Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(27): 35245-35254, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935865

RESUMO

An alarming increase in the use of pesticides and organoarsenic compounds and their toxic impacts on the environment have inspired us to develop a selective and highly sensitive sensor for the detection of these pollutants. Herein, a bio-friendly, low-cost Al-based luminescent metal-organic framework (1')-based fluorescent material is demonstrated that helps in sustaining water quality by rapid monitoring and quantification of a long-established pesticide (pendimethalin) and a widely employed organoarsenic feed additive (roxarsone). A pyridine-functionalized porous aluminum-based metal-organic framework (Al-MOF) was solvothermally synthesized. After activation, it was used for fast (<10 s) and selective turn-off detection of roxarsone and pendimethalin over other competitive analytes. This is the first MOF-based recyclable sensor for pendimethalin with a remarkably low limit of detection (LOD, 14.4 nM). Real-time effectiveness in detection of pendimethalin in various vegetable and food extracts was successfully verified. Moreover, the aqueous-phase recyclable detection of roxarsone with an ultralow detection limit (13.1 nM) makes it a potential candidate for real-time application. The detection limits for roxarsone and pendimethalin are lower than the existing luminescent material based sensors. Furthermore, the detection of roxarsone in different environmental water and a wide pH range with a good recovery percentage was demonstrated. In addition, a cheap and bio-friendly 1'@chitosan@paper strip composite was prepared and successfully employed for the hands-on detection of pendimethalin and roxarsone. The turn-off behavior of 1' in the presence of pendimethalin and roxarsone was examined systematically, and plausible mechanistic pathways were proposed with the help of multiple experimental evidences.


Assuntos
Compostos de Anilina , Quitosana , Estruturas Metalorgânicas , Papel , Roxarsona , Verduras , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Compostos de Anilina/química , Poluentes Químicos da Água/análise , Verduras/química , Roxarsona/análise , Roxarsona/química , Quitosana/química , Praguicidas/análise , Contaminação de Alimentos/análise , Limite de Detecção , Aditivos Alimentares/análise
2.
Food Chem ; 455: 139918, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38824727

RESUMO

Herein, a novel FeCoNi(b)-800 ternary metal nanoalloy was uniformly mixed with reduced graphene oxide (RGO) to synthesize the FeCoNi(b)-800@RGO(2:1) composite. The addition of RGO not only stopped the accumulation of FeCoNi(b)-800 alloy, but also heightened the electrocatalytic activity of composite. Particularly, the FeCoNi(b)-800@RGO(2:1) composite displayed the significantly strong electrocatalytic capacity for the reduction of roxarsone (ROX). Furthermore, the FeCoNi(b)-800@RGO(2:1) composite possessed enough porosity and metal catalytic sites, facilitating the transport and electrochemical reduction of the ROX. Thus, the FeCoNi(b)-800@RGO(2:1) composite modified glassy carbon electrode (FeCoNi(b)-800@RGO(2:1)/GCE) showed the superb electrochemical detection effect for ROX with relatively wide working range (0.1-1500 µM) and low detection limit (0.013 µM). Importantly, the FeCoNi(b)-800@RGO(2:1)/GCE sensor could accurately determine the contents of ROX in actual pork, chicken, duck and egg samples, indicating that it had good suitability in food safety monitoring.


Assuntos
Galinhas , Técnicas Eletroquímicas , Contaminação de Alimentos , Grafite , Roxarsona , Grafite/química , Técnicas Eletroquímicas/instrumentação , Contaminação de Alimentos/análise , Animais , Roxarsona/química , Roxarsona/análise , Suínos , Ligas/química , Limite de Detecção , Ovos/análise , Carne/análise , Oxirredução , Eletrodos
3.
Anal Methods ; 16(18): 2857-2868, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38639051

