Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806591

RESUMO

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Assuntos
Extremófilos , Ferro , Rubredoxinas , Ferro/metabolismo , Ferro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulação de Dinâmica Molecular , Temperatura
2.
J Mol Graph Model ; 129: 108749, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38442439

RESUMO

Mechanical properties of proteins that have a crucial effect on their operation. This study used a molecular dynamics simulation package to investigate rubredoxin unfolding on the atomic scale. Different simulation techniques were applied, and due to the dissociation of covalent/hydrogen bonds, this protein demonstrates several intermediate states in force-extension behavior. A conceptual model based on the cohesive finite element method was developed to consider the intermediate damages that occur during unfolding. This model is based on force-displacement curves derived from molecular dynamics results. The proposed conceptual model is designed to accurately identify bond rupture points and determine the associated forces. This is achieved by conducting a thorough comparison between molecular dynamics and cohesive finite element results. The utilization of a viscoelastic cohesive zone model allows for the consideration of loading rate effects. This rate-dependent model can be further developed and integrated into the multiscale modeling of large assemblies of metalloproteins, providing a comprehensive understanding of mechanical behavior while maintaining a reduced computational cost.


Assuntos
Metaloproteínas , Rubredoxinas , Rubredoxinas/química , Simulação de Dinâmica Molecular , Fenômenos Mecânicos , Ligação de Hidrogênio
3.
Biochemistry ; 62(17): 2622-2631, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37579005

RESUMO

Nickel-substituted rubredoxin (NiRd) from Desulfovibrio desulfuricans has previously been shown to act as both a structural and functional mimic of the [NiFe] hydrogenase. However, improvements both in turnover frequency and overpotential are needed to rival the native [NiFe] hydrogenase enzymes. Characterization of a library of NiRd mutants with variations in the secondary coordination sphere suggested that protein dynamics played a substantial role in modulating activity. In this work, rubredoxin scaffolds were selected from diverse organisms to study the effects of distal sequence variation on catalytic activity. It was found that though electrochemical catalytic activity was only slightly impacted across the series, the Rd sequence from a psychrophilic organism exhibited substantially higher levels of solution-phase hydrogen production. Additionally, Eyring analyses suggest that catalytic activation properties relate to the growth temperature of the parent organism, implying that the general correlation between the parent organism environment and catalytic activity often seen in naturally occurring enzymes may also be observed in artificial enzymes. Selecting protein scaffolds from hosts that inhabit diverse environments, particularly low-temperature environments, represents an alternative approach for engineering artificial metalloenzymes.


Assuntos
Hidrogenase , Hidrogenase/genética , Hidrogenase/química , Rubredoxinas/genética , Rubredoxinas/química , Catálise , Oxirredução
4.
Chembiochem ; 23(12): e202200165, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35475313

RESUMO

Cobalt is a trace transition metal. Although it is not abundant on earth, tens of cobalt-containing proteins exist in life. Moreover, the characteristic spectrum of Co(II) ion makes it a powerful probe for the characterization of metal-binding proteins through the formation of cobalt-ligand bonds. Since most of these natural and artificial cobalt-containing proteins are stable, we believe that these cobalt-ligand bonds in the protein system are also mechanically stable. To prove this, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to directly measure the rupture force of Co(II)-thiolate bond in Co-substituted rubredoxin (CoRD). By combining the chemical denature/renature method for building metalloprotein and cysteine coupling-based polyprotein construction strategy, we successfully prepared the polyprotein sample (CoRD)n suitable for single-molecule studies. Thus, we quantified the strength of Co(II)-thiolate bonds in rubredoxin with a rupture force of ∼140 pN, revealing that it is a mechanostable chemical bond. In addition, the Co-S bond is more labile than the Zn-S bond in proteins, similar to the result from the metal-competing titration experiment.


