Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791300

RESUMO

The increase in atmospheric CO2 concentration is a significant factor in triggering global warming. CO2 is essential for plant photosynthesis, but excessive CO2 can negatively impact photosynthesis and its associated physiological and biochemical processes. The tetraploid Robinia pseudoacacia L., a superior and improved variety, exhibits high tolerance to abiotic stress. In this study, we investigated the physiological and proteomic response mechanisms of the tetraploid R. pseudoacacia under high CO2 treatment. The results of our physiological and biochemical analyses revealed that a 5% high concentration of CO2 hindered the growth and development of the tetraploid R. pseudoacacia and caused severe damage to the leaves. Additionally, it significantly reduced photosynthetic parameters such as Pn, Gs, Tr, and Ci, as well as respiration. The levels of chlorophyll (Chl a and b) and the fluorescent parameters of chlorophyll (Fm, Fv/Fm, qP, and ETR) also significantly decreased. Conversely, the levels of ROS (H2O2 and O2·-) were significantly increased, while the activities of antioxidant enzymes (SOD, CAT, GR, and APX) were significantly decreased. Furthermore, high CO2 induced stomatal closure by promoting the accumulation of ROS and NO in guard cells. Through a proteomic analysis, we identified a total of 1652 DAPs after high CO2 treatment. GO functional annotation revealed that these DAPs were mainly associated with redox activity, catalytic activity, and ion binding. KEGG analysis showed an enrichment of DAPs in metabolic pathways, secondary metabolite biosynthesis, amino acid biosynthesis, and photosynthetic pathways. Overall, our study provides valuable insights into the adaptation mechanisms of the tetraploid R. pseudoacacia to high CO2.


Assuntos
Dióxido de Carbono , Clorofila , Fotossíntese , Proteínas de Plantas , Proteômica , Robinia , Tetraploidia , Dióxido de Carbono/metabolismo , Robinia/metabolismo , Robinia/genética , Robinia/fisiologia , Proteômica/métodos , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteoma/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Espécies Reativas de Oxigênio/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Antioxidantes/metabolismo
2.
Planta ; 259(3): 66, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332379

RESUMO

MAIN CONCLUSION: Optimal levels of indole-3-butyric acid (IBA) applied at the stem base promote adventitious root (AR) initiation and primordia formation, thus promoting the rooting of leafy micro-cuttings of tetraploid Robinia pseudoacacia. Tetraploid Robinia pseudoacacia L. is a widely cultivated tree in most regions of China that has a hard-rooting capability, propagated by stem cuttings. This study utilizes histological, physiological, and transcriptomic approaches to explore how root primordia are induced after indole butyric acid (IBA) treatment of micro-cuttings. IBA application promoted cell divisions in some cells within the vasculature, showing subcellular features associated with adventitious root (AR) founder cells. The anatomical structure explicitly showed that AR initiated from the cambium layer and instigate the inducible development of AR primordia. Meanwhile, the hormone data showed that similar to that of indole-3-acetic acid, the contents of trans-zeatin and abscisic acid peaked at early stages of AR formation and increased gradually in primordia formation across the subsequent stages, suggesting their indispensable roles in AR induction. On the contrary, 24-epibrassinolide roughly maintained at extremely high levels during primordium initiation thoroughly, indicating its presence was involved in cell-specific reorganization during AR development. Furthermore, antioxidant activities transiently increased in the basal region of micro-cuttings and may serve as biochemical indicators for distinct rooting phases, potentially aiding in AR formation. Transcriptomic analysis during the early stages of root formation shows significant downregulation of the abscisic acid and jasmonate signaling pathways, while ethylene and cytokinin signaling seems upregulated. Network analysis of genes involved in carbon metabolism and photosynthesis indicates that the basal region of the micro-cuttings undergoes rapid reprogramming, which results in the breakdown of sugars into pyruvate. This pyruvate is then utilized to fuel the tricarboxylic acid cycle, thereby sustaining growth through aerobic respiration. Collectively, our findings provide a time-course morphophysiological dissection and also suggest the regulatory role of a conserved auxin module in AR development in these species.


