzd genes indicating the ability to degrade benzoate anaerobically plus the type of diazotrophy (aerobic vs. anaerobic) could, after confirmation of their functionality, be considered as distinguishing phenotypes in any new generic delineations. The taxonomy of the Azoarcus-Aromatoleum group should be revisited; retaining the generic name Azoarcus for its entirety, or creating additional genera are both possible outcomes.
Assuntos
Azoarcus/genética , Genes Bacterianos , Genômica , Fixação de Nitrogênio/genética , Rhodocyclaceae/genética , Anaerobiose/genética , Azoarcus/classificação , Azoarcus/metabolismo , Benzoatos/metabolismo , Biodegradação Ambiental , Biotecnologia/métodos , Petróleo/metabolismo , Filogenia , Rizosfera , Rhodocyclaceae/classificação , Rhodocyclaceae/metabolismo , Microbiologia do Solo , Microbiologia da ÁguaRESUMO
Groundwater reservoirs constitute important freshwater resources. However, these ecosystems are highly vulnerable to contamination and have to rely on the resident microbiota to attenuate the impact of this contamination. Nitrate is one of the main contaminants found in groundwater, and denitrification is the main process that removes the compound. In this study, the response to nutrient load on indigenous microbial communities in groundwater from a low impacted aquifer in Uruguay was evaluated. Denitrification rates were measured in groundwater samples from three different sites with nitrate, acetate and pyrite amendments. Results showed that denitrification is feasible under in situ nitrate and electron donor concentrations, although the lack of readily available organic energy source would limit the attenuation of higher nitrate concentrations. DNA-stable isotope probing, combined with amplicon sequencing of 16S rRNA, nirS and nirK genes, was used to identify the active denitrifiers. Members of the phylum Betaproteobacteria were the dominant denitrifiers in two of three sites, with different families being observed; members of the genus Vogesella (Neisseriaceae) were key denitrifiers at one site, while the genera Dechloromonas (Rhodocyclaceae) and Comamonas (Comamonadaceae) were the main denitrifiers detected at the other sites.
Assuntos
Comamonadaceae/metabolismo , Desnitrificação/fisiologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Neisseriaceae/metabolismo , Nitratos/análise , Nitratos/metabolismo , Rhodocyclaceae/metabolismo , Acetatos/metabolismo , Comamonadaceae/classificação , Comamonadaceae/genética , DNA , Sondas de DNA , Ferro/metabolismo , Marcação por Isótopo , Isótopos , Neisseriaceae/classificação , Neisseriaceae/genética , RNA Ribossômico 16S/genética , Rhodocyclaceae/classificação , Rhodocyclaceae/genética , Sulfetos/metabolismo , UruguaiRESUMO
The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500 years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6 Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.