Assuntos
Metaloproteínas , Rubredoxinas , Cobalto/química , Ligantes , Metaloproteínas/química , Metais , Poliproteínas , Rubredoxinas/química , Análise Espectral/métodos
5.
Biochim Biophys Acta Proteins Proteom ; 1870(1): 140734, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34662730

RESUMO

Electron transfer in metalloproteins is a driving force for many biological processes and widely distributed in nature. Rubredoxin B (RubB) from Mycobacterium tuberculosis is a first example among [1Fe-0S] proteins that support catalytic activity of terminal sterol-monooxygenases enabling its application in metabolic engineering. To explore the tolerance of RubB to the specific amino acid changes we evaluated the effect of surface mutations on its electrochemical properties. Based on the RubB fold we also designed the mutant with a putative additional site for protein-protein interactions to further evaluate electron transfer and electrochemical properties. The investigation of redox properties of mutant variants of RubB was done using screen-printed graphite electrodes (SPEs) modified with stable dispersion of multi-walled carbon nanotubes (MWCNTs). The redox potentials (midpoint potentials, E0Ꞌ) of mutants did not significantly differ from the wild type protein and vary in the range of -264 to -231 mV vs. Ag/AgCl electrode. However, all mutations affect electron transfer rate between the protein and electrode. Notably, the modulation of the protein-protein interactions was observed for the insertion mutant suggesting the possibility of tailoring of rubredoxin for the selected redox-partner. Overall, RubB is tolerant to the significant modifications in its structure enabling rational engineering of novel redox proteins.


Assuntos
Mutação , Mycobacterium tuberculosis/química , Rubredoxinas/química , Técnicas Eletroquímicas , Rubredoxinas/genética , Rubredoxinas/metabolismo
6.
Inorg Chem ; 60(18): 14364-14370, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34503329

RESUMO

Nitric oxide (NO) is an essential biological messenger, contributing a significant role in a diverse range of physiological processes. The light-controllable NO releasers are of great interest because of their potential as agents for NO-related research and therapeutics. Herein, we developed a pair of red-light-controllable NO releasers, pfRd-C9A-{FeNO}7 and pfRd-C42A-{FeNO}7 (pfRd = Pyrococcus furiosus rubredoxin), by constructing a nonheme {FeNO}7 center within the redesigned iron-sulfur protein scaffolds. While shown to be both air and thermally stable, these complexes are highly sensitive to red-light irradiation with temporal precision, which was confirmed by electron paramagnetic resonance spin trapping and Griess assay. The temporally controlled NO release from these complexes was also demonstrated in DNA cleavage assay. Overall, this study demonstrates that such a protein-based nonheme iron nitrosyl system could be a viable chemical tool for precise NO administration.


Assuntos
Ferro/metabolismo , Luz , Óxido Nítrico/metabolismo , Pyrococcus furiosus/química , Rubredoxinas/química , Ferro/química , Modelos Moleculares , Óxido Nítrico/química
7.
J Inorg Biochem ; 219: 111409, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33752122

RESUMO

Interest in understanding the environmental distribution of the alkane monooxygenase (AlkB) enzyme led to the identification of over 100 distinct alkane monooxygenase (AlkB) enzymes containing a covalently bound, or fused, rubredoxin. The rubredoxin-fused AlkB from Dietzia cinnamea was cloned as a full-length protein and as a truncated protein with the rubredoxin domain deleted. A point mutation (V91W) was introduced into the full-length protein, with the goal of assessing how steric bulk in the putative substrate channel might affect selectivity. Based on activity studies with alkane and alkene substrates, the rubredoxin-fused AlkB oxidizes a similar range of alkane substrates relative to its rubredoxin domain-deletion counterpart. Oxidation of terminal alkenes generated both an epoxide and a terminal aldehyde. The products of V91W-mutant-catalyzed oxidation of alkenes had a higher aldehyde-to-epoxide ratio than the products formed in the presence of the wild type protein. These results are consistent with this mutation causing a structural change impacting substrate positioning.


