Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 747
Filtrar
1.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38831649

RESUMO

The mitogenome is an important tool for taxonomic and evolutionary investigation. Here, a few complete mitogenomes of red algae have been reported. We have reported the complete mitogenome sequences of Grateloupia cornea Okamura, 1913 (Rhodophyta, Halymeniales). The genome is 30,595 bp in circumference, and has a strongly biased [AT] = 66.9%. Like most other Grateloupia species, it has a group II intron in the cox1 gene. Maximum likelihood and maximum parsimony analyses showed that G. cornea is more closely related to G. asiatica. This shows that the group II intron in the cox1 ORF present in most species of Grateloupia was present in their common ancestor, and uniquely lost in G. asiatica. The seven Grateloupia species with known mitogenome sequences remain monophyletic, with the genus Polyopes as sister taxon. The complete mitochondrial genome data will be valuable for future research on comparative mitochondrial genome analysis, an extensive understanding of gene content and organization, evolution of the cox1 intron in Rhodophyta as well as phylogenetic analysis.


Assuntos
Genoma Mitocondrial , Filogenia , Rodófitas , Rodófitas/genética , Rodófitas/classificação , Íntrons/genética , Evolução Molecular
2.
Environ Microbiol ; 26(5): e16629, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695111

RESUMO

Horizontal genetic transfer (HGT) is a common phenomenon in eukaryotic genomes. However, the mechanisms by which HGT-derived genes persist and integrate into other pathways remain unclear. This topic is of significant interest because, over time, the stressors that initially favoured the fixation of HGT may diminish or disappear. Despite this, the foreign genes may continue to exist if they become part of a broader stress response or other pathways. The conventional model suggests that the acquisition of HGT equates to adaptation. However, this model may evolve into more complex interactions between gene products, a concept we refer to as the 'Integrated HGT Model' (IHM). To explore this concept further, we studied specialized HGT-derived genes that encode heavy metal detoxification functions. The recruitment of these genes into other pathways could provide clear examples of IHM. In our study, we exposed two anciently diverged species of polyextremophilic red algae from the Galdieria genus to arsenic and mercury stress in laboratory cultures. We then analysed the transcriptome data using differential and coexpression analysis. Our findings revealed that mercury detoxification follows a 'one gene-one function' model, resulting in an indivisible response. In contrast, the arsH gene in the arsenite response pathway demonstrated a complex pattern of duplication, divergence and potential neofunctionalization, consistent with the IHM. Our research sheds light on the fate and integration of ancient HGTs, providing a novel perspective on the ecology of extremophiles.


Assuntos
Arsênio , Extremófilos , Transferência Genética Horizontal , Rodófitas , Rodófitas/genética , Extremófilos/genética , Arsênio/metabolismo , Mercúrio/metabolismo , Estresse Fisiológico/genética , Inativação Metabólica/genética , Evolução Molecular
3.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731824

RESUMO

Agar, as a seaweed polysaccharide mainly extracted from Gracilariopsis lemaneiformis, has been commercially applied in multiple fields. To investigate factors indicating the agar accumulation in G. lemaneiformis, the agar content, soluble polysaccharides content, and expression level of 11 genes involved in the agar biosynthesis were analysed under 4 treatments, namely salinity, temperature, and nitrogen and phosphorus concentrations. The salinity exerted the greatest impact on the agar content. Both high (40‱) and low (10‱, 20‱) salinity promoted agar accumulation in G. lemaneiformis by 4.06%, 2.59%, and 3.00%, respectively. The content of agar as a colloidal polysaccharide was more stable than the soluble polysaccharide content under the treatments. No significant correlation was noted between the two polysaccharides, and between the change in the agar content and the relative growth rate of the algae. The expression of all 11 genes was affected by the 4 treatments. Furthermore, in the cultivar 981 with high agar content (21.30 ± 0.95%) compared to that (16.23 ± 1.59%) of the wild diploid, the transcriptional level of 9 genes related to agar biosynthesis was upregulated. Comprehensive analysis of the correlation between agar accumulation and transcriptional level of genes related to agar biosynthesis in different cultivation conditions and different species of G. lemaneiformis, the change in the relative expression level of glucose-6-phosphate isomerase II (gpiII), mannose-6-phosphate isomerase (mpi), mannose-1-phosphate guanylyltransferase (mpg), and galactosyltransferase II (gatII) genes was highly correlated with the relative agar accumulation. This study lays a basis for selecting high-yield agar strains, as well as for targeted breeding, by using gene editing tools in the future.