RESUMO

The pentavalent arsenic compound roxarsone (RSN) is used as a feed additive in poultry for rapid growth, eventually ending up in poultry litter. Poultry litter contains chicken manure, which plays a vital role as an affordable fertilizer by providing rich nutrients to agricultural land. Consequently, the extensive use of poultry droppings serves as a conduit for the spread of toxic forms of arsenic in the soil and surface water. RSN can be easily oxidized to release highly carcinogenic As(III) and As(IV) species. Thus, investigations were conducted for the sensitive detection of RSN electrochemically by developing a sensor material based on lanthanum manganese oxide (LMO) and functionalized carbon nanofibers (f-CNFs). The successfully synthesised LMO/f-CNF composite was confirmed by chemical, compositional, and morphological studies. The electrochemical activity of the prepared composite material was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results confirmed that LMO/f-CNF showed enhanced electrocatalytic activity and improved current response with a good linear range (0.01-0.78 µM and 2.08-497 µM, respectively), exhibiting a low limit of detection (LOD) of 0.004 µM with a high sensitivity of 13.24 µA µM-1 cm-2 towards the detection of RSN. The noteworthy features of LMO/f-CNF composite with its superior electrochemical performance enabled reliable reproducibility, exceptional stability and reliable practical application in the analysis of tap water and food sample, affording a recovery range of 86.1-98.87%.


Assuntos
Compostos de Cálcio , Técnicas Eletroquímicas , Lantânio , Nanofibras , Óxidos , Roxarsona , Titânio , Nanofibras/química , Lantânio/química , Óxidos/química , Técnicas Eletroquímicas/métodos , Roxarsona/química , Roxarsona/análise , Titânio/química , Compostos de Cálcio/química , Poluentes Químicos da Água/análise , Carbono/química , Limite de Detecção , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Animais , Compostos de Manganês/química
4.
Chemosphere ; 339: 139688, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532198

RESUMO

In environmental systems, the soil is a principal route of contamination by various potentially toxic species. Roxarsone (RX) is an arsenic (V) organic compound used to treat parasitic diseases and as an additive for animal fattening. When the animal excretes RX, the residues may lead to environmental contamination. Due to their physicochemical properties, the soil's humic substances (HS) are important in species distribution in the environment and are involved in various specific interaction/adsorption processes. Since RX, an arsenic (V) compound, is considered an emerging contaminant, its interaction with HS was evaluated in simulated environmental conditions. The HS-RX interaction was analyzed by monitoring intrinsic HS fluorescence intensity variations caused by complexation with RX, forming non-fluorescent supramolecular complexes that yielded a binding constant Kb (on the order of 103). The HS-RX interaction occurred through static quenching due to complex formation in the ground state, which was confirmed by spectrophotometry. The process was spontaneous (ΔG < 0), and the predominant interaction forces were van der Waals and hydrogen bonding (ΔH < 0 and ΔS < 0), with an electrostatic component evidenced by the influence of ionic strength in the interaction process. Structural changes in the HS were verified by synchronized and 3D fluorescence, with higher variation in the region referring to the protein-like fraction. In addition, metal ions (except ions Cu(II)) favored HS-RX interaction. When interacting with HS, the RX epitope was suggested by 1H NMR, which indicated that the entire molecule interacts with the superstructure. An enzyme inhibition assay verified the ability to reduce the alkaline phosphatase activity of free and complexed RX (RX-HS). Finally, this work revealed the main parameters associated with HS and RX interaction in simulated environmental conditions, thus, providing data that may help our understanding of the dynamics of organic arsenic-influenced soils.


Assuntos
Arsênio , Roxarsona , Poluentes do Solo , Animais , Substâncias Húmicas/análise , Solo/química , Roxarsona/química , Poluentes do Solo/análise , Íons
5.
J Hazard Mater ; 454: 131483, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116328

