Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 784
Filtrar
1.
PLoS Genet ; 20(5): e1011148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38776358

RESUMO

The helicase MCM and the ribonucleotide reductase RNR are the complexes that provide the substrates (ssDNA templates and dNTPs, respectively) for DNA replication. Here, we demonstrate that MCM interacts physically with RNR and some of its regulators, including the kinase Dun1. These physical interactions encompass small subpopulations of MCM and RNR, are independent of the major subcellular locations of these two complexes, augment in response to DNA damage and, in the case of the Rnr2 and Rnr4 subunits of RNR, depend on Dun1. Partial disruption of the MCM/RNR interactions impairs the release of Rad52 -but not RPA-from the DNA repair centers despite the lesions are repaired, a phenotype that is associated with hypermutagenesis but not with alterations in the levels of dNTPs. These results suggest that a specifically regulated pool of MCM and RNR complexes plays non-canonical roles in genetic stability preventing persistent Rad52 centers and hypermutagenesis.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Reparo do DNA , Replicação do DNA , Instabilidade Genômica , Proteína Rad52 de Recombinação e Reparo de DNA , Ribonucleotídeo Redutases , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Dano ao DNA/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Reparo do DNA/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo
2.
Nat Commun ; 15(1): 4667, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821952

RESUMO

Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.


Assuntos
Auranofina , Carcinoma Pulmonar de Células não Pequenas , Quinase 1 do Ponto de Checagem , Neoplasias Pulmonares , Oxirredução , Tiorredoxinas , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Humanos , Oxirredução/efeitos dos fármacos , Tiorredoxinas/metabolismo , Linhagem Celular Tumoral , Auranofina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/farmacologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Sinergismo Farmacológico , Animais
3.
Front Immunol ; 15: 1387311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711508

RESUMO

Background: Rheumatoid arthritis (RA) is a systemic immune-related disease characterized by synovial inflammation and destruction of joint cartilage. The pathogenesis of RA remains unclear, and diagnostic markers with high sensitivity and specificity are needed urgently. This study aims to identify potential biomarkers in the synovium for diagnosing RA and to investigate their association with immune infiltration. Methods: We downloaded four datasets containing 51 RA and 36 healthy synovium samples from the Gene Expression Omnibus database. Differentially expressed genes were identified using R. Then, various enrichment analyses were conducted. Subsequently, weighted gene co-expression network analysis (WGCNA), random forest (RF), support vector machine-recursive feature elimination (SVM-RFE), and least absolute shrinkage and selection operator (LASSO) were used to identify the hub genes for RA diagnosis. Receiver operating characteristic curves and nomogram models were used to validate the specificity and sensitivity of hub genes. Additionally, we analyzed the infiltration levels of 28 immune cells in the expression profile and their relationship with the hub genes using single-sample gene set enrichment analysis. Results: Three hub genes, namely, ribonucleotide reductase regulatory subunit M2 (RRM2), DLG-associated protein 5 (DLGAP5), and kinesin family member 11 (KIF11), were identified through WGCNA, LASSO, SVM-RFE, and RF algorithms. These hub genes correlated strongly with T cells, natural killer cells, and macrophage cells as indicated by immune cell infiltration analysis. Conclusion: RRM2, DLGAP5, and KIF11 could serve as potential diagnostic indicators and treatment targets for RA. The infiltration of immune cells offers additional insights into the underlying mechanisms involved in the progression of RA.


Assuntos
Artrite Reumatoide , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Aprendizado de Máquina , Ribonucleosídeo Difosfato Redutase , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/diagnóstico , Transcriptoma , Membrana Sinovial/metabolismo , Membrana Sinovial/imunologia , Cinesinas/genética , Biomarcadores , Bases de Dados Genéticas , Biologia Computacional/métodos , Máquina de Vetores de Suporte
4.
Cancer Lett ; 596: 216993, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801884

RESUMO

Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.