Assuntos
Ágar , Rodófitas , Rodófitas/genética , Rodófitas/metabolismo , Rodófitas/crescimento & desenvolvimento , Salinidade , Regulação da Expressão Gênica de Plantas , Polissacarídeos/metabolismo , Polissacarídeos/biossíntese , Temperatura , Nitrogênio/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731988

RESUMO

Heavy metal copper (Cu) will inevitably impact the marine macroalgae Gracilariopsis lemaneiformis (G. lemaneiformis), which is a culture of economic importance along China's coastline. In this study, the detoxification mechanism of Cu stress on G. lemaneiformis was revealed by assessing physiological indicators in conjunction with transcriptome and metabolome analyses at 1 d after Cu stress. Our findings revealed that 25 µM Cu stimulated ROS synthesis and led to the enzymatic oxidation of arachidonic acid residues. This process subsequently impeded G. lemaneiformis growth by suppressing photosynthesis, nitrogen metabolism, protein synthesis, etc. The entry of Cu ions into the algae was facilitated by ZIPs and IRT transporters, presenting as Cu2+. Furthermore, there was an up-regulation of Cu efflux transporters HMA5 and ABC family transporters to achieve compartmentation to mitigate the toxicity. The results revealed that G. lemaneiformis elevated the antioxidant enzyme superoxide dismutase and ascorbate-glutathione cycle to maintain ROS homeostasis. Additionally, metabolites such as flavonoids, 3-O-methylgallic acid, 3-hydroxy-4-keto-gama-carotene, and eicosapentaenoic acid were up-regulated compared with the control, indicating that they might play roles in response to Cu stress. In summary, this study offers a comprehensive insight into the detoxification mechanisms driving the responses of G. lemaneiformis to Cu exposure.


Assuntos
Cobre , Metaboloma , Transcriptoma , Cobre/toxicidade , Cobre/metabolismo , Metaboloma/efeitos dos fármacos , Alga Marinha/metabolismo , Alga Marinha/genética , Rodófitas/metabolismo , Rodófitas/genética , Rodófitas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico , Estresse Oxidativo/efeitos dos fármacos , Metabolômica/métodos
5.
Mol Phylogenet Evol ; 197: 108106, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750675

RESUMO

The Hildenbrandiales, a typically saxicolous red algal order, is an early diverging florideophycean group with global significance in marine and freshwater ecosystems across diverse temperature zones. To comprehensively elucidate the diversity, phylogeny, biogeography, and evolution of this order, we conducted a thorough re-examination employing molecular data derived from nearly 700 specimens. Employing a species delimitation method, we identified Evolutionary Species Units (ESUs) within the Hildenbrandiales aiming to enhance our understanding of species diversity and generate the first time-calibrated tree and ancestral area reconstruction for this order. Mitochondrial cox1 and chloroplast rbcL markers were used to infer species boundaries, and subsequent phylogenetic reconstructions involved concatenated sequences of cox1, rbcL, and 18S rDNA. Time calibration of the resulting phylogenetic tree used a fossil record from a Triassic purportedly freshwater Hildenbrandia species and three secondary time points from the literature. Our species delimitation analysis revealed an astounding 97 distinct ESUs, quintupling the known diversity within this order. Our time-calibration analysis placed the origin of Hildenbrandiales (crown age) in the Ediacaran period, with freshwater species emerging as a monophyletic group during the later Permian to early Triassic. Phylogenetic reconstructions identified seven major clades, experiencing early diversification during the Silurian to Carboniferous period. Two major evolutionary events-colonization of freshwater habitats and obligate systemic symbiosis with a marine fungus-marked this order, leading to significant morphological alterations without a commensurate increase in species diversification. Despite the remarkable newly discovered diversity, the extant taxon diversity appears relatively constrained when viewed against an evolutionary timeline spanning over 800 million years. This limitation may stem from restricted geographic sampling or the prevalence of asexual reproduction. However, species richness estimation and rarefaction analyses suggest a substantially larger diversity yet to be uncovered-potentially four times greater. These findings drastically reshape our understanding of the deeply diverging florideophycean order Hildenbrandiales species diversity, and contribute valuable insights into this order's evolutionary history and ecological adaptations. Supported by phylogenetic, ecological and morphological evidence, we established the genus Riverina gen. nov. to accommodate freshwater species of Hildenbrandiales, which form a monophyletic clade in our analyses. This marks the first step toward refining the taxonomy of the Hildenbrandiales, an order demanding thorough revisions, notably with the creation of several genera to address the polyphyletic status of Hildenbrandia. However, the limited diagnostic features pose a challenge, necessitating a fresh approach to defining genera. A potential solution lies in embracing a molecular systematic perspective, which can offer precise delineations of taxonomic boundaries.