Assuntos
Ácido Abscísico , Robinia , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Robinia/genética , Tetraploidia , Ácidos Indolacéticos/metabolismo , Perfilação da Expressão Gênica , Piruvatos/metabolismo , Raízes de Plantas/metabolismo
3.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38279314

RESUMO

Polyploid breeding techniques aid in the cultivation of new forestry cultivars, thus expanding the suite of strategies for the improvement of arboreal traits and innovation within the field of forestry. Compared to diploid Robinia pseudoacacia L. (black locust) 'D26-5①' (2×), its dwarfed homologous tetraploid 'D26-5②' (4×) variety has better application prospects in garden vegetation guardrails and urban landscape. However, the molecular mechanism of the generation and growth of this dwarf variety is still unclear. Here, plant growth and development as well as histological differences between the diploid and its autotetraploid were investigated. Levels of endogenous hormones at three different developmental stages (20, 40, and 70 days) of 2× and homologous 4× tissue culture plantlets were assessed, and it was found that the brassinosteroid (BR) contents of the former were significantly higher than the latter. Transcriptome sequencing data analysis of 2× and homologous 4× showed that differentially expressed genes (DEGs) were significantly enriched in plant hormone synthesis and signal transduction, sugar and starch metabolism, and the plant circadian rhythm pathway, which are closely related to plant growth and development. Therefore, these biological pathways may be important regulatory pathways leading to dwarfism and slow growth in tetraploids. Additionally, utilizing weighted gene coexpression network analysis (WGCNA), we identified three crucial differentially expressed genes (DEGs)-PRR5, CYP450, and SPA1-that potentially underlie the observed ploidy variation. This study provides a new reference for the molecular mechanism of dwarfism in dwarfed autotetraploid black locusts. Collectively, our results of metabolite analysis and comparative transcriptomics confirm that plant hormone signaling and the circadian rhythm pathway result in dwarfism in black locusts.


Assuntos
Nanismo , Robinia , Transcriptoma , Tetraploidia , Robinia/genética , Reguladores de Crescimento de Plantas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
4.
Planta ; 259(1): 6, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38001306

RESUMO

MAIN CONCLUSION: Rpf107 is involved in the infection process of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The LURP-one related (LOR) protein family plays a pivotal role in mediating plant defense responses against both biotic and abiotic stresses. However, our understanding of its function in the symbiotic interaction between legumes and rhizobia remains limited. Here, Rpf107, a homolog of LOR, was identified in Robinia pseudoacacia (black locust). The subcellular localization of Rpf107 was analyzed, and its function was investigated using RNA interference (RNAi) and overexpression techniques. The subcellular localization assay revealed that Rpf107 was mainly distributed in the plasma membrane and nucleus. Rpf107 silencing prevented rhizobial infection and hampered plant growth. The number of infected cells in the nitrogen fixation zone of the Rpf107-RNAi nodules was also noticeably lower than that in the control nodules. Notably, Rpf107 silencing resulted in bacteroid degradation and the premature aging of nodules. In contrast, the overexpression of Rpf107 delayed the senescence of nodules and prolonged the nitrogen-fixing ability of nodules. These results demonstrate that Rpf107 was involved in the infection of rhizobia and the maintenance of symbiotic nitrogen fixation in black locust root nodules. The findings reveal that a member of the LOR protein family plays a role in leguminous root nodule symbiosis, which is helpful to clarify the functions of plant LOR protein family and fully understand the molecular mechanisms underlying legume-rhizobium symbiosis.


Assuntos
Fabaceae , Rhizobium , Robinia , Robinia/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Genes vif , Fixação de Nitrogênio/genética , Rhizobium/fisiologia , Fabaceae/genética , Proteínas de Plantas/metabolismo
5.
Commun Biol ; 6(1): 797, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524773

RESUMO

Urban greening provides important ecosystem services and ideal places for urban recreation and is a serious consideration for municipal decision-makers. Among the tree species cultivated in urban green spaces, Robinia pseudoacacia stands out due to its attractive flowers, fragrances, high trunks, wide adaptability, and essential ecosystem services. However, the genomic basis and consequences of its wide-planting in urban green spaces remains unknown. Here, we report the chromosome-level genome assembly of R. pseudoacacia, revealing a genome size of 682.4 Mb and 33,187 protein-coding genes. More than 99.3% of the assembly is anchored to 11 chromosomes with an N50 of 59.9 Mb. Comparative genomic analyses among 17 species reveal that gene families related to traits favoured by urbanites, such as wood formation, biosynthesis, and drought tolerance, are notably expanded in R. pseudoacacia. Our population genomic analyses further recover 11 genes that are under recent selection. Ultimately, these genes play important roles in the biological processes related to flower development, water retention, and immunization. Altogether, our results reveal the evolutionary forces that shape R. pseudoacacia cultivated for urban greening. These findings also present a valuable foundation for the future development of agronomic traits and molecular breeding strategies for R. pseudoacacia.


