Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69.031
Filtrar
1.
Ren Fail ; 46(2): 2378212, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39011587

RESUMO

PURPOSE: The present study investigated the nephron-testicular protective effects of sesamin against cisplatin (CP)-induced acute renal and testicular injuries. METHODS: Thirty-two male Wistar rats were allocated to receive carboxymethylcellulose (0.5%, as sesamin vehicle), CP (a single i.p. 5 mg/kg dose), CP plus sesamin at 10 or 20 mg/kg orally for 10 days. RESULTS: Data analysis showed significant increases in serum urea, creatinine, interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), as well as renal and testicular tissue malondialdehyde and nitric-oxide concentrations in CP-intoxicated rats in comparison to control animals. On the contrary, rats treated with CP only exhibited significantly lower (p < .05) serum testosterone, tissue glutathione, and activities of endogenous antioxidant enzymes compared to control rats. Histopathologically examining CP-intoxicated rats' tissues using H&E and PAS stains showed atrophied glomeruli, interstitial inflammatory cells, atypic tubular epithelium with focal apoptosis, and reduced mucopolysaccharide content. Further, immunohistochemical staining of the same group revealed an increase in p53 and cyclooxygenase-II (Cox-II) expression in renal and testicular tissues. Treatment with sesamin alleviated almost all the changes mentioned above in a dose-dependent manner, with the 20 mg/kg dose restoring several parameters' concentrations to normal ranges. CONCLUSIONS: In brief, sesamin could protect the kidneys and testes against CP toxicity through its antioxidant, anti-inflammatory, and anti-apoptotic effects.


Assuntos
Anti-Inflamatórios , Antioxidantes , Apoptose , Cisplatino , Dioxóis , Rim , Lignanas , Ratos Wistar , Testículo , Animais , Masculino , Lignanas/farmacologia , Lignanas/uso terapêutico , Cisplatino/toxicidade , Cisplatino/efeitos adversos , Ratos , Dioxóis/farmacologia , Antioxidantes/farmacologia , Testículo/efeitos dos fármacos , Testículo/patologia , Testículo/metabolismo , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Anti-Inflamatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Antineoplásicos/toxicidade
2.
Sci Rep ; 14(1): 16444, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013979

RESUMO

Colistin is a polymyxin antibiotic currently experiencing renewed clinical interest due to its efficacy in the treatment of multidrug resistant (MDR) bacterial infections. The frequent onset of acute dose-dependent kidney injury, with the potential of leading to long-term renal damage, has limited its use and hampered adequate dosing regimens, increasing the risk of suboptimal plasma concentrations during treatment. The mechanism of colistin-induced renal toxicity has been postulated to stem from mitochondrial damage, yet there is no direct evidence of colistin acting as a mitochondrial toxin. The aim of this study was to evaluate whether colistin can directly induce mitochondrial toxicity and, if so, uncover the underlying molecular mechanism. We found that colistin leads to a rapid permeability transition of mitochondria isolated from mouse kidney that was fully prevented by co-incubation of the mitochondria with desensitizers of the mitochondrial transition pore cyclosporin A or L-carnitine. The protective effect of L-carnitine was confirmed in experiments in primary cultured mouse tubular cells. Consistently, the relative risk of colistin-induced kidney damage, calculated based on histological analysis as well as by the early marker of tubular kidney injury, Kim-1, was halved under co-administration with L-carnitine in vivo. Notably, L-carnitine neither affected the pharmacokinetics of colistin nor its antimicrobial activity against relevant bacterial strains. In conclusion, colistin targets the mitochondria and induces permeability transition thereof. L-carnitine prevents colistin-induced permeability transition in vitro. Moreover, L-carnitine co-administration confers partial nephroprotection in mice treated with colistin, without interfering with its pharmacokinetics and antibacterial activity.


