Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Sci Adv ; 10(19): eadk7283, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728392

RESUMO

Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.


Assuntos
Anidrases Carbônicas , Cianobactérias , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/química , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/enzimologia , Regulação Alostérica , Filogenia , Ribulosefosfatos/metabolismo , Modelos Moleculares , Multimerização Proteica , Dióxido de Carbono/metabolismo , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
2.
New Phytol ; 235(2): 432-445, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35377491

RESUMO

Oxygenic photosynthesis evolved in cyanobacteria, primary producers of striking ecological importance. Like plants, cyanobacteria use the Calvin-Benson-Bassham cycle for CO2 fixation, fuelled by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). In a competitive reaction this enzyme also fixes O2 which makes it rather ineffective. To mitigate this problem, cyanobacteria evolved a CO2 concentrating mechanism (CCM) to pool CO2 in the vicinity of RuBisCO. However, the regulation of these carbon (C) assimilatory systems is understood only partially. Using the model Synechocystis sp. PCC 6803 we characterized an essential LysR-type transcriptional regulator encoded by gene sll0998. Transcript profiling of a knockdown mutant revealed diminished expression of several genes involved in C acquisition, including rbcLXS, sbtA and ccmKL encoding RuBisCO and parts of the CCM, respectively. We demonstrate that the Sll0998 protein binds the rbcL promoter and acts as a RuBisCO regulator (RbcR). We propose ATTA(G/A)-N5 -(C/T)TAAT as the binding motif consensus. Our data validate RbcR as a regulator of inorganic C assimilation and define the regulon controlled by it. Biological CO2 fixation can sustain efforts to reduce its atmospheric concentrations and is fundamental for the light-driven production of chemicals directly from CO2 . Information about the involved regulatory and physiological processes is crucial to engineer cyanobacterial cell factories.


Assuntos
Ribulose-Bifosfato Carboxilase , Synechocystis , Dióxido de Carbono/metabolismo , Oxigenases/metabolismo , Fotossíntese/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ribulosefosfatos , Synechocystis/metabolismo
3.
Cells ; 10(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34831328

RESUMO

Cerium oxide nanoparticles (CeO2 NPs) and zinc oxide nanoparticles (ZnO NPs) are emerging pollutants that are likely to occur in the contemporary environment. So far, their combined effects on terrestrial plants have not been thoroughly investigated. Obviously, this subject is a challenge for modern ecotoxicology. In this study, Pisum sativum L. plants were exposed to either CeO2 NPs or ZnO NPs alone, or mixtures of these nano-oxides (at two concentrations: 100 and 200 mg/L). The plants were cultivated in hydroponic system for twelve days. The combined effect of NPs was proved by 1D ANOVA augmented by Tukey's post hoc test at p = 0.95. It affected all major plant growth and photosynthesis parameters. Additionally, HR-CS AAS and ICP-OES were used to determine concentrations of Cu, Mn, Fe, Mg, Ca, K, Zn, and Ce in roots and shoots. Treatment of the pea plants with the NPs, either alone or in combination affected the homeostasis of these metals in the plants. CeO2 NPs stimulated the photosynthesis rate, while ZnO NPs prompted stomatal and biochemical limitations. In the mixed ZnO and CeO2 treatments, the latter effects were decreased by CeO2 NPs. These results indicate that free radicals scavenging properties of CeO2 NPs mitigate the toxicity symptoms induced in the plants by ZnO NPs.


Assuntos
Cério/farmacologia , Nanopartículas Metálicas/química , Nutrientes , Fotossíntese , Pisum sativum/fisiologia , Óxido de Zinco/farmacologia , Cério/metabolismo , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Transpiração Vegetal/efeitos dos fármacos , Ribulosefosfatos/metabolismo , Zinco/metabolismo
4.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34575912