Assuntos
Ecossistema , Robinia , Robinia/genética , Metagenômica , Árvores , Cromossomos
6.
Int J Mol Sci ; 23(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35563481

RESUMO

Vegetative propagation is an important method of reproduction and rejuvenation in horticulture and forestry plants with a long lifespan. Although substantial juvenile clones have been obtained through the vegetative propagation of ornamental plants, the molecular factors that regulate rejuvenation during vegetative propagation are largely unknown. Here, root sprouting and root cutting of Robinia pseudoacacia were used as two vegetative propagation methods. From two consecutive years of transcriptome data from rejuvenated seedlings and mature trees, one gene module and one miRNA module were found to be specifically associated with rejuvenation during vegetative propagation through weighted gene co-expression network analysis (WGCNA). In the gene module, a transcription factor-encoding gene showed high expression during vegetative propagation, and it was subsequently named RpTOE1 through homology analysis. Heterologous overexpression of RpTOE1 in wild-type Arabidopsis and toe1 toe2 double mutants prolonged the juvenile phase. The qRT-PCR results predicted RpFT to be a downstream gene that was regulated by RpTOE1. Further investigation of the protein-DNA interactions using yeast one-hybrid, electrophoretic mobility shift, and dual luciferase reporter assays confirmed that RpTOE1 negatively regulated RpFT by binding directly to the TOE binding site (TBS)-like motif on its promoter. On the basis of these results, we showed that the high expression of RpTOE1 during vegetative propagation and its inhibition of RpFT played a key role in the phase reversal of R. pseudoacacia.


Assuntos
Arabidopsis , Robinia , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas , Rejuvenescimento , Reprodução , Robinia/genética , Plântula/genética
7.
Genes (Basel) ; 13(3)2022 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-35327995

RESUMO

Tetraploid Robinia pseudoacacia L. is a difficult-to-root species, and is vegetatively propagated through stem cuttings. Limited information is available regarding the adventitious root (AR) formation of dark-pretreated micro-shoot cuttings. Moreover, the role of specific miRNAs and their targeted genes during dark-pretreated AR formation under in vitro conditions has never been revealed. The dark pretreatment has successfully promoted and stimulated adventitious rooting signaling-related genes in tissue-cultured stem cuttings with the application of auxin (0.2 mg L-1 IBA). Histological analysis was performed for AR formation at 0, 12, 36, 48, and 72 h after excision (HAE) of the cuttings. The first histological events were observed at 36 HAE in the dark-pretreated cuttings; however, no cellular activities were observed in the control cuttings. In addition, the present study aimed to uncover the role of differentially expressed (DE) microRNAs (miRNAs) and their targeted genes during adventitious root formation using the lower portion (1-1.5 cm) of tetraploid R. pseudoacacia L. micro-shoot cuttings. The samples were analyzed using Illumina high-throughput sequencing technology for the identification of miRNAs at the mentioned time points. Seven DE miRNA libraries were constructed and sequenced. The DE number of 81, 162, 153, 154, 41, 9, and 77 miRNAs were upregulated, whereas 67, 98, 84, 116, 19, 16, and 93 miRNAs were downregulated in the following comparisons of the libraries: 0-vs-12, 0-vs-36, 0-vs-48, 0-vs-72, 12-vs-36, 36-vs-48, and 48-vs-72, respectively. Furthermore, we depicted an association between ten miRNAs (novel-m0778-3p, miR6135e.2-5p, miR477-3p, miR4416c-5p, miR946d, miR398b, miR389a-3p, novel m0068-5p, novel-m0650-3p, and novel-m0560-3p) and important target genes (auxin response factor-3, gretchen hagen-9, scarecrow-like-1, squamosa promoter-binding protein-like-12, small auxin upregulated RNA-70, binding protein-9, vacuolar invertase-1, starch synthase-3, sucrose synthase-3, probable starch synthase-3, cell wall invertase-4, and trehalose phosphatase synthase-5), all of which play a role in plant hormone signaling and starch and sucrose metabolism pathways. The quantitative polymerase chain reaction (qRT-PCR) was used to validate the relative expression of these miRNAs and their targeted genes. These results provide novel insights and a foundation for further studies to elucidate the molecular factors and processes controlling AR formation in woody plants.