Assuntos
Injúria Renal Aguda , Antibacterianos , Carnitina , Colistina , Mitocôndrias , Animais , Colistina/efeitos adversos , Colistina/administração & dosagem , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Carnitina/farmacologia , Carnitina/administração & dosagem , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Masculino , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Ciclosporina
3.
Cell Biochem Funct ; 42(5): e4094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001564

RESUMO

Nuclear factor-erythroid-2-related factor-2 (NRF-2) is a cellular resistance protein to oxidants. We investigated the effect of exogenous all-trans retinoic acid (ATRA) on the antioxidant system and NRF-2 in mice kidneys under hyperoxia-induced oxidative stress. Mice were divided into four groups. Daily, two groups were given either peanut-oil/dimethyl sulfoxide (PoDMSO) mixture or 50 mg/kg ATRA. Oxidative stress was induced by hyperoxia in the remaining groups. They were treated with PoDMSO or ATRA as described above, following hyperoxia (100% oxygen) for 72 h. NRF-2 and active-caspase-3 levels, lipid peroxidation (LPO), activities of antioxidant enzymes, xanthine oxidase (XO), paraoxonase1 (PON1), lactate dehydrogenase (LDH), tissue factor (TF), and prolidase were assayed in kidneys. Hyperoxia causes kidney damage induced by oxidative stress and apoptosis. Increased LPO, LDH, TF, and XO activities and decreased PON1 and prolidase activities contributed to kidney damage in hyperoxic mice. After hyperoxia, increases in the activities of antioxidant enzymes and NRF-2 level could not prevent this damage. ATRA attenuated damage via its oxidative stress-lowering effect. The decreased LDH and TF activities increased PON1 and prolidase activities, and normalized antioxidant statuses are indicators of the positive effects of ATRA. We recommend that ATRA can be used as a renoprotective agent against oxidative stress induced-kidney damage.


Assuntos
Apoptose , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Tretinoína , Animais , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Camundongos , Tretinoína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Hiperóxia/metabolismo , Hiperóxia/tratamento farmacológico , Antioxidantes/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos
4.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000587

RESUMO

Recombinant α1-microglobulin (A1M) is proposed as a protector during 177Lu-octreotate treatment of neuroendocrine tumors, which is currently limited by bone marrow and renal toxicity. Co-administration of 177Lu-octreotate and A1M could result in a more effective treatment by protecting healthy tissue, but the radioprotective action of A1M is not fully understood. The aim of this study was to examine the proteomic response of kidneys and bone marrow early after 177Lu-octreotate and/or A1M administration. Mice were injected with 177Lu-octreotate and/or A1M, while control mice received saline or A1M vehicle solution. Bone marrow, kidney medulla, and kidney cortex were sampled after 24 h or 7 d. The differential protein expression was analyzed with tandem mass spectrometry. The dosimetric estimation was based on 177Lu activity in the kidney. PHLDA3 was the most prominent radiation-responsive protein in kidney tissue. In general, no statistically significant difference in the expression of radiation-related proteins was observed between the irradiated groups. Most canonical pathways were identified in bone marrow from the 177Lu-octreotate+A1M group. Altogether, a tissue-dependent proteomic response followed exposure to 177Lu-octreotate alone or together with A1M. Combining 177Lu-octreotate with A1M did not inhibit the radiation-induced protein expression early after exposure, and late effects should be further studied.


Assuntos
alfa-Globulinas , Octreotida , Proteômica , Animais , alfa-Globulinas/metabolismo , Camundongos , Octreotida/farmacologia , Octreotida/análogos & derivados , Proteômica/métodos , Proteínas Recombinantes/farmacologia , Rim/metabolismo , Rim/efeitos da radiação , Rim/efeitos dos fármacos , Masculino , Medula Óssea/efeitos da radiação , Medula Óssea/metabolismo , Medula Óssea/efeitos dos fármacos , Órgãos em Risco/efeitos da radiação , Proteoma/metabolismo , Protetores contra Radiação/farmacologia
5.
Nat Commun ; 15(1): 5937, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009564

RESUMO

How disruptions to normal cell differentiation link to tumorigenesis remains incompletely understood. Wilms tumor, an embryonal tumor associated with disrupted organogenesis, often harbors mutations in epigenetic regulators, but their role in kidney development remains unexplored. Here, we show at single-cell resolution that a Wilms tumor-associated mutation in the histone acetylation reader ENL disrupts kidney differentiation in mice by rewiring the gene regulatory landscape. Mutant ENL promotes nephron progenitor commitment while restricting their differentiation by dysregulating transcription factors such as Hox clusters. It also induces abnormal progenitors that lose kidney-associated chromatin identity. Furthermore, mutant ENL alters the transcriptome and chromatin accessibility of stromal progenitors, resulting in hyperactivation of Wnt signaling. The impacts of mutant ENL on both nephron and stroma lineages lead to profound kidney developmental defects and postnatal mortality in mice. Notably, a small molecule inhibiting mutant ENL's histone acetylation binding activity largely reverses these defects. This study provides insights into how mutations in epigenetic regulators disrupt kidney development and suggests a potential therapeutic approach.