Assuntos
Filogenia , Rodófitas , Simbiose , Simbiose/genética , Rodófitas/genética , Rodófitas/classificação , Filogeografia , Rios , Análise de Sequência de DNA , Teorema de Bayes , Biodiversidade , Evolução Molecular , Evolução Biológica , RNA Ribossômico 18S/genética
6.
Commun Biol ; 7(1): 312, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594478

RESUMO

Geothermal springs house unicellular red algae in the class Cyanidiophyceae that dominate the microbial biomass at these sites. Little is known about host-virus interactions in these environments. We analyzed the virus community associated with red algal mats in three neighboring habitats (creek, endolithic, soil) at Lemonade Creek, Yellowstone National Park (YNP), USA. We find that despite proximity, each habitat houses a unique collection of viruses, with the giant viruses, Megaviricetes, dominant in all three. The early branching phylogenetic position of genes encoded on metagenome assembled virus genomes (vMAGs) suggests that the YNP lineages are of ancient origin and not due to multiple invasions from mesophilic habitats. The existence of genomic footprints of adaptation to thermophily in the vMAGs is consistent with this idea. The Cyanidiophyceae at geothermal sites originated ca. 1.5 Bya and are therefore relevant to understanding biotic interactions on the early Earth.


Assuntos
Fontes Termais , Rodófitas , Filogenia , Parques Recreativos , Ecossistema , Biomassa , Rodófitas/genética
7.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674025

RESUMO

In this study, we applied the iterative procedure (IP) method to search for families of highly diverged dispersed repeats in the genome of Cyanidioschyzon merolae, which contains over 16 million bases. The algorithm included the construction of position weight matrices (PWMs) for repeat families and the identification of more dispersed repeats based on the PWMs using dynamic programming. The results showed that the C. merolae genome contained 20 repeat families comprising a total of 33,938 dispersed repeats, which is significantly more than has been previously found using other methods. The repeats varied in length from 108 to 600 bp (522.54 bp in average) and occupied more than 72% of the C. merolae genome, whereas previously identified repeats, including tandem repeats, have been shown to constitute only about 28%. The high genomic content of dispersed repeats and their location in the coding regions suggest a significant role in the regulation of the functional activity of the genome.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Rodófitas , Rodófitas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Genoma , Algoritmos , Genômica/métodos
8.
J Phycol ; 60(3): 778-779, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38587012

RESUMO

A reclassification of Cyanidium chilense under the new genus Cavernulicola was recently proposed together with a new family (Cavernulicolaceae) and a new order (Cavernulicolales). Unfortunately, due to an error in the required citation of the basionym, the name "Cavernulicola chilensis" was invalid and cannot be accepted as the generitype of Cavernulicola. This means that Cavernulicola, Cavernulicolaceae, and Cavernulicolales are likewise invalid names under the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN, Shenzhen Code). In this contribution, each of these names is validated.