Assuntos
Apoptose , Proliferação de Células , Camundongos Nus , Neoplasias Pancreáticas , Tolerância a Radiação , Radiossensibilizantes , Ribonucleosídeo Difosfato Redutase , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/enzimologia , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores , Ribonucleosídeo Difosfato Redutase/metabolismo , Animais , Linhagem Celular Tumoral , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Fosforilação , Tumores Neuroendócrinos/patologia , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/radioterapia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/enzimologia , Tumores Neuroendócrinos/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Transdução de Sinais/efeitos dos fármacos , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Quinase 1 do Ponto de Checagem/genética , Camundongos , Quinase do Ponto de Checagem 2/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/antagonistas & inibidores , Feminino , Interferência de RNA , Proteína Quinase Ativada por DNA
5.
PLoS One ; 19(5): e0303593, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38820515

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a common inflammatory and autoimmune disease. Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) is a crucial and a rate-limiting enzyme responsible for deoxynucleotide triphosphate(dNTP) production. We have found a high expression level of RRM2 in patients with RA, but the molecular mechanism of its action remains unclear. METHODS: We analyzed the expression of hub genes in RA using GSE77298 datasets downloaded from Gene Expression Omnibus database. RRM2 and insulin-like growth factor-2 messenger ribonucleic acid (mRNA)-binding protein 3 (IGF2BP3) gene knockdown was achieved by infection with lentiviruses. The expression of RRM2, IGF2BP3, matrix metalloproteinase (MMP)-1, and MMP-9 were detected via western blotting assay. Cell viability was detected via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. MeRIP-qRT-PCR was performed to test the interaction of IGF2BP3 and RRM2 mRNA via m6A modification. Cell proliferation was determined by clone formation assay. Migration and invasion assays were performed using transwell Boyden chamber. RESULTS: RRM2 and IGF2BP3 were highly expressed in clinical specimens and tumor necrosis factor alpha (TNF-α) and interleukin (IL)-1ß-stimulated synovial cells. RRM2 and IGF2BP3 knockdown inhibited the proliferation, migration, and invasion of MH7A cells. The inhibitory effects of IGF2BP3 knockdown were effectively reversed by simultaneously overexpressing RRM2 in MH7A cells. By analyzing N6-methyladenosine (m6A)2Target database, five m6A regulatory target binding sites for IGF2BP3 were identified in RRM2 mRNA, suggesting a direct relationship between IGF2BP3 and RRM2 mRNA. Additionally, in RRM2 small hairpin (sh)RNA lentivirus-infected cells, the levels of phosphorylated Akt and MMP-9 were significantly decreased compared with control shRNA lentivirus-infected cells. CONCLUSION: The present study demonstrated that RRM2 promoted the Akt phosphorylation leading to high expression of MMP-9 to promote the migration and invasive capacities of MH7A cells. Overall, IGF2BP promotes the expression of RRM2, and regulates the migration and invasion of MH7A cells via Akt/MMP-9 pathway to promote RA progression.


Assuntos
Artrite Reumatoide , Proliferação de Células , Metaloproteinase 9 da Matriz , Proteínas Proto-Oncogênicas c-akt , Proteínas de Ligação a RNA , Ribonucleosídeo Difosfato Redutase , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Ribonucleosídeo Difosfato Redutase/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Progressão da Doença , Movimento Celular/genética , Regulação da Expressão Gênica
6.
Anticancer Res ; 44(6): 2471-2485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821625