Assuntos
MicroRNAs , Robinia , Sintase do Amido , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Robinia/genética , Robinia/metabolismo , Sintase do Amido/genética , Tetraploidia , beta-Frutofuranosidase/genética
8.
PLoS One ; 17(1): e0262278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986177

RESUMO

To select elite Robinia pseudoacacia L. germplasm resources for production, 13 phenotypes and three physiological indicators of 214 seedlings from 20 provenances were systematically evaluated and analyzed. The leaf phenotypic and physiological coefficients of variation among the genotypes ranged from 3.741% to 19.599% and from 8.260% to 42.363%, respectively. The Kentucky provenance had the largest coefficient of variation (18.541%). The average differentiation coefficients between and within provenances were 34.161% and 38.756%, respectively. These close percentages showed that R. pseudoacacia presented high genetic variation among and within provenances, which can be useful for assisted migration and breeding programs. Furthermore, based on the results of correlations, principal component analysis and cluster analysis, breeding improvements targeting R. pseudoacacia's ornamental value, food value, and stress resistance of were performed. Forty and 30 excellent individuals, accounting for 18.692% and 14.019%, respectively, of the total resources. They were ultimately screened, after comprehensively taking into considering leaf phenotypic traits including compound leaf length, leaflet number and leaflet area and physiological characteristics including proline and soluble protein contents. These selected individuals could provide a base material for improved variety conservation and selection.


Assuntos
Robinia/genética , Robinia/fisiologia , Kentucky , Fenótipo , Melhoramento Vegetal/métodos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Robinia/metabolismo , Plântula/genética , Plântula/fisiologia
9.
Plant Cell Rep ; 40(12): 2435-2447, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34524479

RESUMO

KEY MESSAGE: We detected the genome-wide pattern of DNA methylation and its association with gene expression in sexual and asexual progenies of mature Robinia pseudoacacia trees. DNA methylation plays an important role in plant reproduction and development. Although some studies on sexual reproduction have been carried out in model plants, little is known about the dynamic changes in DNA methylation and their effect on gene expression in sexual and asexual progeny of woody plants. Here, through whole-genome bisulfite sequencing, we revealed DNA methylation patterns in the sexual and asexual progenies of mature Robinia pseudoacacia to understand the regulation of gene expression by DNA methylation in juvenile seedlings. An average of 53% CG, 34% CHG and 5% CHH contexts was methylated in the leaves of mature and juvenile individuals. The CHH methylation level of asexually propagated seedlings was significantly lower than that of seed-derived seedlings and mature trees. The intergenic regions had the highest methylation level. Analysis of differentially methylated regions (DMRs) showed that most of them were hypermethylated and located in the gene upstream and introns. A total of 24, 108 and 162 differentially expressed genes containing DMRs were identified in root sprouts (RSs), root cuttings (RCs) and seed-derived seedlings (SSs), respectively, and a large proportion of them showed hypermethylation. In addition, DMRs were enriched within GO subcategories including catalytic activity, metabolic process and cellular process. The results reveal widespread DNA methylation changes between mature plants and their progenies through sexual/asexual reproduction, which provides novel insights into DNA methylation reprogramming and the regulation of gene expression in woody plants.


Assuntos
Metilação de DNA , Epigênese Genética , Robinia/fisiologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Germinação , Proteínas de Plantas/genética , Reprodução Assexuada , Robinia/genética , Plântula/genética
10.
Tree Physiol ; 41(5): 865-881, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33147604

RESUMO

Cultivation of fast-growing tree species is often confined to marginal land. Mixed cropping with Robinia pseudoacacia, a legume tree species that forms a symbiosis with N2-fixing bacteria, has been proposed to be a measure to improve soil fertility and to achieve beneficial effects on the cocultivated tree species. The goal of our study was to examine the influence of a Robinia mixture on wood chemistry, anatomy and gene expression in poplar. We hypothesized that annual wood growth is stimulated in species mixtures due to the positive effects of Robinia on nitrogen availability and complementary resource use. Alternatively, we hypothesized that competition, especially for water, has negative effects on the wood growth of poplar. We used two commercial biomass clones, Hybride 275 (H275, Populus trichocarpa × Populus maximowiczii) and Max1 (Populus nigra × P. maximowiczii), which were planted at two locations with contrasting soil fertility in monoculture or mixed plots with Robinia to investigate the annual wood increment, wood nitrogen and δ13C, wood anatomy (length, cell wall thickness, lumina and frequencies of fibers and vessels) and transcriptional profiles in the developing xylem of 4-year-old stems. In a mixture with Robinia, the annual stem increment was reduced, nitrogen in wood was enhanced, δ13C in wood was decreased, vessel and fiber frequencies were increased and fiber lengths and fiber lumina were decreased. Transcriptional profiles showed stronger differences between the genotypes and sites than between mono and mixed cultivation. The transcriptional abundances of only one gene (the putative nitrate transporter, NRT1.2) and one gene ontology term ('immune system process') were significantly enriched in wood-forming tissues in response to the mixture, irrespective of the poplar genotype and growth location. Weighted gene coexpression network analyses extracted gene modules that linked wood nitrogen mainly to vessel traits and wood δ13C with fiber traits. Collectively, molecular and anatomical changes in poplar wood suggest beneficial effects on the water and N supply in response to the mixture with Robinia. These alterations may render poplars less drought-susceptible. However, these benefits are accompanied by a reduced wood increment, emphasizing that other critical factors, presumably light competition or allelopathic effects, overrule a potential growth stimulation.