RESUMO

Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, Rox(V)), an extensively used organoarsenical feed additive, enters soils through the application of Rox(V)-containing manure and further degrades to highly toxic arsenicals. Microplastics, as emerging contaminants, are also frequently detected in soils. However, the effects of microplastics on soil Rox(V) degradation are unknown. A microcosm experiment was conducted to investigate soil Rox(V) degradation responses to polyethylene (PE) microplastics and the underlying mechanisms. PE microplastics inhibited soil Rox(V) degradation, with the main products being 3-amino-4-hydroxyphenylarsonic acid [3-AHPAA(V)], N-acetyl-4-hydroxy-m-arsanilic acid [N-AHPAA(V)], arsenate [As(V)], and arsenite [As(III)]. This inhibition was likely driven by the decline in soil pH by PE microplastic addition, which may directly enhance Rox(V) sorption in soils. The decreased soil pH further suppressed the nfnB gene related to nitroreduction of Rox(V) to 3-AHPAA(V) and nhoA gene associated with acetylation of 3-AHPAA(V) to N-AHPAA(V), accompanied by a decrease in the relative abundance of possible Rox(V)-degrading bacteria (e.g., Pseudomonadales), although the diversity, composition, network complexity, and assembly of soil bacterial communities were largely influenced by Rox(V) rather than PE microplastics. Our study emphasizes microplastic-induced inhibition of Rox(V) degradation in soils and the need to consider the role of microplastics in better risk assessment and remediation of Rox(V)-contaminated soils.


Assuntos
Roxarsona , Roxarsona/química , Microplásticos , Plásticos , Solo/química , Polietileno
6.
J Environ Sci (China) ; 129: 30-44, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36804240

RESUMO

The retention and fate of Roxarsone (ROX) onto typical reactive soil minerals were crucial for evaluating its potential environmental risk. However, the behavior and molecular-level reaction mechanism of ROX and its substituents with iron (hydr)oxides remains unclear. Herein, the binding behavior of ROX on ferrihydrite (Fh) was investigated through batch experiments and in-situ ATR-FTIR techniques. Our results demonstrated that Fh is an effective geo-sorbent for the retention of ROX. The pseudo-second-order kinetic and the Langmuir model successfully described the sorption process. The driving force for the binding of ROX on Fh was ascribed to the chemical adsorption, and the rate-limiting step is simultaneously dominated by intraparticle and film diffusion. Isotherms results revealed that the sorption of ROX onto Fh appeared in uniformly distributed monolayer adsorption sites. The two-dimensional correlation spectroscopy and XPS results implied that the nitro, hydroxyl, and arsenate moiety of ROX molecules have participated in binding ROX onto Fh, signifying that the predominated mechanisms were attributed to the hydrogen bonding and surface complexation. Our results can help to better understand the ROX-mineral interactions at the molecular level and lay the foundation for exploring the degradation, transformation, and remediation technologies of ROX and structural analog pollutants in the environment.


Assuntos
Roxarsona , Roxarsona/química , Compostos Férricos/química , Ferro , Solo/química , Minerais/química , Adsorção
7.
J Environ Manage ; 328: 116945, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36512947

RESUMO

The contamination of organoarsenic is becoming increasingly prominent while SR-AOPs were confirmed to be valid for their remediation. This study has found that the novel metal/carbon catalyst (Fe/C-Mn) prepared by solid waste with hierarchical pores could simultaneously degrade roxarsone (ROX) and remove As(V). A total of 95.6% of ROX (20 mg/L) could be removed at the concentration of 1.0 g/L of catalyst and 0.4 g/L of oxidant in the Fe/C-Mn/PMS system within 90 min. The scavenging experiment and electrochemical test revealed that both single-electron and two-electron pathways contributed to the ROX decomposition. Spectroscopic analysis suggested the ROX has been successfully mineralized while As(V) was fixed with the surface Fe and Mn. Density functional theory (DFT) calculation and chromatographic analysis indicated that the As7, N8, O9 and O10 sites of ROX molecule were vulnerable to being attacked by nucleophilic, electrophilic and radical, resulting in the formation of several intermediates such as phenolic compounds. Additionally, the low metal leaching concentration during recycling and high anti-interference ability in various water matrices manifested the practicability of Fe/C-Mn/PMS system.


Assuntos
Roxarsona , Roxarsona/química , Roxarsona/metabolismo , Manganês , Carvão Vegetal , Metais , Eletrólitos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122213, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36527969

RESUMO

The influence of Fe(III) on the interaction between roxarsone (ROX) and humic acid (HA) was investigated by multi-spectroscopic techniques. The fluorescence quenching experiment indicated that the fluorescence intensity of HA-ROX was quenched by Fe(III) through a static quenching process. Synchronous fluorescence spectra provided further information concerning the competitive combination between ROX and Fe(III) for HA. The results of the dialysis equilibrium experiment confirmed the existence of Fe(III) (0.05-0.1 mmol/L) promotes the combination of HA and ROX. Binding mechanisms were further characterized by FTIR spectroscopy, and the carboxyl functional group is involved in the binding process of HA/Fe/ROX. In addition, acidic and neutral conditions are more conducive to the combination of ROX and HA/Fe than alkaline conditions. The above discussion is of great significance in understanding the environmental fate of ROX under the coexistence of Fe(III) and HA.