RESUMO

Ribulose 1,5-bisphosphate (RuBP) undergoes enolization to initiate fixation of atmospheric carbon dioxide in the plant carbon cycle. The known model assumes the binding of RuBP to the Rubisco active site with the subsequent formation of 2,3-enediol (2,3,4-trihydroxypent-2-ene-1,5-diyl diphosphate). In the present study, it is assumed that 1,2-enol (2,3,4-trihydroxypent-1-ene-1,5-diyl diphosphate) can be formed in the enolization step to initiate the carboxylation reaction. We have used Kohn-Sham density functional theory on WB97X-D3/Def2-TZVP levels to compare the reaction barriers in the two ways. We considered the pathways of carboxylation of 1/2-ene (mono/di)ol via the C1 and C2 carbons without taking into account the binding of RuBP to the magnesium ion. Calculations of Gibbs free energies confirm the equal probability of the formation of 2,3-enediol and 1,2-enol. Quantum-chemical modeling of enolization and carboxylation reactions supports the important role of the bridging water molecule and diphosphate groups, which provide proton transfer and lower reaction barriers. The results show that carbon dioxide fixation can occur without a magnesium ion, and binding with C1 can have a lower barrier (~12 kcal/mol) than with C2 (~23 kcal/mol).


Assuntos
Dióxido de Carbono , Modelos Químicos , Ribulosefosfatos/química , Algoritmos , Dióxido de Carbono/química , Catálise , Estrutura Molecular
5.
Parasit Vectors ; 14(1): 338, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174948

RESUMO

BACKGROUND: Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. RESULTS: Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. CONCLUSIONS: The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects.


Assuntos
Aedes/enzimologia , Anopheles/enzimologia , Culex/enzimologia , Hidroliases/metabolismo , Proteínas de Insetos/metabolismo , Aedes/genética , Aedes/crescimento & desenvolvimento , Animais , Anopheles/genética , Anopheles/crescimento & desenvolvimento , Culex/genética , Culex/crescimento & desenvolvimento , Feminino , Hidroliases/genética , Proteínas de Insetos/genética , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Ribulosefosfatos/metabolismo
6.
Mol Biochem Parasitol ; 244: 111383, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048823

RESUMO

Giardia lamblia, due to the habitat in which it develops, requires a continuous supply of intermediate compounds that allow it to survive in the host. The pentose phosphate pathway (PPP) provides essential molecules such as NADPH and ribulose-5-phosphate during the oxidative phase of the pathway. One of the key enzymes during this stage is 6-phosphogluconate dehydrogenase (6 PGDH) for generating NADPH. Given the relevance of the enzyme, in the present work, the 6pgdh gene from G. lamblia was amplified and cloned to produce the recombinant protein (Gl-6 PGDH) and characterize it functionally and structurally after the purification of Gl-6 PGDH by affinity chromatography. The results of the characterization showed that the protein has a molecular mass of 54 kDa, with an optimal pH of 7.0 and a temperature of 36-42 °C. The kinetic parameters of Gl-6 PGDH were Km = 49.2 and 139.9 µM (for NADP+ and 6-PG, respectively), Vmax =26.27 µmol*min-1*mg-1, and Kcat = 24.0 s-1. Finally, computational modeling studies were performed to obtain a structural visualization of the Gl-6 PGDH protein. The generation of the model and the characterization assays will allow us to expand our knowledge for future studies of the function of the protein in the metabolism of the parasite.


Assuntos
Giardia lamblia/enzimologia , Gluconatos/química , NADP/química , Fosfogluconato Desidrogenase/química , Proteínas de Protozoários/química , Ribulosefosfatos/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular/métodos , Expressão Gênica , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/enzimologia , Giardia lamblia/genética , Gluconatos/metabolismo , Humanos , Cinética , Modelos Moleculares , NADP/metabolismo , Via de Pentose Fosfato/genética , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribulosefosfatos/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica
7.
J Struct Biol ; 213(2): 107733, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33819634