Assuntos
Diferenciação Celular , Rim , Mutação , Análise de Célula Única , Animais , Camundongos , Rim/metabolismo , Rim/patologia , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Cromatina/metabolismo , Epigênese Genética , Tumor de Wilms/genética , Tumor de Wilms/patologia , Tumor de Wilms/metabolismo , Histonas/metabolismo , Acetilação , Humanos , Organogênese/genética , Via de Sinalização Wnt/genética , Néfrons/metabolismo , Néfrons/patologia , Néfrons/embriologia , Transcriptoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Feminino , Masculino , Multiômica
6.
FASEB J ; 38(14): e23789, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018098

RESUMO

Diabetic nephropathy (DN) is a major healthcare challenge for individuals with diabetes and associated with increased cardiovascular morbidity and mortality. The existing rodent models do not fully represent the complex course of the human disease. Hence, developing a translational model of diabetes that reproduces both the early and the advanced characteristics of DN and faithfully recapitulates the overall human pathology is an unmet need. Here, we introduce the Nile grass rat (NGR) as a novel model of DN and characterize key pathologies underlying DN. NGRs spontaneously developed insulin resistance, reactive hyperinsulinemia, and hyperglycemia. Diabetic NGRs evolved DN and the key histopathological aspects of the human advanced DN, including glomerular hypertrophy, infiltration of mononuclear cells, tubular dilatation, and atrophy. Enlargement of the glomerular tufts and the Bowman's capsule areas accompanied the expansion of the Bowman's space. Glomerular sclerosis, renal arteriolar hyalinosis, Kimmelsteil-Wilson nodular lesions, and protein cast formations in the kidneys of diabetic NGR occurred with DN. Diabetic kidneys displayed interstitial and glomerular fibrosis, key characteristics of late human pathology as well as thickening of the glomerular basement membrane and podocyte effacement. Signs of injury included glomerular lipid accumulation, significantly more apoptotic cells, and expression of KIM-1. Diabetic NGRs became hypertensive, a known risk factor for kidney dysfunction, and showed decreased glomerular filtration rate. Diabetic NGRs recapitulate the breadth of human DN pathology and reproduce the consequences of chronic kidney disease, including injury and loss of function of the kidney. Hence, NGR represents a robust model for studying DN-related complications and provides a new foundation for more detailed mechanistic studies of the genesis of nephropathy, and the development of new therapeutic approaches.


Assuntos
Nefropatias Diabéticas , Modelos Animais de Doenças , Animais , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Ratos , Masculino , Humanos , Resistência à Insulina , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Rim/patologia , Rim/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/metabolismo
7.
Sci Signal ; 17(844): eadn6052, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980922

RESUMO

Inhibitors of the transforming growth factor-ß (TGF-ß) pathway are potentially promising antifibrotic therapies, but nonselective simultaneous inhibition of all three TGF-ß homologs has safety liabilities. TGF-ß1 is noncovalently bound to a latency-associated peptide that is, in turn, covalently bound to different presenting molecules within large latent complexes. The latent TGF-ß-binding proteins (LTBPs) present TGF-ß1 in the extracellular matrix, and TGF-ß1 is presented on immune cells by two transmembrane proteins, glycoprotein A repetitions predominant (GARP) and leucine-rich repeat protein 33 (LRRC33). Here, we describe LTBP-49247, an antibody that selectively bound to and inhibited the activation of TGF-ß1 presented by LTBPs but did not bind to TGF-ß1 presented by GARP or LRRC33. Structural studies demonstrated that LTBP-49247 recognized an epitope on LTBP-presented TGF-ß1 that is not accessible on GARP- or LRRC33-presented TGF-ß1, explaining the antibody's selectivity for LTBP-complexed TGF-ß1. In two rodent models of kidney fibrosis of different etiologies, LTBP-49247 attenuated fibrotic progression, indicating the central role of LTBP-presented TGF-ß1 in renal fibrosis. In mice, LTBP-49247 did not have the toxic effects associated with less selective TGF-ß inhibitors. These results establish the feasibility of selectively targeting LTBP-bound TGF-ß1 as an approach for treating fibrosis.


