Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA ; 27(4): 496-512, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33483369

RESUMO

Ribosomal RNA (rRNA) carries extensive 2'-O-methyl marks at functionally important sites. This simple chemical modification is thought to confer stability, promote RNA folding, and contribute to generate a heterogenous ribosome population with a yet-uncharacterized function. 2'-O-methylation occurs both in archaea and eukaryotes and is accomplished by the Box C/D RNP enzyme in an RNA-guided manner. Extensive and partially conflicting structural information exists for the archaeal enzyme, while no structural data is available for the eukaryotic enzyme. The yeast Box C/D RNP consists of a guide RNA, the RNA-primary binding protein Snu13, the two scaffold proteins Nop56 and Nop58, and the enzymatic module Nop1. Here we present the high-resolution structure of the eukaryotic Box C/D methyltransferase Nop1 from Saccharomyces cerevisiae bound to the amino-terminal domain of Nop56. We discuss similarities and differences between the interaction modes of the two proteins in archaea and eukaryotes and demonstrate that eukaryotic Nop56 recruits the methyltransferase to the Box C/D RNP through a protein-protein interface that differs substantially from the archaeal orthologs. This study represents a first achievement in understanding the evolution of the structure and function of these proteins from archaea to eukaryotes.


Assuntos
Proteínas Arqueais/química , Proteínas Cromossômicas não Histona/química , Proteínas Nucleares/química , Pyrococcus furiosus/genética , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Expressão Gênica , Metilação , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pyrococcus furiosus/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
2.
Biomol NMR Assign ; 14(1): 131-140, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32030621

RESUMO

Many cellular functions rely on stable protein-only or protein-RNA complexes. Deciphering their assembly mechanism is a key question in cell biology. We here focus on box C/D small nucleolar ribonucleoproteins involved in ribosome biogenesis. The mature particles contain four core proteins and a guide RNA. Despite their relatively simple composition, these particles don't self-assemble in eukaryote and the production of a native and functional particle requires a large number of transient other proteins, called assembly factors. We present here 13C and 15N solid-state NMR assignment of yeast 126-residue core protein Snu13 in the context of its 50 kDa pre-complex with assembly factors Rsa1p:Hit1p. In this sample, only one third of the protein is labelled, leading to a low sensitivity. We could nevertheless obtain assignment data for 91% of the residues. Secondary structure derived from our assignments shows that Snu13p overall structure is maintained in the context of the complex. Chemical shift perturbations are analysed to evaluate Snu13p conformational changes and interaction interface upon binding to its partner proteins. While indirect perturbations are observed in the hydrophobic core, we find other good candidate residues belonging to the interaction interface. We describe the role of some Snu13p N-terminal and C-terminal residues, not identified in previous structural studies. These preliminary results will serve as a basis for future interaction studies, especially by adding RNA, to decipher box C/D snoRNP particles assembly pathway.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Peso Molecular , Estrutura Secundária de Proteína
3.
Nucleic Acids Res ; 48(7): 3848-3868, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31996908

RESUMO

U3 snoRNA and the associated Rrp9/U3-55K protein are essential for 18S rRNA production by the SSU-processome complex. U3 and Rrp9 are required for early pre-rRNA cleavages at sites A0, A1 and A2, but the mechanism remains unclear. Substitution of Arg 289 in Rrp9 to Ala (R289A) specifically reduced cleavage at sites A1 and A2. Surprisingly, R289 is located on the surface of the Rrp9 ß-propeller structure opposite to U3 snoRNA. To understand this, we first characterized the protein-protein interaction network of Rrp9 within the SSU-processome. This identified a direct interaction between the Rrp9 ß-propeller domain and Rrp36, the strength of which was reduced by the R289A substitution, implicating this interaction in the observed processing phenotype. The Rrp9 R289A mutation also showed strong synergistic negative interactions with mutations in U3 that destabilize the U3/pre-rRNA base-pair interactions or reduce the length of their linking segments. We propose that the Rrp9 ß-propeller and U3/pre-rRNA binding cooperate in the structure or stability of the SSU-processome. Additionally, our analysis of U3 variants gave insights into the function of individual segments of the 5'-terminal 72-nt sequence of U3. We interpret these data in the light of recently reported SSU-processome structures.