Assuntos
Alcanos/metabolismo , Proteínas de Bactérias/metabolismo , Oxigenases de Função Mista/metabolismo , Rubredoxinas/metabolismo , Actinobacteria/genética , Actinobacteria/metabolismo , Alcanos/química , Alcenos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Biologia Computacional/métodos , Humanos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética , Oxirredução , Mutação Puntual , Prevalência , Rubredoxinas/química
8.
Anal Biochem ; 619: 114128, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33577792

RESUMO

Rubredoxins (Rds), like those from Pyrococcus furious (Pf), have largely been found to be expressed in Escherichia coli (E. coli) as a mixture of different N-terminal forms, which may affect the properties of the protein. The typical procedures for the purification of Rds are cumbersome and usually with low yield. We present herein a streamlined purification strategy based on the reversed-phase high performance liquid chromatography (RP-HPLC), which offers high yield and high resolution after simply one-step purification following pre-treatment. We also show that RP-HPLC can be a valuable tool to gain information related to the thermal decomposition pathway of Pf-Rds.


Assuntos
Proteínas Arqueais/química , Modelos Moleculares , Processamento de Proteína Pós-Traducional , Pyrococcus furiosus/química , Rubredoxinas/química , Proteínas Arqueais/genética , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Escherichia coli/química , Escherichia coli/genética , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Rubredoxinas/genética , Rubredoxinas/isolamento & purificação
9.
Bioorg Chem ; 109: 104721, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33618255

RESUMO

Electron transfer mediated by metalloproteins drives many biological processes. Rubredoxins are a ubiquitous [1Fe-0S] class of electron carriers that play an important role in bacterial adaptation to changing environmental conditions. In Mycobacterium tuberculosis, oxidative and acidic stresses as well as iron starvation induce rubredoxins expression. However, their functions during M. tuberculosis infection are unknown. In the present work, we show that rubredoxin B (RubB) is able to efficiently shuttle electrons from cognate reductases, FprA and FdR to support catalytic activity of cytochrome P450s, CYP124, CYP125, and CYP142, which are important for bacterial viability and pathogenicity. We solved the crystal structure of RubB and characterized the interaction between RubB and CYPs using site-directed mutagenesis. Mutations that not only neutralize single charge but also change the specific residues on the surface of RubB did not dramatically decrease activity of studied CYPs. Together with isothermal calorimetry (ITC) experiments, the obtained results suggest that interactions are transient and not highly specific. The redox potential of RubB is -264 mV vs. Ag/AgCl and the measured extinction coefficients are 9931 M-1cm-1 and 8371 M-1cm-1 at 380 nm and 490 nm, respectively. Characteristic parameters of RubB along with the discovered function might be useful for biotechnological applications. Our findings suggest that a switch from ferredoxins to rubredoxins might be crucial for M. tuberculosis to support CYPs activity during the infection.


Assuntos
Mycobacterium tuberculosis/metabolismo , Rubredoxinas/metabolismo , Calorimetria , Dicroísmo Circular , Clonagem Molecular , Cristalização , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Conformação Proteica , Rubredoxinas/química , Zinco/química , Zinco/metabolismo
10.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 1025-1032, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021504

RESUMO

The structure and function of proteins are strongly affected by the surrounding solvent water, for example through hydrogen bonds and the hydrophobic effect. These interactions depend not only on the position, but also on the orientation, of the water molecules around the protein. Therefore, it is often vital to know the detailed orientations of the surrounding ordered water molecules. Such information can be obtained by neutron crystallography. However, it is tedious and time-consuming to determine the correct orientation of every water molecule in a structure (there are typically several hundred of them), which is presently performed by manual evaluation. Here, a method has been developed that reliably automates the orientation of a water molecules in a simple and relatively fast way. Firstly, a quantitative quality measure, the real-space correlation coefficient, was selected, together with a threshold that allows the identification of water molecules that are oriented. Secondly, the refinement procedure was optimized by varying the refinement method and parameters, thus finding settings that yielded the best results in terms of time and performance. It turned out to be favourable to employ only the neutron data and a fixed protein structure when reorienting the water molecules. Thirdly, a method has been developed that identifies and reorients inadequately oriented water molecules systematically and automatically. The method has been tested on three proteins, galectin-3C, rubredoxin and inorganic pyrophosphatase, and it is shown that it yields improved orientations of the water molecules for all three proteins in a shorter time than manual model building. It also led to an increased number of hydrogen bonds involving water molecules for all proteins.