Assuntos
Matriz Extracelular , Fibrose , Proteínas de Ligação a TGF-beta Latente , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Animais , Humanos , Proteínas de Ligação a TGF-beta Latente/metabolismo , Proteínas de Ligação a TGF-beta Latente/antagonistas & inibidores , Matriz Extracelular/metabolismo , Camundongos , Masculino , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/tratamento farmacológico , Progressão da Doença , Rim/patologia , Rim/metabolismo , Rim/efeitos dos fármacos , Camundongos Endogâmicos C57BL
8.
Pancreas ; 53(7): e588-e594, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38986079

RESUMO

OBJECTIVE: It was targeted to assess the efficacy of certolizumab on pancreas and target organs via biochemical parameters and histopathologic scores in experimental acute pancreatitis (AP). MATERIALS AND METHODS: Forty male Sprague Dawley rats were divided into the following 5 equal groups: group 1 (sham group), group 2 (AP group), group 3 (AP + low-dose certolizumab group), group 4 (AP + high-dose certolizumab group), and group 5 (placebo group). Rats in all groups were sacrificed 24 hours after the last injection and amylase, tumor necrosis factor α, transforming growth factor ß, interleukin 1ß, malondialdehyde, superoxide dismutase, and glutathione peroxidase levels were studied in blood samples. Histopathological investigation of both the pancreas and target organs (lungs, liver, heart, kidneys) was performed by a pathologist blind to the groups. In silico analysis were also accomplished. RESULTS: The biochemical results in the certolizumab treatment groups were identified to be significantly favorable compared to the AP group (P < 0.001). The difference between the high-dose group (group 4) and low-dose treatment group (group 3) was found to be significant in terms of biochemical parameters and histopathological scores (P < 0.001). In terms of the effect of certolizumab treatment on the target organs (especially on lung tissue), the differences between the low-dose treatment group (group 3) and high-dose treatment group (group 4) with the AP group (group 2) were significant. CONCLUSIONS: Certolizumab has favorable protective effects on pancreas and target organs in AP. It may be a beneficial agent for AP treatment and may prevent target organ damage.


Assuntos
Amilases , Pulmão , Pâncreas , Pancreatite , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa , Animais , Masculino , Pancreatite/prevenção & controle , Pancreatite/induzido quimicamente , Pancreatite/patologia , Pancreatite/tratamento farmacológico , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Amilases/sangue , Doença Aguda , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Certolizumab Pegol/farmacologia , Malondialdeído/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ratos , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos
9.
Vitam Horm ; 125: 117-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997162

RESUMO

Insulin resistance is a central hallmark that connects the metabolic syndrome and diabetes to the resultant formation of advanced glycation end products (AGEs), which further results in the complications of diabetes, including diabetic nephropathy. Several factors play an important role as an inducer to diabetic nephropathy, and AGEs elicit their harmful effects via interacting with the receptor for AGEs Receptor for AGEs, by induction of pro-inflammatory cytokines, oxidative stress, endoplasmic reticulum stress and fibrosis in the kidney tissues leading to the loss of renal function. Insulin resistance results in the activation of other alternate pathways governed by insulin, which results in the hypertrophy of the renal cells and tissue remodeling. Apart from the glucose uptake and disposal, insulin dependent PI3K and Akt also upregulate the expression of endothelial nitric oxide synthase, that results in increasing the bioavailability of nitric oxide in the vascular endothelium, which further results in tissue fibrosis. Considering the global prevalence of diabetic nephropathy, and the impact of protein glycation, various inhibitors and treatment avenues are being developed, to prevent the progression of diabetic complications. In this chapter, we discuss the role of glycation in insulin resistance and further its impact on the kidney.


Assuntos
Nefropatias Diabéticas , Produtos Finais de Glicação Avançada , Resistência à Insulina , Nefropatias Diabéticas/metabolismo , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Resistência à Insulina/fisiologia , Animais , Rim/metabolismo , Rim/patologia , Transdução de Sinais , Estresse Oxidativo/fisiologia
10.
Pharmacol Res Perspect ; 12(4): e1222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992963