Assuntos
Populus , Robinia , Nitrogênio , Populus/genética , Robinia/genética , Madeira , Xilema/genética
11.
J Exp Bot ; 71(22): 7347-7363, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-32865563

RESUMO

Nodulation outer proteins secreted via type 3 secretion systems are involved in the process of symbiosis between legume plants and rhizobia. To study the function of NopT in symbiosis, we mutated nopT in Mesorhizobium amphore CCNWGS0123 (GS0123), which can nodulate black locust (Robinia pseudoacacia). The nopT mutant induced higher levels of jasmonic acid, salicylic acid, and hydrogen peroxide accumulation in the roots of R. pseudoacacia compared with wild-type GS0123. The ΔnopT mutant induced higher disease-resistant gene expression 72 hours post-inoculation (hpi), whereas GS0123 induced higher disease-resistant gene expression earlier, at 36 hpi. Compared with the nopT mutant, GS0123 induced the up-regulation of most genes at 36 hpi and the down-regulation of most genes at 72 hpi. Proteolytically active NopT_GS0123 induced hypersensitive responses when expressed transiently in tobacco leaves (Nicotiana benthamiana). Two NopT_GS0123 targets in R. pseudoacacia were identified, ATP-citrate synthase alpha chain protein 2 and hypersensitive-induced response protein. Their interactions with NopT_GS0123 triggered resistance by the plant immune system. In conclusion, NopT_GS0123 inhibited the host plant immune system and had minimal effect on nodulation in R. pseudoacacia. Our results reveal the underlying molecular mechanism of NopT function in plant-symbiont interactions.


Assuntos
Mesorhizobium , Rhizobium , Robinia , Raízes de Plantas , Robinia/genética , Simbiose
12.
Planta ; 250(6): 1897-1910, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31485773

RESUMO

MAIN CONCLUSION: A homologue of the ribosomal protein L22e, Rpf84, regulates root nodule symbiosis by mediating the infection process of rhizobia and preventing bacteroids from degradation in Robinia pseudoacacia. Ribosomal proteins (RPs) are known to have extraribosomal functions, including developmental regulation and stress responses; however, the effects of RPs on symbiotic nodulation of legumes are still unclear. Ribosomal protein 22 of the large 60S subunit (RPL22), a non-typical RP that is only found in eukaryotes, has been shown to function as a tumour suppressor in animals. Here, a homologue of RPL22, Rpf84, was identified from the leguminous tree R. pseudoacacia. Subcellular localization assays showed that Rpf84 was expressed in the cytoplasm and nucleus. Knockdown of Rpf84 by RNA interference (RNAi) technology impaired the infection process and nodule development. Compared with the control, root and stem length, dry weight and nodule number per plant were drastically decreased in Rpf84-RNAi plants. The numbers of root hair curlings, infection threads and nodule primordia were also significantly reduced. Ultrastructure analyses showed that Rpf84-RNAi nodules contained fewer infected cells with fewer bacteria. In particular, remarkable deformation of bacteroids and fusion of multiple symbiosomes occurred in infected cells. By contrast, overexpression of Rpf84 promoted nodulation, and the overexpression nodules maintained a larger infection/differentiation region and had more infected cells filled with bacteroids than the control at 45 days post inoculation, suggesting a retarded ageing process in nodules. These results indicate for the first time that RP regulates the symbiotic nodulation of legumes and that RPL22 may function in initiating the invasion of rhizobia and preventing bacteroids from degradation in R. pseudoacacia.