Assuntos
Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/química , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , RNA Nucleolar Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Sci Rep ; 9(1): 20228, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882871

RESUMO

The AAA + ATPase R2TP complex facilitates assembly of a number of ribonucleoprotein particles (RNPs). Although the architecture of R2TP is known, its molecular basis for acting upon multiple RNPs remains unknown. In yeast, the core subunit of the box C/D small nucleolar RNPs, Nop58p, is the target for R2TP function. In the recently observed U3 box C/D snoRNP as part of the 90 S small subunit processome, the unfolded regions of Nop58p are observed to form extensive interactions, suggesting a possible role of R2TP in stabilizing the unfolded region of Nop58p prior to its assembly. Here, we analyze the interaction between R2TP and a Maltose Binding Protein (MBP)-fused Nop58p by biophysical and yeast genetics methods. We present evidence that R2TP interacts largely with the unfolded termini of Nop58p. Our results suggest a general mechanism for R2TP to impart specificity by recognizing unfolded regions in its clients.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Microscopia Crioeletrônica , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Desdobramento de Proteína , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
5.
Anal Chem ; 91(18): 11827-11833, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31429255

RESUMO

Methylation of arginine residues in proteins, an enzyme-mediated post-translational modification (PTM), is important for mRNA processing and transport and for the regulation of many protein-protein interactions. However, proteolytic peptides resulting from alternative sites of post-translational methylation have identical masses and cannot be readily separated by standard liquid chromatography-mass spectrometry. Unlike acetylation or phosphorylation, methylation of arginine does not strongly affect the charge states of peptide ions, multiple instances of methylation can occur on a single amino acid residue, and the relative mass of the modification is <1% that of the typical proteolytic peptide. High field asymmetric waveform ion mobility spectrometry (FAIMS) is an orthogonal separation method to liquid chromatography that can rapidly separate gaseous ions prior to detection by mass spectrometry. Here, we report that FAIMS can be used to separate arginine-methylated peptides that differ by the position of a single methyl group for both mono- and dimethylated variants. Although the resolution of separation for these arginine-methylated peptides improved with increasing amounts of helium in the FAIMS carrier gas as expected, we found that the site of methylation can strongly affect the dependence of the electric field used for ion transmission on the extent of helium in the carrier gas. Thus, certain isobaric peptides can be cotransmitted at high helium concentrations whereas lower concentrations can be used for successful separations of such peptide mixtures. The capability to rapidly resolve isobaric arginine-methylated peptides should be useful in the future for the detailed analysis of protein arginine methylation in biological samples.


Assuntos
Espectrometria de Massas/métodos , Proteínas Nucleares/química , Peptídeos/isolamento & purificação , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas de Saccharomyces cerevisiae/química , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Hélio/química , Espectrometria de Mobilidade Iônica/métodos , Metilação , Proteínas Nucleares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Sequências Repetitivas de Aminoácidos , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
RNA ; 25(6): 685-701, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30910870

RESUMO

Eukaryotic ribosome biogenesis is a highly orchestrated process involving numerous assembly factors including ATP-dependent RNA helicases. The DEAH helicase DHX37 (Dhr1 in yeast) is activated by the ribosome biogenesis factor UTP14A to facilitate maturation of the small ribosomal subunit. We report the crystal structure of DHX37 in complex with single-stranded RNA, revealing a canonical DEAH ATPase/helicase architecture complemented by a structurally unique carboxy-terminal domain (CTD). Structural comparisons of the nucleotide-free DHX37-RNA complex with DEAH helicases bound to RNA and ATP analogs reveal conformational changes resulting in a register shift in the bound RNA, suggesting a mechanism for ATP-dependent 3'-5' RNA translocation. We further show that a conserved sequence motif in UTP14A interacts with and activates DHX37 by stimulating its ATPase activity and enhancing RNA binding. In turn, the CTD of DHX37 is required, but not sufficient, for interaction with UTP14A in vitro and is essential for ribosome biogenesis in vivo. Together, these results shed light on the mechanism of DHX37 and the function of UTP14A in controlling its recruitment and activity during ribosome biogenesis.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/análogos & derivados , RNA Helicases DEAD-box/química , Biogênese de Organelas , RNA Helicases/química , RNA/química , Ribonucleoproteínas Nucleolares Pequenas/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Camundongos , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Especificidade por Substrato
7.
RNA ; 24(12): 1625-1633, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30254138