RESUMO

The cell wall of many pathogenic Gram-positive bacteria contains ribitol-phosphate wall teichoic acid (WTA), a polymer that is linked to virulence and regulation of essential physiological processes including cell division. CDP-ribitol, the activated precursor for ribitol-phosphate polymerization, is synthesized by a cytidylyltransferase and reductase pair known as TarI and TarJ, respectively. In this study, we present crystal structures of Staphylococcus aureus TarI and TarJ in their apo forms and in complex with substrates and products. The TarI structures illustrate the mechanism of CDP-ribitol synthesis from CTP and ribitol-phosphate and reveal structural changes required for substrate binding and catalysis. Insights into the upstream step of ribulose-phosphate reduction to ribitol-phosphate is provided by the structures of TarJ. Furthermore, we propose a general topology of the enzymes in a heterotetrameric form built using restraints from crosslinking mass spectrometry analysis. Together, our data present molecular details of CDP-ribitol production that may aid in the design of inhibitors against WTA biosynthesis.


Assuntos
Açúcares de Nucleosídeo Difosfato/biossíntese , Nucleotidiltransferases/química , Oxirredutases/química , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Parede Celular/metabolismo , Cristalografia por Raios X , Espectrometria de Massas/métodos , Modelos Moleculares , Mutação , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Oxirredutases/metabolismo , Pentosefosfatos/metabolismo , Multimerização Proteica , Ribulosefosfatos/metabolismo , Staphylococcus aureus/citologia , Staphylococcus aureus/enzimologia
8.
Anal Biochem ; 622: 114116, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716126

RESUMO

Arabinose 5-phosphate isomerase (API) catalyzes the reversible isomerization of Ribulose 5-phosphate (Ru5P) to Arabinose 5-Phosphate (Ar5P) for the production of 3-deoxy-2-octulosonic acid 8-phosphate (KDO), a component of bacterial lipopolysaccharide (LPS) of gram-negative bacteria. API is an attractive target for therapeutic development against gram-negative bacterial pathogens. The current assay method of API activity utilizes a general reaction for keto sugar determination in a secondary, 3-h color development reaction with 25 N sulfuric acid which poses hazard to both personnel and instrumentation. We therefore aimed to develop a more user friendly assay of the enzyme. Since Ru5P absorbs in the UV region and contains at least 2 chiral centers, it can be expected to display circular dichroism (CD). A wavelength scan revealed indeed Ru5P displays a pronounced negative ellipticity of 30,560 mDeg M-1cm-1 at 279 nm in Tris buffer pH 9.1 but Ar5P does not have any CD. API enzymatic reactions were monitored directly and continuously in real time by following the disappearance of CD from the Ru5P substrate, or by the appearance of CD from Ar5P substrate. The CD signal at this wavelength was not affected by absorption of the enzyme protein or of small molecules, or turbidity of the solution. Common additives in protein and enzyme reaction mixtures such as detergents, metals, and 5% dimethylsulfoxide did not interfere with the CD signal. Assay reactions of 1-3 min consistently yielded reproducible results. Introduction of accessories in a spectropolarimeter will easily adapt this assay to high throughput format for screening thousands of small molecules as inhibitor candidates of API.


Assuntos
Aldose-Cetose Isomerases/análise , Dicroísmo Circular/métodos , Ensaios Enzimáticos/métodos , Proteínas de Bactérias/metabolismo , Catálise , Francisella tularensis/metabolismo , Lipopolissacarídeos/metabolismo , Pentosefosfatos/metabolismo , Ribulosefosfatos/análise , Ribulosefosfatos/metabolismo , Especificidade por Substrato , Açúcares Ácidos/metabolismo , Fosfatos Açúcares/metabolismo
9.
FEBS J ; 288(4): 1286-1304, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32621793