RESUMO

Gentamicin is an aminoglycoside antibiotic with a rapid bactericidal effect on the treatment of many infections. However, its use at high concentrations for more than 7 days causes nephrotoxic side effects. This study investigated the potential of Resatorvid and alpha lipoic acid (ALA) in mitigating gentamicin-induced nephrotoxicity in rats, considering biochemical, histopathological, and molecular parameters. This study randomly distributed 34 Wistar albino rats into four groups: healthy control (n = 6), Gentamicin (80 mg/kg, n = 7), Gentamicin + Sham (%10 hydroalcoholic solution, n = 7), Gentamicin + Resatorvid (5 mg/kg, n = 7), and Gentamicin + ALA (100 mg/kg, n = 7). Resatorvid treatment led to a statistically significant decrease in urinary IL-18, KIM-1, and NGAL levels, whereas ALA treatment significantly reduced KIM-1 levels compared to the gentamicin-only group. Both Resatorvid and ALA showed partial reductions in urine creatinine levels. Moreover, treatments with Resatorvid and ALA resulted in statistically significant decreases in NRF-2, CAS-3, and NR4A2 expressions. However, only Resatorvid demonstrated a statistically significant decrease in NF-B expression. These findings highlight the potential of Resatorvid in ameliorating gentamicin-induced nephrotoxicity, thereby expanding the therapeutic utility of gentamicin and enhancing its efficacy against infections.


Assuntos
Antibacterianos , Gentamicinas , Ratos Wistar , Ácido Tióctico , Gentamicinas/toxicidade , Gentamicinas/efeitos adversos , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ratos , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Creatinina/sangue , Creatinina/urina , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Moléculas de Adesão Celular
11.
PLoS One ; 19(7): e0298353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995910

RESUMO

CONTEXT: Nephrotic syndrome(NS) has emerged as a worldwide public health problem. Renal fibrosis is the most common pathological change from NS to end-stage renal failure, seriously affecting the prognosis of renal disease. Although tremendous efforts have been made to treat NS, specific drug therapies to delay the progression of NS toward end-stage renal failure are limited. Epimedium is generally used to treat kidney disease in traditional Chinese medicine. Icariin is a principal active component of Epimedium. METHODS: We used Sprague Dawley rats to establish NS models by injecting doxorubicin through the tail vein. Then icariin and prednisone were intragastric administration. Renal function was examined by an automatic biochemical analyzer. Pathology of the kidney was detected by Hematoxylin-Eosin and Masson staining respectively. Furthermore, RT-PCR, Enzyme-Linked Immunosorbent Assay, Immunohistochemistry, Western Blot and Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling staining were employed to detect the proteins related to pyroptosis and EMT. HK-2 cells exposed to doxorubicin were treated with icariin, and cell viability was assessed using the MTT. EMT was assessed using Enzyme-Linked Immunosorbent Assay and Western Blot. RESULTS: The study showed that icariin significantly improved renal function and renal fibrosis in rats. In addition, icariin effectively decreased NOD-like receptor thermal protein domain associated protein 3,Caspase-1, Gasdermin D, Ly6C, and interleukin (IL)-1ß. Notably, treatment with icariin also inhibited the levels of TGF-ß, α-SMA and E-cadherin. DISCUSSION AND CONCLUSIONS: It is confirmed that icariin can improve renal function and alleviate renal fibrosis by inhibiting pyroptosis and the mechanism may be related to epithelial-to-mesenchymal transition. Icariin treatment might be recommended as a new approach for NS.


Assuntos
Doxorrubicina , Transição Epitelial-Mesenquimal , Flavonoides , Síndrome Nefrótica , Piroptose , Ratos Sprague-Dawley , Animais , Flavonoides/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Piroptose/efeitos dos fármacos , Ratos , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/patologia , Síndrome Nefrótica/metabolismo , Masculino , Doxorrubicina/farmacologia , Humanos , Fibrose/tratamento farmacológico , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Linhagem Celular , Modelos Animais de Doenças
12.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000307

RESUMO

Hydronephrosis, the dilation of kidneys due to abnormal urine retention, occurs spontaneously in certain inbred mouse strains. In humans, its occurrence is often attributed to acquired urinary tract obstructions in adults, whereas in children, it can be congenital. However, the genetic factors underlying hydronephrosis pathogenesis remain unclear. We investigated the cause of hydronephrosis by analyzing tetraspanin 7 (Tspan7) gene-modified mice, which had shown a high incidence of hydronephrosis-like symptoms. We found that these mice were characterized by low liver weights relative to kidney weights and elevated blood ammonia levels, suggesting liver involvement in hydronephrosis. Gene expression analysis of the liver suggested that dysfunction of ornithine transcarbamylase (OTC), encoded by the X chromosome gene Otc and involved in the urea cycle, may contribute as a congenital factor in hydronephrosis. This OTC dysfunction may be caused by genomic mutations in X chromosome genes contiguous to Otc, such as Tspan7, or via the genomic manipulations used to generate transgenic mice, including the introduction of Cre recombinase DNA cassettes and cleavage of loxP by Cre recombinase. Therefore, caution should be exercised in interpreting the hydronephrosis phenotype observed in transgenic mice as solely a physiological function of the target gene.


