Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 504: 122-140, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28189970

RESUMO

Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234-474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.


Assuntos
Citomegalovirus/genética , Proteínas Imediatamente Precoces/genética , Proteínas Nucleares/metabolismo , Roseolovirus/genética , Transativadores/genética , Replicação Viral/genética , Animais , Linhagem Celular Tumoral , Núcleo Celular/virologia , Clonagem Molecular , Citomegalovirus/imunologia , Técnicas de Inativação de Genes , Cobaias , Humanos , Proteínas Imediatamente Precoces/imunologia , Proteínas Imediatamente Precoces/metabolismo , Interferon Tipo I/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Nitrilas , Proteínas Nucleares/genética , Pirazóis/farmacologia , Pirimidinas , Roseolovirus/efeitos dos fármacos , Roseolovirus/imunologia , Transdução de Sinais/genética , Transativadores/imunologia , Transativadores/metabolismo
2.
J Huazhong Univ Sci Technolog Med Sci ; 32(6): 883-887, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23271291

RESUMO

This study examined the anti-viral effect of ursolic acid on guinea pig cytomegalovirus (GPCMV) and explored the steps of viral replication targeted by ursolic acid. Cytopathic effect assay and MTT method were employed to determine the 50% cellular cytotoxicity (CC(50)), 50% effective concentration (EC(50)) and therapeutic index (TI) with GPCMV. To investigate the specific anti-viral effect of ursolic acid at different temperatures and time points, two other medicines, ganciclovir and Jinyebaidu (JYBD), serving as controls, were studied for comparison. Our results showed that the CC50 of ganciclovir, JYBD and ursolic acid were 333.8, 3015.6, 86.7 µg/mL, respectively; EC(50) of ganciclovir, JYBD and ursolic acid was 48.1, 325.5 and 6.8 µg/mL, respectively; TI of ganciclovir, JYBD and ursolic acid was 7, 9, 13, respectively. Similar with ganciclovir, ursolic acid could inhibit the viral synthesis, but did not affect the viral adsorption onto and penetration into cells. We are led to conclude that the anti-cytomegalovirus effect of ursolic acid is significantly stronger than ganciclovir or JYBD, and the cytotoxic effect of ursolic acid lies in its ability to inhibit viral synthesis.


Assuntos
Antivirais/farmacologia , Roseolovirus/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Células Cultivadas , Cobaias , Ácido Ursólico
3.
Antimicrob Agents Chemother ; 52(7): 2420-7, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18458124

RESUMO

To simplify the detection of infectious human cytomegalovirus (HCMV), we generated a cell line that produced luciferase in a dose-dependent manner upon HCMV infection. Using this cell line, we identified anti-HCMV compounds from a diverse library of 9,600 compounds. One of them, 1-(3,5-dichloro-4-pyridyl)piperidine-4-carboxamide (DPPC), was effective against HCMV (Towne strain) infection of human lung fibroblast cells at a 50% effective concentration of 2.5 microM. DPPC also inhibited the growth of clinical HCMV isolates and guinea pig and mouse cytomegaloviruses. Experiments using various time frames for treatment of the cells with DPPC demonstrated that DPPC was effective during the first 24 h after HCMV infection. DPPC treatment decreased not only viral DNA replication but also IE1 and IE2 expression at mRNA and protein levels in the HCMV-infected cells. However, DPPC did not inhibit the attachment of HCMV particles to the cell surface. DPPC is a unique compound that targets the very early phase of cytomegalovirus infection, probably by disrupting a pathway that is important after viral entry but before immediate-early gene expression.


Assuntos
Antivirais/farmacologia , Citomegalovirus/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/química , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Citomegalovirus/fisiologia , Replicação do DNA/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Cobaias , Humanos , Camundongos , Muromegalovirus/efeitos dos fármacos , Muromegalovirus/fisiologia , Piperidinas/química , Piperidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Roseolovirus/efeitos dos fármacos , Roseolovirus/fisiologia , Ensaio de Placa Viral
4.
J Virol ; 78(4): 1623-35, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747528

RESUMO

The halogenated benzimidazoles BDCRB (2-bromo-5,6-dichloro-1-beta-D-riborfuranosyl benzimidazole riboside) and TCRB (2,5,6-trichloro-1-beta-D-riborfuranosyl benzimidazole riboside) were the first compounds shown to inhibit cleavage and packaging of herpesvirus genomes. Both inhibit the formation of unit length human cytomegalovirus (HCMV) genomes by a poorly understood mechanism (M. R. Underwood et al., J. Virol. 72:717-715, 1998; P. M. Krosky et al., J. Virol. 72:4721-4728, 1998). Because the simple genome structure of guinea pig cytomegalovirus (GPCMV) provides a useful model for the study of herpesvirus DNA packaging, we investigated the effects of BDCRB on GPCMV. GPCMV proved to be sensitive to BDCRB (50% inhibitory concentration = 4.7 microM), although somewhat less so than HCMV. In striking contrast to HCMV, however, a dose of BDCRB sufficient to reduce GPCMV titers by 3 logs (50 microM) had no effect on the quantity of GPCMV genomic DNA that was formed in infected cells. Electron microscopy revealed that this DNA was in fact packaged within intranuclear capsids, but these capsids failed to egress from the nucleus and failed to protect the DNA from nuclease digestion. The terminal structure of genomes formed in the presence of BDCRB was also altered. Genomes with ends lacking a terminal repeat at the right end, which normally exist in an equimolar ratio with those having one copy of the repeat at the right end, were selectively eliminated by BDCRB treatment. At the left end, BDCRB treatment appeared to induce heterogeneous truncations such that 2.7 to 4.9 kb of left-end-terminal sequences were missing. These findings suggest that BDCRB induces premature cleavage events that result in truncated genomes packaged within capsids that are permeable to nuclease. Based on these and other observations, we propose a model for duplication of herpesvirus terminal repeats during the cleavage and packaging process that is similar to one proposed for bacteriophage T7 (Y. B. Chung, C. Nardone, and D. C. Hinkle, J. Mol. Biol. 216:939-948, 1990).


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , Ribonucleosídeos/farmacologia , Roseolovirus/efeitos dos fármacos , Animais , Células Cultivadas , DNA Viral/biossíntese , Genoma Viral , Cobaias , Roseolovirus/genética , Roseolovirus/metabolismo , Roseolovirus/fisiologia , Montagem de Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...