RESUMO

The enzyme 6-phosphogluconate dehydrogenase catalyzes the conversion of 6-phosphogluconate to ribulose-5-phosphate. It represents an important reaction in the oxidative pentose phosphate pathway, producing a ribose precursor essential for nucleotide and nucleic acid synthesis. We succeeded, for the first time, to determine the three-dimensional structure of this enzyme from an acetic acid bacterium, Gluconacetobacter diazotrophicus (Gd6PGD). Active Gd6PGD, a homodimer (70 kDa), was present in both the soluble and the membrane fractions of the nitrogen-fixing microorganism. The Gd6PGD belongs to the newly described subfamily of short-chain (333 AA) 6PGDs, compared to the long-chain subfamily (480 AA; e.g., Ovis aries, Homo sapiens). The shorter amino acid sequence in Gd6PGD induces the exposition of hydrophobic residues in the C-terminal domain. This distinct structural feature is key for the protein to associate with the membrane. Furthermore, in terms of function, the short-chain 6PGD seems to prefer NAD+ over NADP+ , delivering NADH to the membrane-bound NADH dehydrogenase of the microorganisms required by the terminal oxidases to reduce dioxygen to water for energy conservation. ENZYME: ECnonbreakingspace1.1.1.343. DATABASE: Structural data are available in PDB database under the accession number 6VPB.


Assuntos
Proteínas de Bactérias/metabolismo , Gluconacetobacter/enzimologia , Gluconatos/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Ribulosefosfatos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Gluconacetobacter/genética , Gluconatos/química , Humanos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , NAD/metabolismo , NADP/metabolismo , Fosfogluconato Desidrogenase/classificação , Fosfogluconato Desidrogenase/genética , Filogenia , Domínios Proteicos , Multimerização Proteica , Ribulosefosfatos/química , Homologia de Sequência de Aminoácidos
10.
Nat Commun ; 11(1): 5403, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106470

RESUMO

Methanol is a biotechnologically promising substitute for food and feed substrates since it can be produced renewably from electricity, water and CO2. Although progress has been made towards establishing Escherichia coli as a platform organism for methanol conversion via the energy efficient ribulose monophosphate (RuMP) cycle, engineering strains that rely solely on methanol as a carbon source remains challenging. Here, we apply flux balance analysis to comprehensively identify methanol-dependent strains with high potential for adaptive laboratory evolution. We further investigate two out of 1200 candidate strains, one with a deletion of fructose-1,6-bisphosphatase (fbp) and another with triosephosphate isomerase (tpiA) deleted. In contrast to previous reported methanol-dependent strains, both feature a complete RuMP cycle and incorporate methanol to a high degree, with up to 31 and 99% fractional incorporation into RuMP cycle metabolites. These strains represent ideal starting points for evolution towards a fully methylotrophic lifestyle.


Assuntos
Escherichia coli/metabolismo , Metanol/metabolismo , Ribulosefosfatos/metabolismo , Proteínas de Bactérias , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Engenharia Metabólica , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
11.
Dokl Biochem Biophys ; 491(1): 98-100, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32483761

RESUMO

The paper briefly describes the evolution of the key enzyme of photosynthesis, RuBisCO. Before the emergence of the reaction of carbon dioxide assimilation via photosynthesis, this protein was involved in the methionine metabolism chain. Possibly, for this reason, the carboxylation reaction catalyzed by enzyme proceeds very slowly. In addition to carboxylation, RuBisCO can simultaneously oxidize ribulose bisphosphate, a substrate to which the fixed CO2 is attached. This, in turn, also reduces the effectiveness of photosynthesis. In this regard, the literature discusses various options for increasing plant productivity by creating new forms of RuBisCO or fundamentally different pathways of carbon dioxide assimilation. In this work, we propose a modification of the carboxylation reaction that makes it possible to avoid photorespiration and thus increase the efficiency of photosynthesis.


Assuntos
Bacillus subtilis/metabolismo , Dióxido de Carbono/química , Fotossíntese , Ribulose-Bifosfato Carboxilase/química , Ribulosefosfatos/química , Carbono/química , Catálise , Cinética , Oxigênio/química , Fotoquímica
12.
Int J Mol Sci ; 21(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443885