Assuntos
Rodófitas , Terminologia como Assunto , Rodófitas/classificação , Rodófitas/genética
9.
J Phycol ; 60(2): 275-298, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439561

RESUMO

Thick-walled rosette-like snow algae were long thought to be a life stage of various other species of snow algae. Rosette-like cells have not been cultured, but by manually isolating cells from 38 field samples in southern British Columbia, we assigned a variety of rosette morphologies to DNA sequence. Phylogenetic analysis of Rubisco large-subunit (rbcL) gene, ribosomal internal transcribed spacer 2 (ITS2) rRNA region, and 18S rRNA gene revealed that the rosette-like cells form a new clade within the phylogroup Chloromonadinia. Based on these data, we designate a new genus, Rosetta, which comprises five novel species: R. castellata, R. floranivea, R. stellaria, R. rubriterra, and R. papavera. In a survey of 762 snow samples from British Columbia, we observed R. floranivea exclusively on snow overlying high-elevation glaciers, whereas R. castellata was observed at lower elevations, near the tree line. The other three species were rarely observed. Spherical red cells enveloped in a thin translucent sac were conspecific with Rosetta, possibly a developmental stage. These results highlight the unexplored diversity among snow algae and emphasize the utility of single-cell isolation to advance the centuries-old problem of disentangling life stages and cryptic species.


Assuntos
Clorofíceas , Clorófitas , Rodófitas , Filogenia , Clorófitas/genética , Clorofíceas/genética , RNA Ribossômico 18S/genética , Rodófitas/genética
10.
Methods Mol Biol ; 2776: 21-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502496

RESUMO

A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.


Assuntos
Evolução Biológica , Rodófitas , Simbiose , Plastídeos/genética , Plastídeos/metabolismo , Plantas/genética , Rodófitas/genética , Filogenia
11.
Microbiome ; 12(1): 47, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454513

RESUMO

BACKGROUND: Macroalgae, especially reds (Rhodophyta Division) and browns (Phaeophyta Division), are known for producing various halogenated compounds. Yet, the reasons underlying their production and the fate of these metabolites remain largely unknown. Some theories suggest their potential antimicrobial activity and involvement in interactions between macroalgae and prokaryotes. However, detailed investigations are currently missing on how the genetic information of prokaryotic communities associated with macroalgae may influence the fate of organohalogenated molecules. RESULTS: To address this challenge, we created a specialized dataset containing 161 enzymes, each with a complete enzyme commission number, known to be involved in halogen metabolism. This dataset served as a reference to annotate the corresponding genes encoded in both the metagenomic contigs and 98 metagenome-assembled genomes (MAGs) obtained from the microbiome of 2 red (Sphaerococcus coronopifolius and Asparagopsis taxiformis) and 1 brown (Halopteris scoparia) macroalgae. We detected many dehalogenation-related genes, particularly those with hydrolytic functions, suggesting their potential involvement in the degradation of a wide spectrum of halocarbons and haloaromatic molecules, including anthropogenic compounds. We uncovered an array of degradative gene functions within MAGs, spanning various bacterial orders such as Rhodobacterales, Rhizobiales, Caulobacterales, Geminicoccales, Sphingomonadales, Granulosicoccales, Microtrichales, and Pseudomonadales. Less abundant than degradative functions, we also uncovered genes associated with the biosynthesis of halogenated antimicrobial compounds and metabolites. CONCLUSION: The functional data provided here contribute to understanding the still largely unexplored role of unknown prokaryotes. These findings support the hypothesis that macroalgae function as holobionts, where the metabolism of halogenated compounds might play a role in symbiogenesis and act as a possible defense mechanism against environmental chemical stressors. Furthermore, bacterial groups, previously never connected with organohalogen metabolism, e.g., Caulobacterales, Geminicoccales, Granulosicoccales, and Microtrichales, functionally characterized through MAGs reconstruction, revealed a biotechnologically relevant gene content, useful in synthetic biology, and bioprospecting applications. Video Abstract.