RESUMO

BACKGROUND/AIM: The cytoplasmic retention and stabilization of CTNNB1 (ß-catenin) in response to Wnt is well documented in playing a role in tumor growth. Here, through the utilization of a multiplex siRNA library screening strategy, we investigated the modulation of CTNNB1 function in tumor cell progression by ribonucleoside-diphosphate reductase subunit M2 (RRM2). MATERIALS AND METHODS: We conducted a multiplex siRNA screening assay to identify targets involved in CTNNB1 nuclear translocation. In order to examine the effect of inhibition of RRM2, selected from the siRNA screening results, we performed RRM2 knockdown and assayed for colon cancer cell viability, sphere formation assay, and invasion assay. The interaction of RRM2 with CTNNB1 and its impact on oncogenesis was examined using immunoprecipitation, immunoblotting, immunocytochemistry, and RT-qPCR. RESULTS: After a series of screening and filtration steps, we identified 26 genes that were potentially involved in CTNNB1 nuclear translocation. All candidate genes were validated in various cell lines. The results revealed that siRNA-mediated knockdown of RRM2 reduces the nuclear translocation of CTNNB1. This reduction was accompanied by a decrease in cell count, resulting in a suppressive effect on tumor cell growth. CONCLUSION: High throughput siRNA screening is an attractive strategy for identifying gene functions in cancers and the interaction between RRM2 and CTNNB1 is an attractive drug target for regulating RRM2-CTNNB1-related pathways in cancers.


Assuntos
Neoplasias do Colo , Progressão da Doença , Ribonucleosídeo Difosfato Redutase , beta Catenina , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , RNA Interferente Pequeno/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes
7.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38412549

RESUMO

Alzheimer's disease is the main cause of aging-associated dementia, for which there is no effective treatment. In this work, we reanalyze the information of a previous genome wide association study, using a new pipeline design to identify novel potential drugs. With this approach, ribonucleoside-diphosphate reductase gene (RRM2B) emerged as a candidate target and its inhibitor, 2', 2'-difluoro 2'deoxycytidine (gemcitabine), as a potential pharmaceutical drug against Alzheimer's disease. We functionally verified the effect of inhibiting the RRM2B homolog, rnr-2, in an Alzheimer's model of Caenorhabditis elegans, which accumulates human Aß1-42 peptide to an irreversible paralysis. RNA interference against rnr-2 and also treatment with 200 ng/ml of gemcitabine, showed an improvement of the phenotype. Gemcitabine treatment increased the intracellular ATP level 3.03 times, which may point to its mechanism of action. Gemcitabine has been extensively used in humans for cancer treatment but at higher concentrations. The 200 ng/ml concentration did not exert a significant effect over cell cycle, or affected cell viability when assayed in the microglia N13 cell line. Thus, the inhibitory drug of the RRM2B activity could be of potential use to treat Alzheimer's disease and particularly gemcitabine might be considered as a promising candidate to be repurposed for its treatment.


Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Desoxicitidina , Modelos Animais de Doenças , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Animais , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Humanos , Gencitabina , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleotídeo Redutases/antagonistas & inibidores , Ribonucleotídeo Redutases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Interferência de RNA
8.
Inflamm Res ; 73(3): 459-473, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286859

RESUMO

OBJECTIVE: Sepsis and sepsis-associated organ failure are devastating conditions for which there are no effective therapeutic agent. Several studies have demonstrated the significance of ferroptosis in sepsis. The study aimed to identify ferroptosis-related genes (FRGs) in sepsis, providing potential therapeutic targets. METHODS: The weighted gene co-expression network analysis (WGCNA) was utilized to screen sepsis-associated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to explore gene functions. Three machine learning methods were employed to identify sepsis-related hub genes. Survival and multivariate Cox regression analysis allowed further screening for the key gene RRM2 associated with prognosis. The immune infiltration analysis of the screened sepsis key genes was performed. Additionally, a cecum ligation and puncture (CLP)-induced mouse sepsis model was constructed to validate the expression of key gene in the sepsis. RESULTS: Six sepsis-associated differentially expressed FRGs (RRM2, RPL7A, HNRNPA1, PEBP1, MYL8B and TXNIP) were screened by WGCNA and three machine learning methods analysis. Survival analysis and multivariate Cox regression analysis showed that RRM2 was a key gene in sepsis and an independent prognostic factor associated with clinicopathological and molecular features of sepsis. Immune cell infiltration analysis demonstrated that RRM2 had a connection to various immune cells, such as CD4 T cells and neutrophils. Furthermore, animal experiment demonstrated that RRM2 was highly expressed in CLP-induced septic mice, and the use of Fer-1 significantly inhibited RRM2 expression, inhibited serum inflammatory factor TNF-α, IL-6 and IL-1ß expression, ameliorated intestinal injury and improved survival in septic mice. CONCLUSION: RRM2 plays an important role in sepsis and may contribute to sepsis through the ferroptosis pathway. This study provides potential therapeutic targets for sepsis.