Assuntos
Genes de Plantas/genética , Proteínas de Plantas/genética , Nodulação/genética , Subunidades Ribossômicas Maiores/genética , Robinia/genética , Clonagem Molecular , Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Subunidades Ribossômicas Maiores/fisiologia , Robinia/crescimento & desenvolvimento , Robinia/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Simbiose/genética , Transcriptoma
13.
Gene ; 689: 141-151, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30576807

RESUMO

The black locust (Robinia pseudoacacia) is widely distributed, and has strong drought resistance and salt tolerance. These characteristics make it the best type of tree for landscaping and resource conservation in China. In this study, the chloroplast genomes of five black locusts were identified de novo and the evolutionary relationship among these black locusts and their taxonomic statuses in leguminous plants were determined. The chloroplast structures of the five black locusts were typical and had four parts, including two single copy regions (large and small single copy sections) and a pair of inverted repeats (IRs). Genome sizes were between 155,364 bp and 155,655 bp; the genome of R. pseudoacacia var. decaisneana was the smallest, while that of R. pseudoacacia var. tortuosa was the largest. The genomes contained 124-130 protein-coding genes; R. pseudoacacia var. tortuosa had the fewest, while R. hispida and R. pseudoacacia var. decaisneana had the most. In this study, eight to ten genes from chloroplast genomes contained introns. Nine genes from the chloroplast genomes of R. pseudoacacia and R. pseudoacacia f. unifolia contained introns that had lost the trnL-CAA gene via evolution, while eight chloroplast genes of R. pseudoacacia var. tortuosa contained introns that had lost the trnL-CAA and psaA genes. Among them, the rpoC1 gene had the longest introns at 2828 bp, and rps12+ had the smallest introns at only 533 bp. There were various amplification phenomena in the IR region among the five black locusts. Most of the protein-coding genes of the five black locusts had a high degree of codon preference. To determine the phylogenetic positions of the five black locusts, we conducted a systematic evolutionary analysis using common protein-coding genes in chloroplast sequences from 34 species of leguminous plants and 12 other species. The results showed that the relationship between Robinia and Acacia ligulata was the most distant among those of the leguminous plants, and the relationship between Robinia and Lotus japonicus was the closest. The chloroplast protein-coding genes in different black locusts were relatively conservative by evolutionary selection pressure analysis standards. These results are important for our understanding of their photosynthetic mechanisms and evolution, and the transgenic engineering of their chloroplasts.


Assuntos
Evolução Molecular , Genoma de Cloroplastos , Robinia/classificação , Robinia/genética , Cloroplastos/genética , Genes de Plantas , Tamanho do Genoma , Filogenia , Robinia/citologia , Análise de Sequência de DNA
14.
Int J Mol Sci ; 19(9)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142921

RESUMO

Understanding the genetic diversity and differentiation of the genetic resources of a species is important for the effective use and protection of forest tree resources. Ex situ development is a common method for the protection of genetic diversity and an essential resource for users who require ready access to a species' germplasm. In this study, we collected seeds of black locust (Robinia pseudoacacia L.) from 19 provenances, covering most of its natural distribution; we randomly selected 367 tender leaves with well-grown and different maternal strains from this group for further analysis. Forty-eight simple sequence repeat (SSR) primers were successfully selected from 91 pairs of SSR primers using native-deformation polyacrylamide gel electrophoresis. In addition, we identified identical genotypes among all individuals and evaluated the quality of the markers. From this, 35 loci were confirmed for analyses of genetic diversity and differentiation of the black locust provenances, which contained 28 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and 7 genomic DNA-derived simple sequence repeats (G-SSRs). We observed high genetic diversity among the native black locust provenances, from which Wright's fixation index and molecular variance suggested that a majority of the genetic differentiation variation could be attributed to within-provenance differences. The genetic distance and identity results indicated that geographic distance was not a dominating factor influencing the distribution of black locust. This is the first study to evaluate provenance genetic variation in native black locust samples using two types of SSR markers, which provides a comprehensive theoretical basis for ex situ conservation and utilization of genetic resources, with an emphasis on breeding applications.


Assuntos
Conservação dos Recursos Naturais , Variação Genética , Folhas de Planta/genética , Robinia/genética , Sementes/genética , China , Etiquetas de Sequências Expressas , Loci Gênicos , Marcadores Genéticos , Repetições de Microssatélites , Filogenia , Dispersão Vegetal , Folhas de Planta/anatomia & histologia , Robinia/classificação , Árvores
15.
PLoS One ; 13(3): e0193076, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29529054