Assuntos
Hidronefrose , Camundongos Transgênicos , Fenótipo , Animais , Hidronefrose/genética , Camundongos , Tetraspaninas/genética , Tetraspaninas/metabolismo , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças , Rim/patologia , Rim/metabolismo , Masculino
13.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000309

RESUMO

Autoreactivity of the complement system may escalate the development of diabetic nephropathy. We used the BTBR OB mouse model of type 2 diabetes to investigate the role of the complement factor mannan-binding lectin (MBL) in diabetic nephropathy. Female BTBR OB mice (n = 30) and BTBR non-diabetic WT mice (n = 30) were included. Plasma samples (weeks 12 and 21) and urine samples (week 19) were analyzed for MBL, C3, C3-fragments, SAA3, and markers for renal function. Renal tissue sections were analyzed for fibrosis, inflammation, and complement deposition. The renal cortex was analyzed for gene expression (complement, inflammation, and fibrosis), and isolated glomerular cells were investigated for MBL protein. Human vascular endothelial cells cultured under normo- and hyperglycemic conditions were analyzed by flow cytometry. We found that the OB mice had elevated plasma and urine concentrations of MBL-C (p < 0.0001 and p < 0.001, respectively) and higher plasma C3 levels (p < 0.001) compared to WT mice. Renal cryosections from OB mice showed increased MBL-C and C4 deposition in the glomeruli and increased macrophage infiltration (p = 0.002). Isolated glomeruli revealed significantly higher MBL protein levels (p < 0.001) compared to the OB and WT mice, and no renal MBL expression was detected. We report that chronic inflammation plays an important role in the development of DN through the binding of MBL to hyperglycemia-exposed renal cells.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Modelos Animais de Doenças , Inflamação , Lectina de Ligação a Manose , Animais , Lectina de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/sangue , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Inflamação/metabolismo , Inflamação/patologia , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia
14.
Nutrients ; 16(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999899

RESUMO

Background: Hypertension poses a significant global health burden and is associated with cardiovascular morbidity. Chios mastic gum (CMG), derived from Pistacia lentiscus var. Chia, shows potential as a phytotherapeutic agent, due to its multifaceted beneficial effects. However, its anti-hypertensive effects and vascular, circulatory, and renal-related dysfunction, have not been thoroughly investigated. Herein, we aimed to explore the antihypertensive potential of CMG, focusing on vascular and renal endothelium, in vivo. Methods: Two models of hypertension in male rats, induced by Angiotensin II and Deoxycorticosterone acetate (DOCA)-high-salt administration, were utilized. CMG was administered at 220 mg/kg daily for four weeks after hypertension onset and blood pressure was measured non-invasively. Whole blood RNA sequencing, metabolomics, real-time PCR, and Western blot analyses of kidney and aorta tissues were additionally performed. Results: CMG significantly lowered systolic, diastolic, and mean blood pressure in both models. RNA sequencing revealed that CMG modulated immunity in the Angiotensin II model and metabolism in the DOCA-HS model. CMG downregulated genes related to oxidative stress and endothelial dysfunction and upregulated endothelial markers such as Vegfa. Metabolomic analysis indicated improved endothelial homeostasis via lysophosphatidylinositol upregulation. Conclusions: CMG emerges as a potent natural antihypertensive therapy, demonstrating beneficial effects on blood pressure and renal endothelial function.