RESUMO

Methanol is a sustainable substrate for biotechnology. In addition to natural methylotrophs, metabolic engineering has gained attention for transfer of methylotrophy. Here, we engineered Corynebacterium glutamicum for methanol-dependent growth with a sugar co-substrate. Heterologous expression of genes for methanol dehydrogenase from Bacillus methanolicus and of ribulose monophosphate pathway genes for hexulose phosphate synthase and isomerase from Bacillus subtilis enabled methanol-dependent growth of mutants carrying one of two independent metabolic cut-offs, i.e., either lacking ribose-5-phosphate isomerase or ribulose-5-phosphate epimerase. Whole genome sequencing of strains selected by adaptive laboratory evolution (ALE) for faster methanol-dependent growth was performed. Subsequently, three mutations were identified that caused improved methanol-dependent growth by (1) increased plasmid copy numbers, (2) enhanced riboflavin supply and (3) reduced formation of the methionine-analogue O-methyl-homoserine in the methanethiol pathway. Our findings serve as a foundation for the engineering of C. glutamicum to unleash the full potential of methanol as a carbon source in biotechnological processes.


Assuntos
Corynebacterium glutamicum/genética , Evolução Molecular Direcionada/métodos , Metanol/metabolismo , Compostos de Sulfidrila/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Microbiologia Industrial/métodos , Engenharia Metabólica/métodos , Riboflavina/metabolismo , Ribulosefosfatos/metabolismo , Transgenes
13.
Plant Cell ; 32(5): 1703-1726, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32111666

RESUMO

Studies on Glucose-6-phosphate (G6P)/phosphate translocator isoforms GPT1 and GPT2 reported the viability of Arabidopsis (Arabidopsis thaliana) gpt2 mutants, whereas heterozygous gpt1 mutants exhibited a variety of defects during fertilization/seed set, indicating that GPT1 is essential for this process. Among other functions, GPT1 was shown to be important for pollen and embryo-sac development. Because our previous work on the irreversible part of the oxidative pentose phosphate pathway (OPPP) revealed comparable effects, we investigated whether GPT1 may dually localize to plastids and peroxisomes. In reporter fusions, GPT2 localized to plastids, but GPT1 also localized to the endoplasmic reticulum (ER) and around peroxisomes. GPT1 contacted two oxidoreductases and also peroxins that mediate import of peroxisomal membrane proteins from the ER, hinting at dual localization. Reconstitution in yeast (Saccharomyces cerevisiae) proteoliposomes revealed that GPT1 preferentially exchanges G6P for ribulose-5-phosphate (Ru5P). Complementation analyses of heterozygous +/gpt1 plants demonstrated that GPT2 is unable to compensate for GPT1 in plastids, whereas GPT1 without the transit peptide (enforcing ER/peroxisomal localization) increased gpt1 transmission significantly. Because OPPP activity in peroxisomes is essential for fertilization, and immunoblot analyses hinted at the presence of unprocessed GPT1-specific bands, our findings suggest that GPT1 is indispensable in both plastids and peroxisomes. Together with its G6P-Ru5P exchange preference, GPT1 appears to play a role distinct from that of GPT2 due to dual targeting.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Peroxissomos/metabolismo , Plastídeos/metabolismo , Alelos , Aminoácidos/metabolismo , Antiporters/química , Proteínas de Arabidopsis/química , Citosol/metabolismo , Fertilização , Glucose-6-Fosfato/metabolismo , Modelos Biológicos , Proteínas de Transporte de Monossacarídeos/química , Óvulo Vegetal/metabolismo , Oxirredução , Filogenia , Domínios Proteicos , Multimerização Proteica , Transporte Proteico , Ribulosefosfatos/metabolismo , Sementes/metabolismo , Estresse Fisiológico
14.
Plant Cell ; 32(5): 1556-1573, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32102842