Assuntos
Roxarsona , Roxarsona/química , Substâncias Húmicas/análise , Compostos Férricos/química , Diálise Renal , Espectroscopia de Infravermelho com Transformada de Fourier
9.
Inorg Chem ; 61(41): 16370-16379, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36184926

RESUMO

Nanomaterials have versatile properties owing to their high surface-to-volume ratio and can thus be used in a variety of applications. This work focused on applying a facile hydrothermal strategy to prepare praseodymium vanadate nanoparticles due to the importance of nanoparticles in today's society and the fact that their synthesis might be a challenging endeavor. The structural and morphological characterizations were carried out to confirm the influence of the optimizations on the reaction's outcomes, which revealed praseodymium vanadate (PrVO4) with a tetragonal crystal system. In this regard, the proposed development of electrochemical sensors based on the PrVO4 nanocatalyst for the real-time detection of arsenic drug roxarsone (RXS) is a primary concern. The detection was measured by amperometric (i-t) signals where PrVO4/SPCE, as a new electrochemical sensing medium for RXS detection, increased the sensitivity of the sensor to about ∼2.5 folds compared to the previously reported ones. In the concentration range of 0.001-551.78 µM, the suggested PrVO4/SPCE sensor has a high sensitivity for RXS, with a detection limit of 0.4 nM. Furthermore, the impact of several selected potential interferences, operational stability (2000 s), and reproducibility measurements have no discernible effect on RXS sensing, making it the ideal sensing device feasible for technical analysis. The real-time analysis reveals the excellent efficiency and reliability of the prosed sensor toward RXS detection with favorable recovery ranges between ±97.00-99.66% for chicken, egg, water, and urine samples.


Assuntos
Arsênio , Nanopartículas , Roxarsona , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Praseodímio , Reprodutibilidade dos Testes , Roxarsona/análise , Roxarsona/química , Vanadatos , Água
10.
Chemosphere ; 308(Pt 2): 136326, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36084835

RESUMO

Organoarsenical antibiotics pose a severe threat to the environment and human health. In aquatic environment, dissolved organic matter (DOM)-mediated photochemical transformation is one of the main processes in the fate of organoarsenics. Dicarbonyl is a typical redox-active moiety in DOM. However, the knowledge on the photoconversion of organoarsenics by DOM, especially the contributions of dicarbonyl moieties is still limited. Here, we systematically investigated the photochemical transformation of three organoarsenics with the simplest ß-diketone, acetylacetone (AcAc), as a model dicarbonyl moiety of DOM. The presence of AcAc significantly enhanced the photochemical conversion of roxarsone (ROX), whereas only minor effects were observed for 3-amino-4-hydroxyphenylarsonic acid (HAPA) and arsanilic acid (ASA), because the latter two (with an amino (-NH2) group) are more photoactive than ROX (with a nitro (-NO2) group). The results demonstrate that AcAc was a potent photo-activator and the reduction of -NO2 to -NH2 might be a rate-limiting step in the phototransformation of ROX. At a 1:1 M ratio of AcAc to ROX, the photochemical transformation rate of ROX was increased by 7 folds. In O2-rich environment, singlet oxygen, peroxide radicals, and ·OH were the main reactive species that led to the breakage of the C-As bond in ROX and the oxidation of the released arsono group to arsenate, whereas the triplet-excited state of AcAc (3AcAc*) and carbon-centered radicals from the photolysis of AcAc dominated in the reductive transformation of ROX. In anoxic environment, 3-amino-4-hydroxyphenylarsonic acid was one of the main reductive transformation intermediates of ROX, whose photolysis rate was about 35 times that of ROX. The knowledge obtained here is of great significance to better understand the fate of organoarsenics in natural environment.