Assuntos
Anti-Infecciosos , Microbiota , Rodófitas , Alga Marinha , Rodófitas/genética , Rodófitas/metabolismo , Microbiota/genética , Bactérias/genética , Bactérias/metabolismo , Alga Marinha/genética , Alga Marinha/metabolismo , Metagenoma , Halogênios/metabolismo
12.
Proc Natl Acad Sci U S A ; 121(11): e2319658121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442179

RESUMO

Light-harvesting complexes (LHCs) are diversified among photosynthetic organisms, and the structure of the photosystem I-LHC (PSI-LHCI) supercomplex has been shown to be variable depending on the species of organisms. However, the structural and evolutionary correlations of red-lineage LHCs are unknown. Here, we determined a 1.92-Å resolution cryoelectron microscopic structure of a PSI-LHCI supercomplex isolated from the red alga Cyanidium caldarium RK-1 (NIES-2137), which is an important taxon in the Cyanidiophyceae. We subsequently investigated the correlations of PSI-LHCIs from different organisms through structural comparisons and phylogenetic analysis. The PSI-LHCI structure obtained shows five LHCI subunits surrounding a PSI-monomer core. The five LHCIs are composed of two Lhcr1s, two Lhcr2s, and one Lhcr3. Phylogenetic analysis of LHCs bound to PSI in the red-lineage algae showed clear orthology of LHCs between C. caldarium and Cyanidioschyzon merolae, whereas no orthologous relationships were found between C. caldarium Lhcr1-3 and LHCs in other red-lineage PSI-LHCI structures. These findings provide evolutionary insights into conservation and diversity of red-lineage LHCs associated with PSI.


Assuntos
Complexo de Proteína do Fotossistema I , Rodófitas , Filogenia , Complexo de Proteína do Fotossistema I/genética , Evolução Biológica , Microscopia Crioeletrônica , Rodófitas/genética
13.
Mar Pollut Bull ; 201: 116259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492267

RESUMO

Early detection of invasive species is crucial to deal effectively with biological invasions in ports, which are hotspots of species introductions. In this study, a simplified end-time PCR methodology conducted on eDNA from water samples was developed for rapid detection of the invasive seaweed Asparagopsis armata (four hours from water collection to result visualization). It was tested dockside in four international Spanish ports in presence of stakeholders, whose feedback was obtained to explore the real applicability of this biotechnology. Although biological invasions were not a main concern for them, results indicate a unanimous approval of the methodology by the stakeholders, having detected the presence of A. armata in three of the ports. Stakeholders suggested further developments for easier application of the tool and multiple species detection, to be adopted for the control of invasive species in ports.


Assuntos
Rodófitas , Alga Marinha , Alga Marinha/genética , Rodófitas/genética , Espécies Introduzidas , Água
14.
J Phycol ; 60(1): 116-132, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38289653

RESUMO

Over the last 2 decades, routine collections in the Hawaiian Archipelago have expanded to mesophotic reefs, leading to the discovery of a new red algal genus and species, here described as Anunuuluaehu liula gen. et sp. nov. This study provides a detailed genus and species description and characterizes chloroplast and mitochondrial organellar genomes. The new genus, Anunuuluaehu, shares many characteristics with the family Phyllophoraceae and shows close similarities to Archestennogramma and Stenogramma, including habit morphology, nemathecia forming proliferations at the outer cortex with terminal chains of tetrasporangia, and carposporophytes with multi-layered pericarps. The single species in this genus exhibits distinctive features within the Phyllophoraceae: the presence of single-layer construction of large medullary cells and the development of long, tubular gonimoblastic filaments. Multi-gene phylogenetic analyses confirmed it as a unique, monophyletic lineage within the family. Cis-splicing genes, interrupted by intron-encoded proteins within group II introns, are present in both the chloroplast and mitochondrial genomes of A. liula. Notably, a specific region of the coxI group II intron exhibits similarity to fungal introns. Anunuuluaehu liula is presumed to be endemic to the Hawaiian Archipelago and thus far is known to live solely at mesophotic depths from Holaniku to Kaho'olawe ranging from 54 to 201 m, which is the deepest collection record of any representative in the family. Overall, this study enhances our understanding of the genomic and taxonomic complexities of red algae in mesophotic habitats, emphasizing the significance of continued research in this area to uncover further insights into evolutionary processes and biogeographic patterns.