Assuntos
Anti-Hipertensivos , Pressão Sanguínea , Hipertensão , Pistacia , Animais , Pistacia/química , Masculino , Hipertensão/tratamento farmacológico , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Ratos , Rim/efeitos dos fármacos , Rim/metabolismo , Resina Mástique , Modelos Animais de Doenças , Angiotensina II , Ratos Sprague-Dawley , Acetato de Desoxicorticosterona , Estresse Oxidativo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia
15.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999938

RESUMO

The purpose of this study was to evaluate the spatiotemporal immunoexpression pattern of microtubule-associated protein 1 light chain 3 beta (LC3B), glucose-regulated protein 78 (GRP78), heat shock protein 70 (HSP70), and lysosomal-associated membrane protein 2A (LAMP2A) in normal human fetal kidney development (CTRL) and kidneys affected with congenital anomalies of the kidney and urinary tract (CAKUT). Human fetal kidneys (control, horseshoe, dysplastic, duplex, and hypoplastic) from the 18th to the 38th developmental week underwent epifluorescence microscopy analysis after being stained with antibodies. Immunoreactivity was quantified in various kidney structures, and expression dynamics were examined using linear and nonlinear regression modeling. The punctate expression of LC3B was observed mainly in tubules and glomerular cells, with dysplastic kidneys displaying distinct staining patterns. In the control group's glomeruli, LAMP2A showed a sporadic, punctate signal; in contrast to other phenotypes, duplex kidneys showed significantly stronger expression in convoluted tubules. GRP78 had a weaker expression in CAKUT kidneys, especially hypoplastic ones, while normal kidneys exhibited punctate staining of convoluted tubules and glomeruli. HSP70 staining varied among phenotypes, with dysplastic and hypoplastic kidneys exhibiting stronger staining compared to controls. Expression dynamics varied among observed autophagy markers and phenotypes, indicating their potential roles in normal and dysfunctional kidney development.


Assuntos
Autofagia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP70 , Rim , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas Associadas aos Microtúbulos , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Rim/metabolismo , Rim/anormalidades , Rim/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Sistema Urinário/metabolismo , Sistema Urinário/anormalidades , Refluxo Vesicoureteral/metabolismo , Refluxo Vesicoureteral/patologia
16.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000044

RESUMO

Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.


Assuntos
Nefropatias , Rim , Mitocôndrias , Sirtuína 3 , Sirtuínas , Humanos , Sirtuínas/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/genética , Mitocôndrias/metabolismo , Animais , Nefropatias/metabolismo , Nefropatias/patologia , Rim/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética
17.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000071

RESUMO

The Goldblatt model of hypertension (2K-1C) in rats is characterized by renal sympathetic nerve activity (rSNA). We investigated the effects of unilateral renal denervation of the clipped kidney (DNX) on sodium transporters of the unclipped kidneys and the cardiovascular, autonomic, and renal functions in 2K-1C and control (CTR) rats. The mean arterial pressure (MAP) and rSNA were evaluated in experimental groups. Kidney function and NHE3, NCC, ENaCß, and ENaCγ protein expressions were assessed. The glomerular filtration rate (GRF) and renal plasma flow were not changed by DNX, but the urinary (CTR: 0.0042 ± 0.001; 2K-1C: 0.014 ± 0.003; DNX: 0.005 ± 0.0013 mL/min/g renal tissue) and filtration fractions (CTR: 0.29 ± 0.02; 2K-1C: 0.51 ± 0.06; DNX: 0.28 ± 0.04 mL/min/g renal tissue) were normalized. The Na+/H+ exchanger (NHE3) was reduced in 2K-1C, and DNX normalized NHE3 (CTR: 100 ± 6; 2K-1C: 44 ± 14, DNX: 84 ± 13%). Conversely, the Na+/Cl- cotransporter (NCC) was increased in 2K-1C and was reduced by DNX (CTR: 94 ± 6; 2K-1C: 144 ± 8; DNX: 60 ± 15%). In conclusion, DNX in Goldblatt rats reduced blood pressure and proteinuria independently of GRF with a distinct regulation of NHE3 and NCC in unclipped kidneys.


Assuntos
Rim , Trocador 3 de Sódio-Hidrogênio , Animais , Rim/inervação , Rim/metabolismo , Ratos , Masculino , Trocador 3 de Sódio-Hidrogênio/metabolismo , Taxa de Filtração Glomerular , Denervação , Isquemia/metabolismo , Pressão Sanguínea , Ratos Wistar , Hipertensão/metabolismo , Canais Epiteliais de Sódio/metabolismo , Modelos Animais de Doenças , Trocadores de Sódio-Hidrogênio/metabolismo
18.
Biomed Res ; 45(4): 143-149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39010190