RESUMO

Structural biology studies of archaeal and yeast box C/D ribonucleoprotein particles (RNPs) reveal a surprisingly wide range of forms. If form ever follows function, the different structures of box C/D small ribonucleoprotein particles (snoRNPs) may reflect their versatile functional roles beyond what has been recognized. A large majority of box C/D RNPs serve to site-specifically methylate the ribosomal RNA, typically as independent complexes. Select members of the box C/D snoRNPs also are essential components of the megadalton RNP enzyme, the small subunit processome that is responsible for processing ribosomal RNA. Other box C/D RNPs continue to be uncovered with either unexpected or unknown functions. We summarize currently known box C/D RNP structures in this review and identify the Nop56/58 and box C/D RNA subunits as the key elements underlying the observed structural diversity, and likely, the diverse functional roles of box C/D RNPs.


Assuntos
RNA Arqueal/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas/química , Saccharomyces cerevisiae/genética , Archaea/genética , Proteínas Nucleares/síntese química , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , RNA Arqueal/genética , RNA Ribossômico/química , RNA Ribossômico/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas Nucleolares Pequenas/química , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/síntese química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
RNA ; 23(9): 1329-1337, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28576826

RESUMO

Archaeal fibrillarin (aFib) is a well-characterized S-adenosyl methionine (SAM)-dependent RNA 2'-O-methyltransferase that is known to act in a large C/D ribonucleoprotein (RNP) complex together with Nop5 and L7Ae proteins and a box C/D guide RNA. In the reaction, the guide RNA serves to direct the methylation reaction to a specific site in tRNA or rRNA by sequence complementarity. Here we show that a Pyrococcus abyssi aFib-Nop5 heterodimer can alone perform SAM-dependent 2'-O-methylation of 16S and 23S ribosomal RNAs in vitro independently of L7Ae and C/D guide RNAs. Using tritium-labeling, mass spectrometry, and reverse transcription analysis, we identified three in vitro 2'-O-methylated positions in the 16S rRNA of P. abyssi, positions lying outside of previously reported pyrococcal C/D RNP methylation sites. This newly discovered stand-alone activity of aFib-Nop5 may provide an example of an ancestral activity retained in enzymes that were recruited to larger complexes during evolution.


Assuntos
Archaea/genética , Archaea/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , RNA Arqueal/genética , RNA Arqueal/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Cromossômicas não Histona/química , Metilação , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas Nucleolares Pequenas/química , Especificidade por Substrato
9.
Nucleic Acids Res ; 45(8): 4796-4809, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28082392

RESUMO

Two proteins with PIN endonuclease domains, yUtp24(Fcf1)/hUTP24 and yUtp23/hUTP23 are essential for early pre-ribosomal (r)RNA cleavages at sites A0, A1/1 and A2/2a in yeast and humans. The yUtp24/hUTP24 PIN endonuclease is proposed to cleave at sites A1/1 and A2/2a, but the enzyme cleaving at site A0 is not known. Yeast yUtp23 contains a degenerate, non-essential PIN domain and functions together with the snR30 snoRNA, while human hUTP23 is associated with U17, the human snR30 counterpart. Using in vivo RNA-protein crosslinking and gel shift experiments, we reveal that yUtp23/hUTP23 makes direct contacts with expansion sequence 6 (ES6) in the 18S rRNA sequence and that yUtp23 interacts with the 3΄ half of the snR30 snoRNA. Protein-protein interaction studies further demonstrated that yeast yUtp23 and human hUTP23 directly interact with the H/ACA snoRNP protein yNhp2/hNHP2, the RNA helicase yRok1/hROK1(DDX52), the ribosome biogenesis factor yRrp7/hRRP7 and yUtp24/hUTP24. yUtp23/hUTP23 could therefore be central to the coordinated integration and release of ES6 binding factors and likely plays a pivotal role in remodeling this pre-rRNA region in both yeast and humans. Finally, studies using RNAi-rescue systems in human cells revealed that intact PIN domain and Zinc finger motifs in human hUTP23 are essential for 18S rRNA maturation.