Assuntos
Rodófitas , Filogenia , Havaí , Rodófitas/genética , Evolução Biológica , Genômica
15.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38267085

RESUMO

Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.


Assuntos
Arabidopsis , Rodófitas , Alga Marinha , Alga Marinha/genética , Criptocromos/metabolismo , Rodófitas/genética , Ritmo Circadiano/genética , Arabidopsis/genética
16.
Curr Biol ; 34(4): 740-754.e4, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38262417

RESUMO

Brown algae are the only group of heterokont protists exhibiting complex multicellularity. Since their origin, brown algae have adapted to various marine habitats, evolving diverse thallus morphologies and gamete types. However, the evolutionary processes behind these transitions remain unclear due to a lack of a robust phylogenetic framework and problems with time estimation. To address these issues, we employed plastid genome data from 138 species, including heterokont algae, red algae, and other red-derived algae. Based on a robust phylogeny and new interpretations of algal fossils, we estimated the geological times for brown algal origin and diversification. The results reveal that brown algae first evolved true multicellularity, with plasmodesmata and reproductive cell differentiation, during the late Ordovician Period (ca. 450 Ma), coinciding with a major diversification of marine fauna (the Great Ordovician Biodiversification Event) and a proliferation of multicellular green algae. Despite its early Paleozoic origin, the diversification of major orders within this brown algal clade accelerated only during the Mesozoic Era, coincident with both Pangea rifting and the diversification of other heterokont algae (e.g., diatoms), coccolithophores, and dinoflagellates, with their red algal-derived plastids. The transition from ancestral isogamy to oogamy was followed by three simultaneous reappearances of isogamy during the Cretaceous Period. These are concordant with a positive character correlation between parthenogenesis and isogamy. Our new brown algal timeline, combined with a knowledge of past environmental conditions, shed new light on brown algal diversification and the intertwined evolution of multicellularity and sexual reproduction.


Assuntos
Phaeophyceae , Rodófitas , Filogenia , Eucariotos/genética , Plantas , Rodófitas/genética , Plastídeos/genética , Phaeophyceae/genética , Evolução Molecular
17.
J Gen Appl Microbiol ; 69(5): 287-291, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37587047

RESUMO

 Microalgae are promising cell factories for producing value-added products. Large-scale microalgal cultivation suffers from invasion by contaminating microorganisms. Since most contaminating organisms cannot utilize phosphite as a unique phosphorus source, phosphite-utilizing ability may provide a growth advantage against contaminating organisms and solve this problem. Studies showed that microorganisms, typically unable to metabolize phosphite, can utilize phosphite by expressing exogenous phosphite dehydrogenase. Here, we constructed Cyanidioschyzon merolae strains introduced with the phosphite dehydrogenase gene, ptxD, from Ralstonia sp. 4506. The ptxD-introduced strains grew in a phosphite-dependent manner, with the phosphite-related growth rate almost matching that with phosphate as sole phosphorus source.


Assuntos
Fosfitos , Rodófitas , Fosfitos/metabolismo , NADH NADPH Oxirredutases/genética , Rodófitas/genética , Fósforo
18.
J Phycol ; 60(1): 49-72, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37878678

RESUMO

Cryptic diversity is common among marine macroalgae, with molecular tools leading to the discovery of many new species. To assign names to these morphologically similar species, the type and synonyms have to be examined, and if appropriate, new species must be described. The turf-forming red alga Polysiphonia scopulorum was originally described from Rottnest Island, Australia, and subsequently widely reported in tropical and temperate coasts based on morphological identifications. A recent study of molecular species delineation revealed a complex of 12 species in Australia, South Africa, and Europe. These species are placed in a taxonomically unresolved lineage of the tribe Polysiphonieae. The aim of this study was to resolve the genus- and species-level taxonomy of this complex and related species using molecular and morphological information. Three morphologically indistinguishable species of the complex were found at the type locality of P. scopulorum, preventing a straightforward assignment of the name to any of the molecular lineages. Therefore, we propose a molecularly characterized epitype. Polysiphonia caespitosa is reinstated for the only species found in its type locality in South Africa. We describe seven new species. Only one species of the complex can be morphologically recognized, with the other eight species indistinguishable based on morphometric analysis. The studied complex, together with another seven species currently placed in Polysiphonia and two Bryocladia species, formed a clade distinct from Polysiphonia sensu stricto. Based on observations of Bryocladia cervicornis (the generitype), we describe our seven new species in the genus Bryocladia and transfer another nine species from Polysiphonia to Bryocladia.