Assuntos
Ferroptose , Ribonucleosídeo Difosfato Redutase , Sepse , Animais , Camundongos , Linfócitos T CD4-Positivos , Ceco , Modelos Animais de Doenças , Ferroptose/genética , Sepse/genética , Fator de Necrose Tumoral alfa , Ribonucleosídeo Difosfato Redutase/metabolismo
9.
Sci Total Environ ; 914: 169727, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38163613

RESUMO

Pancreatic cancer is lethal due to poor prognosis with 5-year survival rate lesser than 5 %. Gemcitabine is currently used to treat pancreatic cancer and development of chemoresistance is a major obstacle to overcome pancreatic cancer. Nicotine is a known inducer of drug resistance in pancreatic tumor micro-environment. Present study evaluates chemoresistance triggered by nicotine while treating with gemcitabine and chemosensitization using Embelin. Embelin is a naturally occurring benzoquinone from Embelia ribes possessing therapeutic potency. To develop nicotine-induced chemo-resistance, pancreatic cancer cells PANC-1 and MIA PaCa-2 were continuously treated with nicotine followed by exposure to gemcitabine. Gemcitabine sensitivity assay and immunoblotting was performed to assess the chemo-resistance. Antiproliferative assays such as migration assay, clonogenic assay, Mitochondrial Membrane Potential (MMP) assay, dual staining assay, comet assay, Reactive Oxygen Species (ROS) assay, cell cycle analysis and immunoblotting assays were performed to witness the protein expression involved in chemoresistance and chemosensitization. Epithelial to mesenchymal transition was observed in nicotine induced chemoresistant cells. Gemcitabine sensitivity assay revealed that relative resistance was increased to 6.26 (p < 0.0001) and 6.45 (p < 0.0001) folds in resistant PANC-1 and MIA PaCa-2 compared to parental cells. Protein expression studies confirmed resistance markers like hENT1 and dCK were downregulated with subsequent increase in RRM1 expression in resistant cells. Embelin considerably decreased the cell viability with an IC50 value of 4.03 ± 0.08 µM in resistant PANC-1 and 2.11 ± 0.04 µM in resistant MIA PaCa-2. Cell cycle analysis showed Embelin treatment caused cell cycle arrest at S phase in resistant PANC-1 cells; in resistant MIA PaCa-2 cells there was an escalation in the Sub G1. Embelin upregulated Bax, γH2AX, p53, ERK1/2 and hENT1 expression with concomitant down regulation of Bcl-2 and RRM1. Bioactive molecule embelin, its combination with gemcitabine could provide new vistas to overcome chemo resistance in pancreatic cancer.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Nicotina/farmacologia , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Transição Epitelial-Mesenquimal , Resistencia a Medicamentos Antineoplásicos , Benzoquinonas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Apoptose , Microambiente Tumoral , Ribonucleosídeo Difosfato Redutase/farmacologia
10.
Cancer Chemother Pharmacol ; 93(3): 237-251, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38040978