Assuntos
Proteínas Nucleares/biossíntese , Conformação de Ácido Nucleico , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Ligação Proteica , Domínios Proteicos/genética , Mapas de Interação de Proteínas/genética , Precursores de RNA/genética , RNA Ribossômico 18S/química , RNA Ribossômico 18S/genética , RNA Nucleolar Pequeno/biossíntese , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Ribonucleoproteínas Nucleolares Pequenas/biossíntese , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribossomos/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Structure ; 24(10): 1693-1706, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27594683

RESUMO

Box C/D small nucleolar ribonucleoparticles (snoRNPs) support 2'-O-methylation of several target RNAs. They share a common set of four core proteins (SNU13, NOP58, NOP56, and FBL) that are assembled on different guide small nucleolar RNAs. Assembly of these entities involves additional protein factors that are absent in the mature active particle. In this context, the platform protein NUFIP1/Rsa1 establishes direct and simultaneous contacts with core proteins and with the components of the assembly machinery. Here, we solve the nuclear magnetic resonance (NMR) structure of a complex resulting from interaction between protein fragments of human NUFIP1 and its cofactor ZNHIT3, and emphasize their imbrication. Using yeast two-hybrid and complementation assays, protein co-expression, isothermal titration calorimetry, and NMR, we demonstrate that yeast and human complexes involving NUFIP1/Rsa1p, ZNHIT3/Hit1p, and SNU13/Snu13p share strong structural similarities, suggesting that the initial steps of the box C/D snoRNP assembly process are conserved among species.


Assuntos
Proteínas Nucleares/química , Proteínas de Ligação a RNA/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Sequência Conservada , Evolução Molecular , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição
11.
J Mol Biol ; 428(11): 2488-2506, 2016 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-27139642

RESUMO

Zf­HIT family members share the zf­HIT domain (ZHD), which is characterized by a fold in "treble-clef" through interleaved CCCC and CCHC ZnF motifs that both bind a zinc atom. Six proteins containing ZHD are present in human and three in yeast proteome, all belonging to multimodular RNA/protein complexes involved in gene regulation, chromatin remodeling, and snoRNP assembly. An interesting characteristic of the cellular complexes that ensure these functions is the presence of the RuvBL1/2/Rvb1/2 ATPases closely linked with zf­HIT proteins. Human ZNHIT6/BCD1 and its counterpart in yeast Bcd1p were previously characterized as assembly factors of the box C/D snoRNPs. Our data reveal that the ZHD of Bcd1p is necessary but not sufficient for yeast growth and that the motif has no direct RNA-binding capacity but helps Bcd1p maintain the box C/D snoRNAs level in steady state. However, we demonstrated that Bcd1p interacts nonspecifically with RNAs depending on their length. Interestingly, the ZHD of Bcd1p is functionally interchangeable with that of Hit1p, another box C/D snoRNP assembly factor belonging to the zf­HIT family. This prompted us to use NMR to solve the 3D structures of ZHD from yeast Bcd1p and Hit1p to highlight the structural similarity in the zf­HIT family. We identified structural features associated with the requirement of Hit1p and Bcd1p ZHD for cell growth and box C/D snoRNA stability under heat stress. Altogether, our data suggest an important role of ZHD could be to maintain functional folding to the rest of the protein, especially under heat stress conditions.


Assuntos
Fator 6 Semelhante a Kruppel/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Dedos de Zinco , Temperatura Alta , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Ribonucleoproteínas Nucleolares Pequenas/química , Saccharomyces cerevisiae/efeitos da radiação , Estresse Fisiológico
12.
Nucleic Acids Res ; 43(15): 7207-16, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26206671

RESUMO

H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.