RESUMO

The Calvin-Benson-Bassham (CBB) cycle is responsible for CO2 assimilation and carbohydrate production in oxyphototrophs. Phosphoribulokinase (PRK) is an essential enzyme of the CBB cycle in photosynthesis, catalyzing ATP-dependent conversion of ribulose-5-phosphate (Ru5P) to ribulose-1,5-bisphosphate. The oxyphototrophic PRK is redox-regulated and can be further regulated by reversible association with both glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and oxidized chloroplast protein CP12. The resulting GAPDH/CP12/PRK complex is central in the regulation of the CBB cycle; however, the PRK-CP12 interface in the recently reported cyanobacterial GAPDH/CP12/PRK structure was not well resolved, and the detailed binding mode of PRK with ATP and Ru5P remains undetermined, as only apo-form structures of PRK are currently available. Here, we report the crystal structures of cyanobacterial (Synechococcus elongatus) PRK in complex with ADP and glucose-6-phosphate and of the Arabidopsis (Arabidopsis thaliana) GAPDH/CP12/PRK complex, providing detailed information regarding the active site of PRK and the key elements essential for PRK-CP12 interaction. Our structural and biochemical results together reveal that the ATP binding site is disrupted in the oxidized PRK, whereas the Ru5P binding site is occupied by oxidized CP12 in the GAPDH/CP12/PRK complex. This structure-function study greatly advances the understanding of the reaction mechanism of PRK and the subtle regulations of redox signaling for the CBB cycle.


Assuntos
Arabidopsis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fotossíntese , Synechococcus/enzimologia , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/metabolismo , Biocatálise , Domínio Catalítico , Ligantes , Modelos Moleculares , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Ribulosefosfatos/metabolismo , Homologia Estrutural de Proteína
15.
Mol Cell ; 76(6): 857-871.e9, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31586547

RESUMO

The oxidative pentose phosphate pathway (oxiPPP) contributes to cell metabolism through not only the production of metabolic intermediates and reductive NADPH but also inhibition of LKB1-AMPK signaling by ribulose-5-phosphate (Ru-5-P), the product of the third oxiPPP enzyme 6-phosphogluconate dehydrogenase (6PGD). However, we found that knockdown of glucose-6-phosphate dehydrogenase (G6PD), the first oxiPPP enzyme, did not affect AMPK activation despite decreased Ru-5-P and subsequent LKB1 activation, due to enhanced activity of PP2A, the upstream phosphatase of AMPK. In contrast, knockdown of 6PGD or 6-phosphogluconolactonase (PGLS), the second oxiPPP enzyme, reduced PP2A activity. Mechanistically, knockdown of G6PD or PGLS decreased or increased 6-phosphogluconolactone level, respectively, which enhanced the inhibitory phosphorylation of PP2A by Src. Furthermore, γ-6-phosphogluconolactone, an oxiPPP byproduct with unknown function generated through intramolecular rearrangement of δ-6-phosphogluconolactone, the only substrate of PGLS, bound to Src and enhanced PP2A recruitment. Together, oxiPPP regulates AMPK homeostasis by balancing the opposing LKB1 and PP2A.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gluconatos/metabolismo , Neoplasias/enzimologia , Proteína Fosfatase 2/metabolismo , Células A549 , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proliferação de Células , Ativação Enzimática , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Células HEK293 , Células HT29 , Humanos , Células K562 , Células MCF-7 , Camundongos Nus , Neoplasias/genética , Neoplasias/patologia , Células PC-3 , Via de Pentose Fosfato , Ligação Proteica , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ribulosefosfatos/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Carga Tumoral , Quinases da Família src/metabolismo
16.
Nat Commun ; 10(1): 4049, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492867

RESUMO

Food production in green crops is severely limited by low activity and poor specificity of D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in natural photosynthesis (NPS). This work presents a scientific solution to overcome this problem by immobilizing RuBisCO into a microfluidic reactor, which demonstrates a continuous production of glucose precursor at 13.8 µmol g-1 RuBisCO min-1 from CO2 and ribulose-1,5-bisphosphate. Experiments show that the RuBisCO immobilization significantly enhances enzyme stabilities (7.2 folds in storage stability, 6.7 folds in thermal stability), and also improves the reusability (90.4% activity retained after 5 cycles of reuse and 78.5% after 10 cycles). This work mimics the NPS pathway with scalable microreactors for continuous synthesis of glucose precursor using very small amount of RuBisCO. Although still far from industrial production, this work demonstrates artificial synthesis of basic food materials by replicating the light-independent reactions of NPS, which may hold the key to food crisis relief and future space colonization.