RESUMO

Copper (Cu) is known to induce oxidative stress and apoptosis in the liver, kidney, and brain. We previously demonstrated the molecular mechanism underlying the Cu-induced hepatic diurnal variation. However, the cellular molecule(s) involved in Cu-induced renal chronotoxicity remain unknown. In this study, we aimed to elucidate the molecular mechanisms underlying Cu-induced diurnal toxicity in the kidneys. We evaluated cell viability and clock gene expression levels in mouse renal cortex tubular cells (MuRTE61 cells) after Cu treatment. We also examined the Cu homeostasis- and apoptosis-related gene levels after period 1 (Per1) overexpression in MuRTE61 cells. Cu treatment decreased MuRTE61 cell viability in a dose-dependent manner. It increased the Per1 expression levels after 24 h. Notably, Per1 overexpression alleviated the Cu-induced inhibition of MuRTE61 cell viability. Moreover, Per1 overexpression downregulated the cleaved caspase-3 and reduced Cu levels by upregulating the antioxidant 1 copper chaperone (Atox1) levels. These results suggest that Cu-induced renal toxicity is associated with Per1 expression via the regulation of the copper chaperone, Atox1.


Assuntos
Sobrevivência Celular , Cobre , Rim , Proteínas Circadianas Period , Animais , Camundongos , Cobre/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Rim/metabolismo , Rim/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Transporte de Cobre/metabolismo , Proteínas de Transporte de Cobre/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
19.
Mol Biol Rep ; 51(1): 798, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002019

RESUMO

BACKGROUND: Hexavalent chromium (CrVI) is known to be a potentially hepatotoxic and nephrotoxic contaminant in humans and other animals, whose toxicity is associated with oxidative stress and inflammation. The aim of this study was to evaluate the potential protective effect of chlorogenic acid (CGA), which has known anti-inflammatory and antioxidant effects, on potassium dichromate (PDC)-induced acute hepatotoxicity and nephrotoxicity in rats. METHODS AND RESULTS: Thirty-six Wistar albino rats were treated with CGA (10, 20, or 40 mg/kg, intraperitoneally) and/or PDC (15 mg/kg/day, intraperitoneally) as a single dose. Serum, liver, and kidney tissues were examined biochemically, histopathologically, and immunohistochemically. Compared to the control group, a significant increase in interleukin-6 (IL-6) levels and a significant decrease in serum and renal reduced glutathione (GSH) levels, liver catalase (CAT), tumour necrosis factor-alpha (TNF-α), and interleukin 1ß (IL-1ß) levels were observed in the PDC group. The administration of PDC led to histopathological and immunohistochemical changes in rat liver and kidney tissues. With the administration of CGA, especially at the 10 mg/kg dosage, the above-mentioned parameters approached normal levels. CONCLUSIONS: CGA had antioxidant and anti-inflammatory effects that alleviated PDC-induced acute hepato- and nephrotoxicity.


Assuntos
Antioxidantes , Ácido Clorogênico , Rim , Fígado , NF-kappa B , Estresse Oxidativo , Dicromato de Potássio , Ratos Wistar , Transdução de Sinais , Animais , Dicromato de Potássio/toxicidade , Ácido Clorogênico/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , NF-kappa B/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Glutationa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico
20.
Anim Biotechnol ; 35(1): 2374328, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39003576

RESUMO

Long non-coding RNAs (lncRNAs) are being studied in farm animals due to their association with traits of economic interest, such as fat deposition. Based on the analysis of perirenal fat transcriptomes, this research explored the relevance of these regulatory elements to fat deposition in suckling lambs. To that end, meta-analysis techniques have been implemented to efficiently characterize and detect differentially expressed transcripts from two different RNA-seq datasets, one including samples of two sheep breeds that differ in fat deposition features, Churra and Assaf (n = 14), and one generated from Assaf suckling lambs with different fat deposition levels (n = 8). The joint analysis of the 22 perirenal fat RNA-seq samples with the FEELnc software allowed the detection of 3953 novel lncRNAs. After the meta-analysis, 251 differentially expressed genes were identified, 21 of which were novel lncRNAs. Additionally, a co-expression analysis revealed that, in suckling lambs, lncRNAs may play a role in controlling angiogenesis and thermogenesis, processes highlighted in relation to high and low fat deposition levels, respectively. Overall, while providing information that could be applied for the improvement of suckling lamb carcass traits, this study offers insights into the biology of perirenal fat deposition regulation in mammals.


Assuntos
RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , Ovinos/genética , Transcriptoma , Animais Lactentes , Tecido Adiposo/metabolismo , Perfilação da Expressão Gênica , Rim/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...