Assuntos
Proteínas Arqueais/química , Transferases Intramoleculares/química , RNA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Entropia , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Pseudouridina/metabolismo , Pyrococcus furiosus/enzimologia , RNA/química , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Uridina/metabolismo
13.
BMC Mol Biol ; 16: 7, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25888478

RESUMO

BACKGROUND: Box C/D snoRNPs are responsible for rRNA methylation and processing, and are formed by snoRNAs and four conserved proteins, Nop1, Nop56, Nop58 and Snu13. The snoRNP assembly is a stepwise process, involving other protein complexes, among which the R(2)TP and Hsp90 chaperone. Nop17, also known as Pih1, has been shown to be a constituent of the R(2)TP (Rvb1, Rvb2, Tah1, Pih1) and to participate in box C/D snoRNP assembly by its interaction with Nop58. The molecular function of Nop17, however, has not yet been described. RESULTS: To shed light on the role played by Nop17 in the maturation of snoRNP, here we analyzed the interactions domains of Nop58 - Nop17 - Tah1 and the importance of ATP to the interaction between Nop17 and the ATPase Rvb1/2. CONCLUSIONS: Based on the results shown here, we propose a model for the assembly of box C/D snoRNP, according to which R(2)TP complex is important for reducing the affinity of Nop58 for snoRNA, and for the binding of the other snoRNP subunits.


Assuntos
Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Estabilidade Proteica , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo
14.
Nucleic Acids Res ; 42(16): 10731-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170085

RESUMO

Biogenesis of eukaryotic box C/D small nucleolar ribonucleoprotein particles (C/D snoRNPs) involves conserved trans-acting factors, which are proposed to facilitate the assembly of the core proteins Snu13p/15.5K, Nop58p/NOP58, Nop56p/NOP56 and Nop1p/Fibrillarin on box C/D small nucleolar RNAs (C/D snoRNAs). In yeast, protein Rsa1 acts as a platform, interacting with both the RNA-binding core protein Snu13 and protein Pih1 of the Hsp82-R2TP chaperone complex. In this work, a proteomic approach coupled with functional and structural studies identifies protein Hit1 as a novel Rsa1p-interacting partner involved in C/D snoRNP assembly. Hit1p contributes to in vivo C/D snoRNA stability and pre-RNA maturation kinetics. It associates with U3 snoRNA precursors and influences its 3'-end processing. Remarkably, Hit1p is required to maintain steady-state levels of Rsa1p. This stabilizing activity is likely to be general across eukaryotic species, as the human protein ZNHIT3(TRIP3) showing sequence homology with Hit1p regulates the abundance of NUFIP1, the Rsa1p functional homolog. The nuclear magnetic resonance solution structure of the Rsa1p317-352-Hit1p70-164 complex reveals a novel mode of protein-protein association explaining the strong stability of the Rsa1p-Hit1p complex. Our biochemical data show that C/D snoRNAs and the core protein Nop58 can interact with the purified Snu13p-Rsa1p-Hit1p heterotrimer.


Assuntos
RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Processamento de Terminações 3' de RNA , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
15.
Nature ; 502(7472): 519-23, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24121435

RESUMO

Post-transcriptional modifications are essential to the cell life cycle, as they affect both pre-ribosomal RNA processing and ribosome assembly. The box C/D ribonucleoprotein enzyme that methylates ribosomal RNA at the 2'-O-ribose uses a multitude of guide RNAs as templates for the recognition of rRNA target sites. Two methylation guide sequences are combined on each guide RNA, the significance of which has remained unclear. Here we use a powerful combination of NMR spectroscopy and small-angle neutron scattering to solve the structure of the 390 kDa archaeal RNP enzyme bound to substrate RNA. We show that the two methylation guide sequences are located in different environments in the complex and that the methylation of physiological substrates targeted by the same guide RNA occurs sequentially. This structure provides a means for differential control of methylation levels at the two sites and at the same time offers an unexpected regulatory mechanism for rRNA folding.