Assuntos
Enzimas Imobilizadas/metabolismo , Glucose/biossíntese , Microfluídica/métodos , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Dióxido de Carbono/metabolismo , Produtos Agrícolas/metabolismo , Estabilidade Enzimática , Glucose/química , Folhas de Planta/metabolismo , Reprodutibilidade dos Testes , Ribulosefosfatos/metabolismo , Temperatura
17.
BMC Biotechnol ; 19(1): 58, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382948

RESUMO

BACKGROUND: Efficient xylose fermentation still demands knowledge regarding xylose catabolism. In this study, metabolic flux analysis (MFA) and metabolomics were used to improve our understanding of xylose metabolism. Thus, a stoichiometric model was constructed to simulate the intracellular carbon flux and used to validate the metabolome data collected within xylose catabolic pathways of non-Saccharomyces xylose utilizing yeasts. RESULTS: A metabolic flux model was constructed using xylose fermentation data from yeasts Scheffersomyces stipitis, Spathaspora arborariae, and Spathaspora passalidarum. In total, 39 intracellular metabolic reactions rates were utilized validating the measurements of 11 intracellular metabolites, acquired by mass spectrometry. Among them, 80% of total metabolites were confirmed with a correlation above 90% when compared to the stoichiometric model. Among the intracellular metabolites, fructose-6-phosphate, glucose-6-phosphate, ribulose-5-phosphate, and malate are validated in the three studied yeasts. However, the metabolites phosphoenolpyruvate and pyruvate could not be confirmed in any yeast. Finally, the three yeasts had the metabolic fluxes from xylose to ethanol compared. Xylose catabolism occurs at twice-higher flux rates in S. stipitis than S. passalidarum and S. arborariae. Besides, S. passalidarum present 1.5 times high flux rate in the xylose reductase reaction NADH-dependent than other two yeasts. CONCLUSIONS: This study demonstrated a novel strategy for metabolome data validation and brought insights about naturally xylose-fermenting yeasts. S. stipitis and S. passalidarum showed respectively three and twice higher flux rates of XR with NADH cofactor, reducing the xylitol production when compared to S. arborariae. Besides then, the higher flux rates directed to pentose phosphate pathway (PPP) and glycolysis pathways resulted in better ethanol production in S. stipitis and S. passalidarum when compared to S. arborariae.


Assuntos
Fermentação , Análise do Fluxo Metabólico/métodos , Metaboloma , Metabolômica/métodos , Saccharomycetales/metabolismo , Frutosefosfatos/metabolismo , Glucose-6-Fosfato/metabolismo , Glicólise , Malatos/metabolismo , Espectrometria de Massas/métodos , Modelos Biológicos , Via de Pentose Fosfato , Ribulosefosfatos/metabolismo , Saccharomycetales/classificação , Leveduras/classificação , Leveduras/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(30): 15297-15306, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31296566

RESUMO

Large numbers of genes essential for embryogenesis in Arabidopsis encode enzymes of plastidial metabolism. Disruption of many of these genes results in embryo arrest at the globular stage of development. However, the cause of lethality is obscure. We examined the role of the plastidial oxidative pentose phosphate pathway (OPPP) in embryo development. In nonphotosynthetic plastids the OPPP produces reductant and metabolic intermediates for central biosynthetic processes. Embryos with defects in various steps in the oxidative part of the OPPP had cell division defects and arrested at the globular stage, revealing an absolute requirement for the production via these steps of ribulose-5-phosphate. In the nonoxidative part of the OPPP, ribulose-5-phosphate is converted to ribose-5-phosphate (R5P)-required for purine nucleotide and histidine synthesis-and subsequently to erythrose-4-phosphate, which is required for synthesis of aromatic amino acids. We show that embryo development through the globular stage specifically requires synthesis of R5P rather than erythrose-4-phosphate. Either a failure to convert ribulose-5-phosphate to R5P or a block in purine nucleotide biosynthesis beyond R5P perturbs normal patterning of the embryo, disrupts endosperm development, and causes early developmental arrest. We suggest that seed abortion in mutants unable to synthesize R5P via the oxidative part of the OPPP stems from a lack of substrate for synthesis of purine nucleotides, and hence nucleic acids. Our results show that the plastidial OPPP is essential for normal developmental progression as well as for growth in the embryo.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Via de Pentose Fosfato , Proteínas de Plantas/genética , Plastídeos/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Divisão Celular , Regulação da Expressão Gênica no Desenvolvimento , Mutação , Células Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/genética , Purinas/biossíntese , Ribosemonofosfatos/metabolismo , Ribulosefosfatos/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Especificidade por Substrato , Fosfatos Açúcares/metabolismo
19.
Food Chem ; 300: 125205, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31330372