Assuntos
Roxarsona , Poluentes Químicos da Água , Antibacterianos , Ácido Arsanílico , Arseniatos , Carbono , Humanos , Dióxido de Nitrogênio , Oxirredução , Pentanonas , Peróxidos , Fotólise , Roxarsona/química , Oxigênio Singlete , Poluentes Químicos da Água/análise
11.
Environ Microbiol ; 24(2): 762-771, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33998126

RESUMO

Organoarsenicals enter the environment from biogenic and anthropogenic sources. Trivalent inorganic arsenite (As(III)) is microbially methylated to more toxic methylarsenite (MAs(III)) and dimethylarsenite (DMAs(III)) that oxidize in air to MAs(V) and DMAs(V). Sources include the herbicide monosodium methylarsenate (MSMA or MAs(V)), which is microbially reduced to MAs(III), and the aromatic arsenical roxarsone (3-nitro-4-hydroxybenzenearsonic acid or Rox), an antimicrobial growth promoter for poultry and swine. Here we show that Sphingobacterium wenxiniae LQY-18T , isolated from activated sludge, is resistant to trivalent MAs(III) and Rox(III). Sphingobacterium wenxiniae detoxifies MAs(III) and Rox(III) by oxidation to MAs(V) and Rox(V). Sphingobacterium wenxiniae has a novel chromosomal gene, termed arsU1. Expressed in Escherichia coli arsU1 confers resistance to MAs(III) and Rox(III) but not As(III) or pentavalent organoarsenicals. Purified ArsU1 catalyses oxidation of trivalent methylarsenite and roxarsone. ArsU1 has six conserved cysteine residues. The DNA sequence for the three C-terminal cysteines was deleted, and the other three were mutated to serines. Only C45S and C122S lost activity, suggesting that Cys45 and Cys122 play a role in ArsU1 function. ArsU1 requires neither FMN nor FAD for activity. These results demonstrate that ArsU1 is a novel MAs(III) oxidase that contributes to S. wenxiniae tolerance to organoarsenicals.


Assuntos
Arsênio , Arsenicais , Roxarsona , Sphingobacterium , Animais , Roxarsona/química , Esgotos , Sphingobacterium/genética , Suínos
12.
J Hazard Mater ; 389: 122091, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31972529

RESUMO

Roxarsone is a phenyl-substituted arsonic acid comprising both arsenate and benzene rings. Few adsorbents are designed for the effective capture of both the organic and inorganic moieties of ROX molecules. Herein, nano zerovalent iron (nZVI) particles were incorporated on the surface of sludge-based biochar (SBC) to fabricate a dual-affinity sorbent that attracts both the arsenate and benzene rings of ROX. The incorporation of nZVI particles significantly increased the binding affinity and sorption capacity for ROX molecules compared to pristine SBC and pure nZVI. The enhanced elimination of ROX molecules was ascribed to synergetic adsorption and degradation reactions, through π-π* electron donor/acceptor interactions, H-bonding, and As-O-Fe coordination. Among these, the predominate adsorption force was As-O-Fe coordination. During the sorption process, some ROX molecules were decomposed into inorganic arsenic and organic metabolites by the reactive oxygen species (ROS) generated during the early stages of the reaction. The degradation pathways of ROX were proposed according to the oxidation intermediates. This work provides a theoretical and experimental basis for the design of adsorbents according to the structure of the target pollutant.


Assuntos
Carvão Vegetal/química , Ferro/química , Nanocompostos/química , Roxarsona/isolamento & purificação , Esgotos/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Recuperação e Remediação Ambiental/métodos , Concentração de Íons de Hidrogênio , Oxirredução , Roxarsona/química , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Poluentes Químicos da Água/química
13.
Chemosphere ; 233: 431-439, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31176907

RESUMO

The transformation of roxarsone (ROX) during UV disinfection with Fe(III) has been investigated. Fe(OH)2+, as the main Fe(III) species at pH = 3, produces HO under UV irradiation leading to the oxidation of ROX. Dissolved oxygen plays a very important role in the continuous conversion of generated Fe2+ to Fe3+, which ensures a Fe(III)-Fe(II) cycle in the system. The presence of Cl-/HCO3-/NO3- has little influence on the ROX transformation, whereas PO43- achieves an obvious inhibitory effect. The transformation of ROX leads to the formation of inorganic arsenic consisting of a much higher amount of As(V) than As(III). LC-MS analysis shows that phenol, o-nitrophenol and arsenic acid were the main transformation products. Both the radical scavenger experiment and electron spin resonance data confirm that the HO is responsible for ROX transformation. The toxic transformation products are found to have potential environmental risks for the natural environment, organisms and human beings.