RESUMO

PURPOSE: Pancreatic cancer (PC) remains a lethal disease, and gemcitabine resistance is prevalent. However, the biomarkers suggestive of gemcitabine resistance remain unclear. METHODS: Bioinformatic tools identified ribonucleotide reductase catalytic subunit M1 (RRM1) in gemcitabine-related datasets. A cox regression model revealed the predictive value of RRM1 with clinical features. An external clinical cohort confirmed the prognostic value of RRM1. RRM1 expression was validated in gemcitabine-resistant cells in vitro and in orthotopic PC model. CCK8, flow cytometry, transwell migration, and invasion assays were used to explore the effect of RRM1 on gemcitabine-resistant cells. The CIBERSORT algorithm investigated the impact of RRM1 on immune infiltration. RESULTS: The constructed nomogram based on RRM1 effectively predicted prognosis and was further validated. Moreover, patients with higher RRM1 had shorter overall survival. RRM1 expression was significantly higher in PC tissue and gemcitabine-resistant cells in vitro and in vivo. RRM1 knockdown reversed gemcitabine resistance, inhibited migration and invasion. The infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and plasma cells correlated markedly with RRM1 expression, and communication between tumor and immune cells probably depends on NF-κB/mTOR signaling. CONCLUSION: RRM1 may be a potential marker for prognosis and a target marker for gemcitabine resistance in PC.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Prognóstico , Antimetabólitos Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ribonucleosídeo Difosfato Redutase
11.
Asian Pac J Cancer Prev ; 24(9): 3003-3013, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37774051

RESUMO

BACKGROUND: This study aimed to evaluate the expression of class III ß-tubulin (TUBB3), ribonucleoside-diphosphate reductase 1 (RRM1), apurinic/apyrimidinic endonuclease 1 (APE1), and survivin in patients with advanced non-small cell lung cancer (NSCLC) to predict response to chemotherapy. METHODS: TUBB3, RRM1, APE1, and survivin expression levels were determined using immunohistochemistry. Protein expression was validated in Car/Pac-resistant human H1792 and A549 cells. This study included 86 patients, among whom 34 received cisplatin (Cis)/gemcitabine (Gem) and 52 received carboplatin (Car)/paclitaxel (Pac). RESULTS: Patients with low TUBB3 expression and high RRM1 and survivin expression had higher response rates than those with low RRM1 and survivin expression and high TUBB3 expression in the Car/Pac regimen. The multivariate analysis indicated that TUBB3 and RRM1 were significant independent predictive biomarkers for the Car/Pac regimen; however, there was no association between any protein and overall response in patients treated with this regimen. In the Cis/Gem regimen, only high TUBB3 expression was associated with poor overall survival; however, it did not exhibit a prognostic ability. CONCLUSION: The expression levels of TUBB3 and RRM1 in NSCLC cells are potential predictive biomarkers, but not prognostic factors, of response to chemotherapy in patients with NSCLC receiving the Car/Pac regimen.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Biomarcadores Tumorais , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino , Desoxicitidina , Proteínas de Ligação a DNA/metabolismo , Endonucleases , Neoplasias Pulmonares/metabolismo , Paclitaxel , Prognóstico , Ribonucleosídeo Difosfato Redutase , Survivina , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/metabolismo
12.
J Virol ; 97(8): e0026723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582207

RESUMO

Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/ß-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/ß-catenin signaling by promoting ß-catenin entry into the nucleus, and RRM2 activated Wnt/ß-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/ß-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/ß-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/ß-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Ribonucleosídeo Difosfato Redutase , Via de Sinalização Wnt , Animais , Vírus da Leucose Aviária/metabolismo , beta Catenina/metabolismo , Proteínas do Capsídeo/metabolismo , Galinhas , Ribonucleosídeo Difosfato Redutase/metabolismo
13.
Cancer Lett ; 567: 216266, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37321532

RESUMO

Drug resistance is a major problem in cancer treatment with traditional or targeted therapeutics. Gemcitabine is approved for several human cancers and the first line treatment for locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). However, gemcitabine resistance frequently occurs and is a major problem in successful treatments of these cancers and the mechanism of gemcitabine resistance remains largely unknown. In this study, we identified 65 genes that had reversible methylation changes in their promoters in gemcitabine resistant PDAC cells using whole genome Reduced Representation Bisulfite Sequencing analyses. One of these genes, PDGFD, was further studied in detail for its reversible epigenetic regulation in expression and shown to contribute to gemcitabine resistance in vitro and in vivo via stimulating STAT3 signaling in both autocrine and paracrine manners to upregulate RRM1 expression. Analyses of TCGA datasets showed that PDGFD positively associates with poor outcome of PDAC patients. Together, we conclude that the reversible epigenetic upregulation plays an important role in gemcitabine resistance development and targeting PDGFD signaling alleviates gemcitabine resistance for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Regulação para Cima , Epigênese Genética , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Desmetilação , Ribonucleosídeo Difosfato Redutase/genética , Linfocinas/genética , Linfocinas/metabolismo , Linfocinas/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/genética , Neoplasias Pancreáticas
14.
Sci Adv ; 9(25): eadf4068, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37352351