RESUMO

Black locust (Robinia pseudoacacia L.) is an easy to raise, fast growing, medium-sized deciduous tree species highly tolerant to harsh eco-conditions, i.e., drought and harsh winters, and it is widely adaptable to sandy, loamy, and marshy soils. The basis for this adaptability remains to be investigated at the transcriptomic level using real-time quantitative PCR (qPCR). Selection of a reliable gene for the normalization of qPCR data is important for obtaining accurate results in gene expression. The goal of this study was to identify an appropriate reference gene from 12 candidate genes for gene expression analysis in black locust exposed to various stressors such as abscisic acid (ABA), NaCl, polyethylene glycol (PEG) and varying temperatures. In GeNorm and NormFinder analyses, ACT (actin) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene expression were the most stable in all conditions except heat stress, but in BestKeeper analysis, GAPDH and helicase gene expression were the most stable under NaCl and heat stress. In contrast, ACT and GAPDH were highest under abscisic acid (ABA), GAPDH and ßTUB (beta tubulin) under cold stress, and helicase and EF1α (elongation factor 1 alpha) under PEG stress. We found that the most stable reference gene combination for all conditions was ACT and GAPDH. Additionally, the expression pattern of NAC2 (a transcription factor) and BGL2 in different tissues and under different stress conditions was analyzed relative to ACT and GAPDH and UBQ (ubiquitin) the least stably expressed gene. NAC2 and BGL2 both had highest expression in flowers and pods under ABA stress at 48h. This study provides useful reference genes for future gene expression studies in black locust.


Assuntos
Regulação da Expressão Gênica de Plantas , Robinia/genética , Estresse Fisiológico , Ácido Abscísico/metabolismo , Secas , Perfilação da Expressão Gênica , Genes de Plantas , Temperatura Alta , Polietilenoglicóis/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Robinia/fisiologia , Transcriptoma
16.
BMC Genomics ; 18(1): 648, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830360

RESUMO

BACKGROUND: Polyploidy is an important phenomenon in plants because of its roles in agricultural and forestry production as well as in plant tolerance to environmental stresses. Tetraploid black locust (Robinia pseudoacacia L.) is a polyploid plant and a pioneer tree species due to its wide ranging adaptability to adverse environments. To evaluate the ploidy-dependent differences in leaf mitochondria between diploid and tetraploid black locust under salinity stress, we conducted comparative proteomic, physiological, biochemical and ultrastructural profiling of mitochondria from leaves. RESULTS: Mitochondrial proteomic analysis was performed with 2-DE and MALDI-TOF-MS, and the ultrastructure of leaf mitochondria was observed by transmission electron microscopy. According to 2-DE analysis, 66 proteins that responded to salinity stress significantly were identified from diploid and/or tetraploid plants and classified into 9 functional categories. Assays of physiological characters indicated that tetraploids were more tolerant to salinity stress than diploids. The mitochondrial ultrastructure of diploids was damaged more severely under salinity stress than that of tetraploids. CONCLUSIONS: Tetraploid black locust possessed more tolerance of, and ability to acclimate to, salinity stress than diploids, which may be attributable to the ability to maintain mitochondrial structure and to trigger different expression patterns of mitochondrial proteins during salinity stress.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteômica , Robinia/metabolismo , Tolerância ao Sal/genética , Tetraploidia , Antioxidantes/metabolismo , Respiração Celular/efeitos dos fármacos , Respiração Celular/genética , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Mitocôndrias/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Robinia/citologia , Robinia/genética , Robinia/fisiologia , Salinidade
17.
BMC Genomics ; 18(1): 179, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209181

RESUMO

BACKGROUND: Indole-3-butyric acid (IBA) is applied to the cuttings of various plant species to induce formation of adventitious roots (ARs) in commercial settings. Tetraploid black locust is an attractive ornamental tree that is drought resistant, sand tolerant, can prevent sand erosion and has various commercial uses. To further elucidate the mechanisms of AR formation, we used Illumina sequencing to analyze transcriptome dynamics and differential gene expression at four developmental stages in control (CK) and IBA-treated groups. RESULTS: The short reads were assembled into 127,038 unitranscripts and 101,209 unigenes, with average lengths of 986 and 852 bp. In total, 10,181 and 14,924 differentially expressed genes (DEGs) were detected in the CK and IBA-treated groups, respectively. Comparison of the four consecutive developmental stages showed that 282 and 260 DEGs were shared between IBA-treated and CK, suggesting that IBA treatment increased the number of DEGs. We observed 1,721 up-regulated and 849 down-regulated genes in CI vs. II, 849 up-regulated and 836 down-regulated genes in CC vs. IC, 881 up-regulated and 631 down-regulated genes in CRP vs. IRP, and 5,626 up-regulated and 4,932 down-regulated genes in CAR vs. IAR, of which 25 up-regulated DEGs were common to four pairs, and these DEGs were significantly up-regulated at AR. These results suggest that substantial changes in gene expression are associated with adventitious rooting. GO functional category analysis indicated that IBA significantly up- or down-regulated processes associated with regulation of transcription, transcription of DNA dependent, integral to membrane and ATP binding during the development process. KEGG pathway enrichment indicated that glycolysis/gluconeogenesis, cysteine and methionine metabolism, photosynthesis, nucleotide sugar metabolism, and lysosome were the pathways most highly regulated by IBA. We identified a number of differentially regulated unigenes, including 12 methionine-related genes and 12 ethylene-related genes, associated with the KEGG pathway cysteine and methionine metabolism. The GO enrichment, pathway mapping, and gene expression profile analyses revealed molecular traits for root induction and initiation. CONCLUSION: Our study presents a global view of the transcriptomic profiles of tetraploid black locust cuttings in response to IBA treatment and provides new insights into the fundamental mechanisms associated with auxin-induced adventitious rooting.