Assuntos
Desinfecção/métodos , Compostos Férricos/química , Roxarsona , Raios Ultravioleta , Poluentes Químicos da Água , Purificação da Água/métodos , Íons , Oxirredução , Processos Fotoquímicos , Roxarsona/química , Roxarsona/efeitos da radiação , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
14.
Mikrochim Acta ; 186(7): 420, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187268

RESUMO

A sensitive electrochemical (voltammetric; DPV) sensor has been developed for the determination of coccidiostat drug (roxarsone) based on the use of an SPCE (screen-printed carbon electrode) modified with tungsten disulfide nanosheets (WS2 NSs). The electrochemical detection of roxarsone on the WS2-modified SPCE was examined by electrochemical strategies. XPS, XRD, Raman, SEM, TEM, EDS and EIS were used to characterize the nanosheets. The effects of scan rate, pH values (phosphate buffer) and buffer concentration were optimized. A selective roxarsone sensor was developed that works best at -0.64 V (vs. Ag/AgCl) and performs much better than the bare SPCE. Features include (a) a wider linear range (0.05 to 490 µM), (b) a nanomolar detection limit (0.03 µM) and (c) high sensitivity (29 µA·µM-1·cm-2). The modified SPCEs have been successfully applied to the determination of roxarsone in spiked meat samples where they gave high accuracy and good recoveries. Graphical abstract Synthesis of WS2 nanosheets and electrochemical detection of roxarsone.


Assuntos
Coccidiostáticos/análise , Nanoestruturas/química , Roxarsona/análise , Sulfetos/química , Compostos de Tungstênio/química , Catálise , Coccidiostáticos/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Contaminação de Alimentos/análise , Limite de Detecção , Carne/análise , Oxirredução , Reprodutibilidade dos Testes , Roxarsona/química
15.
Ultrason Sonochem ; 56: 430-436, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31101281

RESUMO

We report a facile and ultrasound assisted sonochemical synthesis of a Tungsten disulfide nanorods decorated nitrogen-doped reduced graphene oxide based nanocomposite. The WS2 NRs/N-rGOs nanocomposite was characterized by FESEM, HRTEM, XRD, XPS and electrochemical methods and its application towards the electrochemical detection of organo-arsenic drug (coccidiostat). The WS2 NRs/N-rGOs modified SPCE was used for the electrochemical reduction of roxarsone (ROX) and it showed superior electrocatalytic performance in terms of reduction peak current and shift in overpotential when compared to those of WS2 NRs/SPCE, N-rGOs/SPCE and based SPCE. The WS2 NRs/N-rGOs modified SPCE showed an excellent sensing ability towards ROX in nitrogen saturated phosphate buffer (PB) then the other controlled modified and unmodified electrodes. The WS2 NRs/N-rGOs/SPCE displays high sensitive response towards ROX and gives wide linearity in the range of 0.1-442.6 µM ROX in neutral phosphate buffer (pH 7.0) and the sensitivity of the sensor is calculated as 14.733 µA µM-1 cm-2. The WS2 NRs/N-rGOs nanocomposite modified sensor also exhibits valuable ability of anti-interference to electroactive analytes. Furthermore, the as-prepared WS2 NRs/N-rGOs/SPCE has been applied to the determination of ROX in biological and pharmaceutical samples.