RESUMO

The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.


Assuntos
Animais Domésticos , Comportamento Animal , Domesticação , Mutação de Sentido Incorreto , Ribonucleosídeo Difosfato Redutase , Animais , Camundongos , Animais Domésticos/genética , Cabras/genética , Ribonucleosídeo Difosfato Redutase/genética , Seleção Genética
15.
Commun Biol ; 6(1): 249, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36882565

RESUMO

Prognosis of children with high-risk hepatoblastoma (HB), the most common pediatric liver cancer, remains poor. In this study, we found ribonucleotide reductase (RNR) subunit M2 (RRM2) was one of the key genes supporting cell proliferation in high-risk HB. While standard chemotherapies could effectively suppress RRM2 in HB cells, they induced a significant upregulation of the other RNR M2 subunit, RRM2B. Computational analysis revealed distinct signaling networks RRM2 and RRM2B were involved in HB patient tumors, with RRM2 supporting cell proliferation and RRM2B participating heavily in stress response pathways. Indeed, RRM2B upregulation in chemotherapy-treated HB cells promoted cell survival and subsequent relapse, during which RRM2B was gradually replaced back by RRM2. Combining an RRM2 inhibitor with chemotherapy showed an effective delaying of HB tumor relapse in vivo. Overall, our study revealed the distinct roles of the two RNR M2 subunits and their dynamic switching during HB cell proliferation and stress response.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Criança , Humanos , Proliferação de Células , Doença Crônica , Hepatoblastoma/tratamento farmacológico , Hepatoblastoma/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Recidiva , Ribonucleosídeo Difosfato Redutase/genética
16.
Int J Oncol ; 62(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36866763

RESUMO

The invasiveness of pancreatic cancer and its resistance to anticancer drugs define its malignant potential, and are considered to affect the peritumoral microenvironment. Cancer cells with resistance to gemcitabine exposed to external signals induced by anticancer drugs may enhance their malignant transformation. Ribonucleotide reductase large subunit M1 (RRM1), an enzyme in the DNA synthesis pathway, is upregulated during gemcitabine resistance, and its expression is associated with worse prognosis for pancreatic cancer. However, the biological function of RRM1 is unclear. In the present study, it was demonstrated that histone acetylation is involved in the regulatory mechanism related to the acquisition of gemcitabine resistance and subsequent RRM1 upregulation. The current in vitro study indicated that RRM1 expression is critical for the migratory and invasive potential of pancreatic cancer cells. Furthermore, a comprehensive RNA sequencing analysis showed that activated RRM1 induced marked changes in the expression levels of extracellular matrix­related genes, including N­cadherin, tenascin­C and COL11A. RRM1 activation also promoted extracellular matrix remodeling and mesenchymal features, which enhanced the migratory invasiveness and malignant potential of pancreatic cancer cells. The present results demonstrated that RRM1 has a critical role in the biological gene program that regulates the extracellular matrix, which promotes the aggressive malignant phenotype of pancreatic cancer.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Matriz Extracelular , Neoplasias Pancreáticas , Ribonucleosídeo Difosfato Redutase , Humanos , Acetilação , Gencitabina , Histonas , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Ribonucleosídeo Difosfato Redutase/genética , Microambiente Tumoral , Neoplasias Pancreáticas
17.
Oxid Med Cell Longev ; 2023: 3878796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713030