Assuntos
Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Biocatálise , Proteínas Cromossômicas não Histona/metabolismo , Metilação , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Conformação de Ácido Nucleico , Dobramento de RNA , RNA Arqueal/química , RNA Arqueal/genética , RNA Arqueal/metabolismo , Pequeno RNA não Traduzido
16.
RNA ; 19(5): 701-11, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23509373

RESUMO

The U3 snoRNA is required for 18S rRNA processing and small subunit ribosome formation in eukaryotes. Different from other box C/D snoRNAs, U3 contains an extra 5' domain that pairs with pre-rRNA and a unique B/C motif essential for recruitment of the U3-specific Rrp9 protein. Here, we analyze the structure and function of Rrp9 with crystallographic, biochemical, and cellular approaches. Rrp9 is composed of a WD repeat domain and an N-terminal region. The crystal structures of the WD domain of yeast Rrp9 and its human ortholog U3-55K were determined, revealing a typical seven-bladed propeller fold. Several conserved surface patches on the WD domain were identified, and their function in RNP assembly and yeast growth were analyzed by mutagenesis. Prior association of Snu13 with the B/C motif was found to enhance the specific binding of the WD domain. We show that a conserved 7bc loop is crucial for specific recognition of U3, nucleolar localization of Rrp9, and yeast growth. In addition, we show that the N-terminal region of Rrp9 contains a bipartite nuclear localization signal that is dispensable for nucleolar localization. Our results provide insight into the functional sites of Rrp9.


Assuntos
RNA Ribossômico 18S , RNA Nucleolar Pequeno , Ribonucleoproteínas Nucleolares Pequenas , Saccharomyces cerevisiae , Sequência de Aminoácidos/genética , Sítios de Ligação , Cristalografia por Raios X , Humanos , Conformação de Ácido Nucleico , Dobramento de Proteína , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
17.
Nucleic Acids Res ; 40(21): 10925-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23012266

RESUMO

The box H/ACA RNA-guided pseudouridine synthase is a complicated ribonucleoprotein enzyme that recruits substrate via both the guide RNA and the catalytic subunit Cbf5. Structural studies have revealed multiple conformations of the enzyme, but a quantitative description of the reaction pathway is still lacking. Using fluorescence correlation spectroscopy, we here measured the equilibrium dissociation constants and kinetic association and dissociation rates of substrate and product complexes mimicking various reaction intermediate states. These data support a sequential model for substrate loading and product release regulated by the thumb loop of Cbf5. The uridine substrate is first bound primarily through interaction with the guide RNA and then loaded into the active site while progressively interacted with the thumb. After modification, the subtle chemical structure change from uridine to pseudouridine at the target site triggers the release of the thumb, resulting in an intermediate complex with the product bound mainly by the guide RNA. By dissecting the role of Gar1 in individual steps of substrate turnover, we show that Gar1 plays a major role in catalysis and also accelerates product release about 2-fold. Our biophysical results integrate with previous structural knowledge into a coherent reaction pathway of H/ACA RNA-guided pseudouridylation.


Assuntos
Transferases Intramoleculares/metabolismo , Pseudouridina/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Domínio Catalítico , Transferases Intramoleculares/química , Cinética , Modelos Moleculares , RNA/química , RNA/metabolismo , RNA Nucleolar Pequeno/química , Ribonucleoproteínas Nucleolares Pequenas/química , Termodinâmica , Uridina/metabolismo , Pequeno RNA não Traduzido
18.
Sci Rep ; 2: 663, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22993689

RESUMO

Cbf5 is a pseudouridine synthase that usually acts in a guide RNA-dependent manner as part of H/ACA small ribonucleoproteins; however archaeal Cbf5 can also act independently of guide RNA in modifying uridine 55 in tRNA. This guide-independent activity of Cbf5 is enhanced by proteins Nop10 and Gar1 which are also found in H/ACA small ribonucleoproteins. Here, we analyzed the specific contribution of Nop10 and Gar1 for Cbf5-catalyzed pseudouridylation of tRNA. Interestingly, both Nop10 and Gar1 not only increase Cbf5's affinity for tRNA, but they also directly enhance Cbf5's catalytic activity by increasing the k(cat) of the reaction. In contrast to the guide RNA-dependent reaction, Gar1 is not involved in product release after tRNA modification. These results in conjunction with structural information suggest that Nop10 and Gar1 stabilize Cbf5 in its active conformation; we hypothesize that this might also be true for guide-RNA dependent pseudouridine formation by Cbf5.