RESUMO

For efficient extraction of amplifiable DNA from edible vegetable oils, we developed a novel DNA extraction approach based on the non-silica-based dipolar nanocomposites. The nanoparticle comprises a hydrophilic polymethyl methacrylate core with abundant capillaries, hydrophilic vesicles decorated with molecules having DNA affinity and a coating hydrophobic polystyrene layer. The nanoparticles are soluble in oil, adsorb the DNA from the aqueous phase and gave a high DNA recovery ratio. All DNA extracts from fully refined vegetable oil soybean, peanut, rapeseed, and cottonseed oils, including their blends, were sufficiently pure to be amplified by real-time PCR targeting the chloroplast ribulose-1,5-bisphosphate gene (rbcL), therefore, the species of origin and their ratios in mixed vegetable oils blended from two or three oil-species could be determined. These results indicate that the novel DNA isolation and real-time PCR kit is a simple, sensitive and efficient tool for the species identification and traceability in refined vegetable oils.


Assuntos
DNA de Plantas/isolamento & purificação , Nanopartículas/química , Óleos de Plantas/química , Reação em Cadeia da Polimerase em Tempo Real/métodos , Verduras/genética , Fracionamento Químico/métodos , Cloroplastos/genética , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Polimetil Metacrilato/química , Ribulosefosfatos/genética , Dióxido de Silício
20.
J Biosci Bioeng ; 128(3): 302-306, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30987875

RESUMO

Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO) generates 2-phosphoglycolate (2PG) as one of the metabolites from the Calvin-Benson-Bassham (CBB) cycle. In this study, we focused on the fact that glycolate (GL) derived from 2PG can be incorporated into the bacterial polyhydroxyalkanoate (PHA) as the monomeric constituent by using the evolved PHA synthase (PhaC1PsSTQK). In this study, the function of the RuBisCO-mediated pathway for GL-based PHA synthesis was evaluated using Escherichia coli JW2946 with the deletion of glycolate oxidase gene (ΔglcD) as the model system. The genes encoding RuBisCO, phosphoribulokinase and 2PG phosphatase (PGPase) from several photosynthetic bacteria were introduced into E. coli, and the cells were grown on xylose as a sole carbon source. The functional expression of RuBisCO and relevant enzymes was confirmed based on the increases in the intracellular concentrations of RuBP and GL. Next, PHA biosynthetic genes encoding PhaC1PsSTQK, propionyl-CoA transferase and 3-hydroxybutyryl(3HB)-CoA-supplying enzymes were introduced. The cells accumulated poly(GL-co-3HB)s with GL fractions of 7.8-15.1 mol%. Among the tested RuBisCOs, Rhodosprium rubrum and Synechococcus elongatus PCC7942 enzymes were effective for P(GL-co-3HB) production as well as higher GL fraction. The heterologous expression of PGPase from Synechocystis sp. PCC6803 and R. rubrum increased GL fraction in the polymer. These results demonstrated that the RuBisCO-mediated pathway is potentially used to produce GL-based PHA in not only E. coli but also in photosynthetic organisms.


Assuntos
Escherichia coli , Glicolatos/metabolismo , Poli-Hidroxialcanoatos/metabolismo , Ribulose-Bifosfato Carboxilase/fisiologia , Ribulosefosfatos/metabolismo , Dióxido de Carbono/metabolismo , Clonagem Molecular/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Engenharia Metabólica/métodos , Organismos Geneticamente Modificados , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...