RESUMO

Background: Ribonucleotide reductase (RR) consists of two subunits, the large subunit RRM1 and the small subunit (RRM2 or RRM2B), which is essential for DNA replication. Dysregulations of RR were implicated in multiple types of cancer. However, the abnormal expressions and biologic functions of RR subunits in liver cancer remain to be elucidated. Methods: TCGA, HCCDB, CCLE, HPA, cBioPortal, and GeneMANIA were utilized to perform bioinformatics analysis of RR subunits in the liver cancer. GO, KEGG, and GSEA were used for enrichment analysis. Results: The expressions of RRM1, RRM2, and RRM2B were remarkably upregulated among liver cancer tissue both in mRNA and protein levels. High expression of RRM1 and RRM2 was notably associated with high tumor grade, high stage, short overall survival, and disease-specific survival. Enrichment analyses indicated that RRM1 and RRM2 were related to DNA replication, cell cycle, regulation of nuclear division, DNA repair, and DNA recombination. Correlation analysis indicated that RRM1 and RRM2 were significantly associated with several subsets of immune cell, including Th2 cells, cytotoxic cells, and neutrophils. RRM2B expression was positively associated with immune score and stromal score. Chemosensitivity analysis revealed that sensitivity of nelarabine was positively associated with high expressions of RRM1 and RRM2. The sensitivity of rapamycin was positively associated with high expressions of RRM2B. Conclusion: Our findings demonstrated high expression profiles of RR subunits in liver cancer, which may provide novel insights for predicting the poor prognosis and increased chemosensitivity of liver cancer in clinic.


Assuntos
Neoplasias Hepáticas , Ribonucleotídeo Redutases , Humanos , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Prognóstico , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Neoplasias Hepáticas/genética , Linhagem Celular Tumoral
18.
Aging (Albany NY) ; 14(19): 7890-7905, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36202136

RESUMO

Ribonucleotide reductase (RNR) small subunit M2 (RRM2) levels are known to regulate the activity of RNR, a rate-limiting enzyme in the synthesis of deoxyribonucleotide triphosphates (dNTPs) and essential for both DNA replication and repair. The high expression of RRM2 enhances the proliferation of cancer cells, thereby implicating its role as an anti-cancer agent. However, little research has been performed on its role in the prognosis of different types of cancers. This pan-cancer study aimed to evaluate the effect of high expression of RRM2 the tumor prognosis based on clinical information collected from The Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We found RRM2 gene was highly expressed in 30 types of cancers. And we performed a pan-cancer analysis of the genetic alteration status and methylation of RRM2. Results indicated that RRM2 existed hypermethylation, associated with m6A, m1A, and m5C related genes. Subsequently, we explored the microRNAs (miRNA), long non-coding RNAs (lncRNA), and the transcription factors responsible for the high expression of RRM2 in cancer cells. Results indicated that has-miR-125b-5p and has-miR-30a-5p regulated the expression of RRM2 along with transcription factors, such as CBFB, E2F1, and FOXM. Besides, we established the competing endogenous RNA (ceRNA) diagram of lncRNAs-miRNAs-circular RNAs (circRNA) involved in the regulation of RRM2 expression. Meanwhile, our study demonstrated that high-RRM2 levels correlated with patients' worse prognosis survival and immunotherapy effects through the consensus clustering and risk scores analysis. Finally, we found RRM2 regulated the resistance of immune checkpoint inhibitors through the PI3K-AKT single pathways. Collectively, our findings elucidated that high expression of RRM2 correlates with prognosis and tumor immunotherapy in pan-cancer. Moreover, these findings may provide insights for further investigation of the RRM2 gene as a biomarker in predicting immunotherapy's response and therapeutic target.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , Humanos , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , RNA Longo não Codificante/genética , RNA Circular , Biologia Computacional , Inibidores de Checkpoint Imunológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prognóstico , MicroRNAs/genética , Neoplasias/genética , Neoplasias/terapia , Imunoterapia , Fatores de Transcrição/metabolismo , Desoxirribonucleotídeos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
19.
Pharmazie ; 77(7): 224-229, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36199183