Assuntos
Proteínas Arqueais/química , Transferases Intramoleculares/química , Pyrococcus furiosus/enzimologia , RNA de Transferência/química , Ribonucleoproteínas Nucleolares Pequenas/química , Estabilidade Enzimática , Cinética , Ligação Proteica , Pseudouridina/biossíntese , Pequeno RNA não Traduzido
19.
Genes Dev ; 26(17): 1897-910, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22892240

RESUMO

Alu repetitive sequences are the most abundant short interspersed DNA elements in the human genome. Full-length Alu elements are composed of two tandem sequence monomers, the left and right Alu arms, both derived from the 7SL signal recognition particle RNA. Since Alu elements are common in protein-coding genes, they are frequently transcribed into pre-mRNAs. Here, we demonstrate that the right arms of nascent Alu transcripts synthesized within pre-mRNA introns are processed into metabolically stable small RNAs. The intron-encoded Alu RNAs, termed AluACA RNAs, are structurally highly reminiscent of box H/ACA small Cajal body (CB) RNAs (scaRNAs). They are composed of two hairpin units followed by the essential H (AnAnnA) and ACA box motifs. The mature AluACA RNAs associate with the four H/ACA core proteins: dyskerin, Nop10, Nhp2, and Gar1. Moreover, the 3' hairpin of AluACA RNAs carries two closely spaced CB localization motifs, CAB boxes (UGAG), which bind Wdr79 in a cumulative fashion. In contrast to canonical H/ACA scaRNPs, which concentrate in CBs, the AluACA RNPs accumulate in the nucleoplasm. Identification of 348 human AluACA RNAs demonstrates that intron-encoded AluACA RNAs represent a novel, large subgroup of H/ACA RNAs, which are apparently confined to human or primate cells.


Assuntos
Elementos Alu/fisiologia , Íntrons , Proteínas/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Expressão Gênica , Células HeLa , Humanos , Chaperonas Moleculares , Estrutura Secundária de Proteína , RNA/química , RNA/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Telomerase , Globinas beta/genética
20.
RNA ; 18(8): 1527-40, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22753779

RESUMO

Box C/D small (nucleolar) ribonucleoproteins [s(no)RNPs] catalyze RNA-guided 2'-O-ribose methylation in two of the three domains of life. Recent structural studies have led to a controversy over whether box C/D sRNPs functionally assemble as monomeric or dimeric macromolecules. The archaeal box C/D sRNP from Methanococcus jannaschii (Mj) has been shown by glycerol gradient sedimentation, gel filtration chromatography, native gel analysis, and single-particle electron microscopy (EM) to adopt a di-sRNP architecture, containing four copies of each box C/D core protein and two copies of the Mj sR8 sRNA. Subsequently, investigators used a two-stranded artificial guide sRNA, CD45, to assemble a box C/D sRNP from Sulfolobus solfataricus with a short RNA methylation substrate, yielding a crystal structure of a mono-sRNP. To more closely examine box C/D sRNP architecture, we investigate the role of the omnipresent sRNA loop as a structural determinant of sRNP assembly. We show through sRNA mutagenesis, native gel electrophoresis, and single-particle EM that a di-sRNP is the near exclusive architecture obtained when reconstituting box C/D sRNPs with natural or artificial sRNAs containing an internal loop. Our results span three distantly related archaeal species--Sulfolobus solfataricus, Pyrococcus abyssi, and Archaeoglobus fulgidus--indicating that the di-sRNP architecture is broadly conserved across the entire archaeal domain.


Assuntos
Archaea/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA Arqueal/metabolismo , RNA Nucleolar Pequeno/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Archaea/classificação , Archaea/genética , Proteínas Arqueais/genética , Sequência de Bases , Metilação , Dados de Sequência Molecular , Mutagênese , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA Arqueal/genética , RNA Nucleolar Pequeno/genética , Ribonucleoproteínas Nucleolares Pequenas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...