Assuntos
Perfilação da Expressão Gênica , Indóis/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Robinia/efeitos dos fármacos , Robinia/genética , Análise de Sequência de RNA , Tetraploidia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Robinia/crescimento & desenvolvimento
18.
Sci Rep ; 6: 23098, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26975701

RESUMO

Salinity is an important abiotic stressor that negatively affects plant growth. In this study, we investigated the physiological and molecular mechanisms underlying moderate and high salt tolerance in diploid (2×) and tetraploid (4×) Robinia pseudoacacia L. Our results showed greater H2O2 accumulation and higher levels of important antioxidative enzymes and non-enzymatic antioxidants in 4× plants compared with 2× plants under salt stress. In addition, 4× leaves maintained a relatively intact structure compared to 2× leaves under a corresponding condition. NaCl treatment didn't significantly affect the photosynthetic rate, stomatal conductance or leaf intercellular CO2 concentrations in 4× leaves. Moreover, proteins from control and salt treated 2× and 4× leaf chloroplast samples were extracted and separated by two-dimensional gel electrophoresis. A total of 61 spots in 2× (24) and 4× (27) leaves exhibited reproducible and significant changes under salt stress. In addition, 10 proteins overlapped between 2× and 4× plants under salt stress. These identified proteins were grouped into the following 7 functional categories: photosynthetic Calvin-Benson Cycle (26), photosynthetic electron transfer (7), regulation/defense (5), chaperone (3), energy and metabolism (12), redox homeostasis (1) and unknown function (8). This study provides important information of use in the improvement of salt tolerance in plants.


Assuntos
Cloroplastos/metabolismo , Proteoma/metabolismo , Robinia/fisiologia , Cloreto de Sódio/metabolismo , Antioxidantes/fisiologia , Diploide , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Robinia/genética , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Tetraploidia
19.
Plant Biotechnol J ; 14(6): 1456-69, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26806173

RESUMO

Transcription factors play a key role to enable plants to cope with abiotic stresses. DREB2 regulates the expression of several stress-inducible genes and constitutes major hubs in the water stress signalling webs. We cloned and characterized a novel gene encoding the FpDREB2A transcription factor from Fraxinus pennsylvanica, and a yeast activity assay confirmed its DRE binding and transcription activation. Overexpression of FpDREB2A in R. pseudoacacia showed enhanced resistance to drought stress. The transgenic plant survival rate was significantly higher than that of WT in soil drying and re-watering treatments. Transgenic lines showed a dramatic change in root architecture, and horizontal and vertical roots were found in transgenic plants compared to WT. The vertical roots penetrated in the field soil to more than 60 cm deep, while horizontal roots expanded within the top 20-30 cm of the soil. A physiological test demonstrated that chlorophyll contents were more gradually reduced and that soluble sugars and proline levels elevated more sharply but malondialdehyde level stayed the same (P < 0.05). Plant hormone levels of abscisic acid and IAA were higher than that of WT, while gibberellins and zeatin riboside were found to be lower. The root transcriptomes were sequenced and annotated into 2011 differential expression genes (DEGs). The DEGs were categorized in 149 pathways and were found to be involved in plant hormone signalling, transcription factors, stimulus responses, phenylalanine, carbohydrate and other metabolic pathways. The modified pathways in plant hormone signalling are thought to be the main cause of greater horizontal and vertical root development, in particular.


Assuntos
Fraxinus/genética , Proteínas de Plantas/genética , Robinia/genética , Fatores de Transcrição/genética , Transcriptoma , Clorofila/metabolismo , Malondialdeído/metabolismo , Redes e Vias Metabólicas , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Prolina/metabolismo , Robinia/anatomia & histologia , Robinia/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
20.
Mycorrhiza ; 26(4): 311-23, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26590998

RESUMO

The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.


Assuntos
Aquaporinas/genética , Glomeromycota/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/genética , Robinia/genética , Robinia/microbiologia , Aquaporinas/metabolismo , Secas , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/classificação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Robinia/classificação , Robinia/fisiologia , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Estresse Fisiológico , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...