Assuntos
Galectina 3/química , Pirofosfatase Inorgânica/química , Rubredoxinas/química , Água/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Difração de Nêutrons , Solventes
11.
Acc Chem Res ; 53(8): 1580-1592, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32677432

RESUMO

Hydrogen bonds (H-bonds) play important roles in imparting functionality to the basic molecules of life by stabilizing their structures and directing their interactions. Numerous studies have been devoted to understanding H-bonds involving highly electronegative atoms like nitrogen, oxygen, and halogens and consequences of those H-bonds in chemical reactions, catalysis, and structure and function of biomolecules; but the involvement of less electronegative atoms like sulfur and selenium in H-bond formation establishes the concept of noncanonical H-bonds. Initially belittled for the "weak" nature of their interactions, these perceptions have gradually evolved over time through dedicated efforts by several research groups. This has been facilitated by advancements in experimental methods for their detection through gas-phase laser spectroscopy and solution NMR spectroscopy, as well as through theoretical predictions from high level quantum chemical calculations.In this Account, we present insights into the versatility of the sulfur and selenium centered H-bonds (S/SeCHBs) by highlighting their multifarious applications in various fields from chemical reactions to optoelectronic properties to structural biology. Our group has highlighted the significance and strength of such H-bonds in natural and modified biomolecules. Here, we have reviewed several molecular assemblies, biomolecules, and functional materials, where the role of these H-bonds is pivotal in influencing biological functions. It is worth mentioning here that the precise experimental data obtained from gas-phase laser spectroscopy have contributed considerably to changing the existing perceptions toward S/SeCHBs. Thus, molecular beam experiments, though difficult to perform on smaller model thio- or seleno-substituted Molecules, etc. (amides, nucleobases, drug molecules), are inevitable to gather elementary knowledge and convincing concepts on S/SeCHBs that can be extended from a small four-atom sulfanyl dimer to a large 14 kDa iron-sulfur protein, ferredoxin. These H-bonds can also tailor a fascinating array of molecular frameworks and design supramolecular assemblies by inter- and intralinking of individual "molecular Lego-like" units.The discussion is indeed intriguing when it turns to the usage of S/SeCHBs in facile synthetic strategies like tuning regioselectivity in reactions, as well as invoking phenomena like dual phosphorescence and chemiluminescence. This is in addition to our investigations of the dispersive nature of the hydrogen bond between metal hydrides and sulfur or selenium as acceptor, which we anticipate would lead to progress in the areas of proton and hydride transfer, as well as force-field design. This Account demonstrates how ease of fabrication, enhanced efficiency, and alteration of physicochemical properties of several functional materials is facilitated owing to the presence of S/SeCHBs. Our efforts have been instrumental in the evaluation of various S/SeCHBs in flue gas capture, as well as design of organic energy harvesting materials, where dipole moment and polarizability have important roles to play. We hope this Account invokes newer perspectives with regard to how H-bonds with sulfur and selenium can be adequately adopted for crystal engineering, for more photo- and biophysical studies with different spectroscopic methods, and for developing next-generation field-effect transistors, batteries, superconductors, and organic thin-film transistors, among many other multifunctional materials for the future.


Assuntos
Selênio/química , Enxofre/química , Cisteína/química , Ligação de Hidrogênio , Proteínas Ferro-Enxofre/química , Estruturas Metalorgânicas/química , Teoria Quântica , Rubredoxinas/química , Eletricidade Estática
12.
J Phys Chem B ; 123(46): 9792-9800, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31608640

RESUMO

The field of solar fuels is a rapidly growing area of research, though low overall efficiencies continue to preclude large-scale implementation. To resolve the elementary processes involved in light-driven energy storage and identify key factors contributing to efficiency losses, systematic investigation and optimization are necessary. In this work, a ruthenium chromophore is directly attached to a model hydrogenase enzyme, nickel-substituted rubredoxin, to construct a molecular system capable of photoinduced hydrogen evolution. Time-resolved absorption and emission spectroscopy reveal direct, rapid intramolecular electron transfer (ET) between the two metal centers to generate a charge-separated state that persists for ∼1 µs, though this species is not productive for hydrogen evolution. Investigation of the photochemical behavior under catalytic conditions in conjunction with thermochemical analyses suggests that ET to the catalytic nickel site from the reductively quenched ruthenium center is the rate-determining step. By eliminating the need for three components to diffuse together, direct mechanistic information about catalysis is obtained in a time-resolved manner. This approach is generalizable to study the activity and intramolecular charge transfer properties of a wide range of photosensitizers and catalysts, with applicability toward diverse energy conversion reactions.