RESUMO

Pancreatic cancer is one of the most common malignancies with very poor prognosis due to its broad resistance to chemotherapy. ARID1A, a subunit of SWI/SNF complex, is involved in pancreatic carcinogenesis through epigenetic silencing of oncogenes. In this study, we aimed to explore whether ARID1A was implicated in the gemcitabine resistance in pancreatic cancer patients via regulating RRM2. We examined the effect of ARID1A depletion on the gemcitabine sensitivity in pancreatic cancer cells and explored the role of RRM2 in ARID1A-mediated pancreatic cancer cells chemosensitivity to gemcitabine. We found that Knockout of ARID1A led to gemcitabine resistance in pancreatic cancer cells, effect of which could be reversed by RRM2, a gemcitabine resistance related gene. ARID1A decreased the transcription of RRM2, and directly bound to the promoter of RRM2. Moreover, expression of RRM2 was negatively correlated with ARID1A in pancreatic cancer tissues. Thus, ARID1A-mediated RRM2 epigenetic suppression is crucial for enhancement of pancreatic cancer chemosensitivity to gemcitabine, and ARID1A could be used as a biomarker to guide the gemcitabine chemotherapy of pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Ribonucleosídeo Difosfato Redutase , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Epigênese Genética/genética , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Ribonucleosídeo Difosfato Redutase/genética , Ribonucleosídeo Difosfato Redutase/metabolismo , Fatores de Transcrição/genética , Gencitabina , Neoplasias Pancreáticas
20.
Lung Cancer ; 171: 103-114, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35933914

RESUMO

INTRODUCTION: Echinoderm microtubule-associated protein-like 4 (EML4)-Anaplastic Lymphoma Kinase (ALK) rearrangements occur in 3% to 7% of lung adenocarcinomas and are targets for treatment with tyrosine kinase inhibitors (TKIs). Here we have developed three novel EML4-ALK-positive patient-derived Non-Small-Cell-Lung-Cancer (NSCLC) cancer cell lines, CUTO8 (variant 1), CUTO9 (variant 1) and CUTO29 (variant 3) and included a fourth ALK-positive cell line YU1077 (variant 3) to study ALK-positive signaling and responses. Variants 1 and 3 are the most common EML4-ALK variants expressed in ALK-positive NSCLC, and currently cell lines representing these EML4-ALK variants are limited. MATERIALS AND METHODS: Resazurin assay was performed to evaluate cell viability. Protein levels were determined using western blotting. RNA sequencing was performed in all four cell lines to identify differentially expressed genes. Whole-genome sequencing was performed to determine the presence of EML4-ALK fusion and ALK tyrosine kinase inhibitor resistance mutations. RESULTS: In this study, we have confirmed expression of the corresponding ALK fusion protein and assessed their sensitivity to a range of ALK tyrosine kinase inhibitors. These patient derived cell lines exhibit differential sensitivity to lorlatinib, brigatinib and alectinib, with EML4-ALK variant 3 containing cell lines exhibiting increased sensitivity to lorlatinib and brigatinib as compared to alectinib. These cell lines were further characterized by whole genome sequencing and RNA-seq analysis that identified the ribonucleotide reductase regulatory subunit 2 (RRM2) as a downstream and potential therapeutic target in ALK-positive NSCLC. CONCLUSION: We provide a characterization of four novel EML4-ALK-positive NSCLC cell lines, highlighting genomic heterogeneity and differential responses to ALK TKI treatment. The RNA-Seq characterization of ALK-positive NSCLC CUTO8, CUTO9, CUTO29 and YU1077 cell lines reported here, has been compiled in an interactive ShinyApp resource for public data exploration (https://ccgg.ugent.be/shiny/nsclc_rrm2_2022/).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Ribonucleosídeo Difosfato Redutase , Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ribonucleosídeo Difosfato Redutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...