Assuntos
Antibacterianos/análise , Eletroquímica/instrumentação , Grafite/química , Limite de Detecção , Nanotubos/química , Nitrogênio/química , Roxarsona/análise , Sulfetos/química , Compostos de Tungstênio/química , Antibacterianos/química , Catálise , Técnicas de Química Sintética , Eletrodos , Concentração de Íons de Hidrogênio , Cinética , Porosidade , Roxarsona/química
16.
J Mol Recognit ; 31(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28332252

RESUMO

Roxarsone, one of feed add drugs containing arsenic, has been most widely used in poultry and swine industry. Roxarsone discharged into the environment has caused serious pollution problem. Herein, a reusable functional material for selective recognition and adsorption of roxarsone and its derivatives were designed and synthesized. The interaction mechanism is based on acid-base interaction and surface molecular imprinting. Dual functionalized core-shell structure with silica gel as the core was prepared to use as carrier for surface molecularly imprinted polymers. Surface molecularly imprinted polymers for roxarsone was successfully designed and synthesized using 3-aminopropyltriethoxysilane and methyl acryloyloxypropyltriethoxy silane as functional monomers, Ethylene glycol dimethacrylate as crosslinker, Azobisisobutyronitrile as initiator, acetonitrile as solvent. Binding study showed that the recognition selectivity for roxarsone and its derivatives can be significantly improved (3.5-4 folds) with molecular imprinting. Moreover, the prepared functional material for selective recognition and adsorption of Roxarsone was reusable for multiple times without significant decreasing their adsorption capacities.


Assuntos
Impressão Molecular , Compostos Orgânicos/química , Aves Domésticas , Roxarsona/química , Animais , Arsênio/química , Arsênio/toxicidade , Nitrilas/química , Polímeros/química , Propilaminas/química , Ligação Proteica , Roxarsona/análogos & derivados , Silanos/química , Propriedades de Superfície
17.
Sci Total Environ ; 616-617: 1235-1241, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29074235

RESUMO

In order to evaluate the influence of roxarsone (ROX) on the livestock wastewater treatment, a lab-scale pilot employing an anoxic-oxic (A-O) process was investigated by adding different concentrations of ROX at different periods. The mass balance of arsenic (As) in the A-O system was established through the analysis of As speciation and As migration in the gas, liquid and solid phases. The results showed that around 80% of total ROX (initial concentration was 50mgROXL-1) was eliminated in the anoxic reactor (R1) in which at least about 11% of total ROX was transformed to inorganic Asv (iAsv) due to the direct breaking of the C-As bond of ROX. Inorganic AsIII (iAsIII) and arsine (AsH3) were produced in R1, while the generated iAsIII in the effluent of R1 was almost completely oxidized to iAsV in the aerobic reactor (R2). However, the concentration of ROX in the effluent of R2 was almost the same as that in the effluent of R1. After 85days operation, iAsV and residual ROX as the main forms of As were observed after the A-O process. Furthermore, the mass balance of As at steady state revealed that around 0.08%, 3.91% and 96.01% of total As was transformed into gas (biogas), solid (excess sludge) and liquid (effluent). Additionally, the 16S rRNA analysis demonstrated that the existence of ROX in livestock wastewater may play a crucial role in the diversity of bacterial community in the A-O system.


Assuntos
Roxarsona/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Animais , Gado , Roxarsona/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise
18.
Artigo em Inglês | MEDLINE | ID: mdl-28276888

RESUMO

The extensive use of roxarsone (3-nitro-4-hydroxyphenylarsonic acid) as a feed additive in the broiler poultry industry can lead to environmental arsenic contamination. This study was conducted to reveal the response of soil microbial communities to roxarsone pollution along a concentration gradient. To explore the degradation process and degradation kinetics of roxarsone concentration gradients in soil, the concentration shift of roxarsone at initial concentrations of 0, 50, 100, and 200 mg/kg, as well as that of the arsenic derivatives, was detected. The soil microbial community composition and structure accompanying roxarsone degradation were investigated by high-throughput sequencing. The results showed that roxarsone degradation was inhibited by a biological inhibitor, confirming that soil microbes were absolutely essential to its degradation. Moreover, soil microbes had considerable potential to degrade roxarsone, as a high initial concentration of roxarsone resulted in a substantially increased degradation rate. The concentrations of the degradation products HAPA (3-amino-4-hydroxyphenylarsonic acid), AS(III), and AS(V) in soils were significantly positively correlated. The soil microbial community composition and structure changed significantly across the roxarsone contamination gradient, and the addition of roxarsone decreased the microbial diversity. Some bacteria tended to be inhibited by roxarsone, while Bacillus, Paenibacillus, Arthrobacter, Lysobacter, and Alkaliphilus played important roles in roxarsone degradation. Moreover, HAPA, AS(III), and AS(V) were significantly positively correlated with Symbiobacterium, which dominated soils containing roxarsone, and their abundance increased with increasing initial roxarsone concentration. Accordingly, Symbiobacterium could serve as indicator of arsenic derivatives released by roxarsone as well as the initial roxarsone concentration. This is the first investigation of microbes closely related to roxarsone degradation.