Assuntos
Algas Comestíveis , Rodófitas , Alga Marinha , Filogenia , Análise de Sequência de DNA , Rodófitas/genética
19.
J Phycol ; 60(1): 195-202, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37864777

RESUMO

To examine the potential for the autogenic ecosystem engineers, crustose coralline algae (CCA), to serve as seed banks or refugia for life stages of other species, it is critical to develop sampling protocols that reflect the diversity of life present. In this pilot study on two shallow water species of CCA collected from Raoul Island (Kermadec Islands; Rangitahua) New Zealand, we investigated two preservation methods (ethanol vs. silica gel), sampled inner and outer regions of the crusts, and used DNA metabarcoding and seven genes/gene regions (16S rRNA, 18S rRNA, 23S rRNA, cox1, rbcL, and tufA genes and the ITS rRNA region) to develop a protocol for taxa identification. The results revealed immense diversity, with typically more taxa identified within the inner layers than the outer layers. As highlighted in other metabarcoding studies and in earlier work on rhodoliths (nodose coralline algae), reference databases are incomplete, and to some extent, the use of multiple markers mitigates this issue. Specifically, the 23S rRNA and rbcL genes are currently more suitable for identifying algae, while the cox1 gene fares better at capturing the diversity present inclusive of algae. Further investigation of these autogenic ecosystem engineers that likely act as marine seed banks is needed.


Assuntos
Ecossistema , Rodófitas , Rodófitas/genética , RNA Ribossômico 16S , Código de Barras de DNA Taxonômico , Projetos Piloto , RNA Ribossômico 23S , Banco de Sementes
20.
Genes Genomics ; 46(3): 355-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37995039

RESUMO

BACKGROUND: Many species of red algae belonging to the phylum Rhodophyta are consumed by humans as raw materials for nutrition and medicine. As the seaweed market grows, the importance of the laver species has increased. The classification of red algal species has changed significantly, and the accuracy of this classification has improved significantly in recent years. Here, we report the complete circular genomes of the chloroplasts (cp) and mitochondria (mt) of three laver species (Neoporphyra dentata, Neoporphyra seriata, and Neopyropia yezoensis). OBJECTIVE: This study aims to assemble, annotate, and characterize the organization of the organelle genomes of three laver species, conduct comparative genomic studies, and develop molecular markers based on SNPs. METHODS: We analyzed organelle genome structures, repeat sequences, sequence divergence, gene rearrangements, and phylogenetic relationships of three laver species. RESULTS: The chloroplast genomes of the three species contained an average of 212 protein-coding genes (PCGs), while the mitochondrial genomes contained an average of 25 PCGs. We reconstructed the phylogenetic trees based on both chloroplast and mitochondrial genomes using 201 and 23 PCGs (in cp and mt genomes, respectively) shared in the class Bangiophyceae (and five species of Florideophyceae class used as an outgroup). In addition, 12 species-specific molecular markers were developed for qRT-PCR analysis. CONCLUSIONS: This is the first report of Neoporphyra seriata complete organellar genomes. With the results, this study provides useful genetic information regarding taxonomic discrepancies, the reconstruction of phylogenetic trees, and the evolution of red algae. Moreover, the species-specific markers can be used as fast and easy methods to identify a target species.


Assuntos
Algas Comestíveis , Porphyra , Rodófitas , Alga Marinha , Humanos , Alga Marinha/genética , Filogenia , Rodófitas/genética , Cloroplastos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...