Assuntos
Monitoramento Ambiental/métodos , Consórcios Microbianos/efeitos dos fármacos , Roxarsona/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Animais , Biodegradação Ambiental , Biodiversidade , Relação Dose-Resposta a Droga , Cinética , Roxarsona/química , Poluentes do Solo/química
19.
J Agric Food Chem ; 64(46): 8902-8908, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27790904

RESUMO

Roxarsone (Rox), an organoarsenic compound, served as a feed additive in the poultry industry for more than 60 years. Residual amounts of Rox present in chicken meat could give rise to potential human exposure to Rox. However, studies on the bioavailability of Rox in humans are scarce. We report here the accumulation and transepithelial transport of Rox using the human colon-derived adenocarcinoma cell line (Caco-2) model. The cellular accumulation and transepithelial passage of Rox in Caco-2 cells were evaluated and compared to those of arsenobetaine (AsB), arsenite (AsIII), and arsenate (AsV). When Caco-2 cells were exposed to 3 µM Rox, AsB, and AsIII separately for 24 h, the maximum accumulation was reached at 12 h. After 24-h exposure, the accumulated Rox was 6-20 times less than AsB and AsIII. The permeability of Rox from the apical to basolateral side of Caco-2 monolayers was similar to AsV but less than AsIII and AsB. The results of lower bioavailability of Rox are consistent with previous observations of relatively lower amounts of Rox retained in the breast meat of Rox-fed chickens. These data provide useful information for assessing human exposure to and intestinal bioavailability of Roxarsone.


Assuntos
Arsenicais/metabolismo , Roxarsona/metabolismo , Animais , Arsenicais/química , Transporte Biológico , Células CACO-2 , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Galinhas , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Humanos , Cinética , Carne/análise , Roxarsona/química
20.
Environ Sci Technol ; 50(15): 7956-63, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27366920

RESUMO

Microbes play a critical role in the global arsenic biogeocycle. Most studies have focused on redox cycling of inorganic arsenic in bacteria and archaea. The parallel cycles of organoarsenical biotransformations are less well characterized. Here we describe organoarsenical biotransformations in the environmental microbe Shewanella putrefaciens. Under aerobic growth conditions, S. putrefaciens reduced the herbicide MSMA (methylarsenate or MAs(V)) to methylarsenite (MAs(III)). Even though it does not contain an arsI gene, which encodes the ArsI C-As lyase, S. putrefaciens demethylated MAs(III) to As(III). It cleaved the C-As bond in aromatic arsenicals such as the trivalent forms of the antimicrobial agents roxarsone (Rox(III)), nitarsone (Nit(III)) and phenylarsenite (PhAs(III)), which have been used as growth promoters for poultry and swine. S. putrefaciens thiolated methylated arsenicals, converting MAs(V) into the more toxic metabolite monomethyl monothioarsenate (MMMTAs(V)), and transformed dimethylarsenate (DMAs(V)) into dimethylmonothioarsenate (DMMTAs(V)). It also reduced the nitro groups of Nit(V), forming p-aminophenyl arsenate (p-arsanilic acid or p-AsA(V)), and Rox(III), forming 3-amino-4-hydroxybenzylarsonate (3A4HBzAs(V)). Elucidation of organoarsenical biotransformations by S. putrefaciens provides a holistic appreciation of how these environmental pollutants are degraded.


Assuntos
Arsenicais/química , Shewanella putrefaciens/metabolismo , Animais , Arsênio/metabolismo , Biotransformação , Ácido Cacodílico , Roxarsona/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...