Assuntos
Hidrogênio/química , Níquel/química , Rubredoxinas/química , Energia Solar , Catálise , Transporte de Elétrons , Hidrogênio/metabolismo , Cinética , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Rubredoxinas/genética , Rubredoxinas/metabolismo , Rutênio/química , Luz Solar
13.
J Chem Theory Comput ; 15(11): 6074-6084, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518121

RESUMO

Spin-dependent processes involving nonadiabatic transitions between electronic states with different spin multiplicities play important roles in the chemistry of complex systems. The rates of these processes can be predicted based on the molecular properties at the minimum energy crossing point (MECP) between electronic states. We present the development of the MECP search technique within the fragment molecular orbital (FMO) method applicable to large complex systems. The accuracy and scalability of the new method is demonstrated on several models of the metal-sulfur protein rubredoxin. The effect of the model size on the MECP geometry and relative energy is discussed. The fragment energy decomposition and spin density delocalization analyses reveal how different protein residues and solvent molecules contribute to stabilization of the spin states. The developed FMO-MECP method can help to clarify the role of nonadiabatic spin-dependent processes in complex systems and can be used for designing mutations aimed at controlling these processes in metalloproteins, including spin-dependent catalysis and electron transfer.


Assuntos
Modelos Moleculares , Teoria Quântica , Domínio Catalítico , Transporte de Elétrons , Rubredoxinas/química , Rubredoxinas/metabolismo , Termodinâmica
14.
Plant Cell ; 31(9): 2241-2258, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320483

RESUMO

Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium Synechocystis sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxin-like domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly, suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI, but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall, our data support the involvement of RubA in the redox control of PSII biogenesis.


Assuntos
Proteínas de Bactérias/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/metabolismo , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Clorofila/biossíntese , Mutação , Complexo de Proteína do Fotossistema I/metabolismo , Pigmentos Biológicos/isolamento & purificação , Rubredoxinas/química , Rubredoxinas/genética , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento , Tilacoides/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(33): 16631-16640, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31358635

RESUMO

Photosystem II (PSII) undergoes frequent photooxidative damage that, if not repaired, impairs photosynthetic activity and growth. How photosynthetic organisms protect vulnerable PSII intermediate complexes during de novo assembly and repair remains poorly understood. Here, we report the genetic and biochemical characterization of chloroplast-located rubredoxin 1 (RBD1), a PSII assembly factor containing a redox-active rubredoxin domain and a single C-terminal transmembrane α-helix (TMH) domain. RBD1 is an integral thylakoid membrane protein that is enriched in stroma lamellae fractions with the rubredoxin domain exposed on the stromal side. RBD1 also interacts with PSII intermediate complexes containing cytochrome b559 Complementation of the Chlamydomonas reinhardtii (hereafter Chlamydomonas) RBD1-deficient 2pac mutant with constructs encoding RBD1 protein truncations and site-directed mutations demonstrated that the TMH domain is essential for de novo PSII assembly, whereas the rubredoxin domain is involved in PSII repair. The rubredoxin domain exhibits a redox midpoint potential of +114 mV and is proficient in 1-electron transfers to a surrogate cytochrome c in vitro. Reduction of oxidized RBD1 is NADPH dependent and can be mediated by ferredoxin-NADP+ reductase (FNR) in vitro. We propose that RBD1 participates, together with the cytochrome b559, in the protection of PSII intermediate complexes from photooxidative damage during de novo assembly and repair. This role of RBD1 is consistent with its evolutionary conservation among photosynthetic organisms and the fact that it is essential in photosynthetic eukaryotes.


Assuntos
Membranas Intracelulares/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Rubredoxinas/metabolismo , Tilacoides/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/ultraestrutura , Ferro/farmacologia , Modelos Biológicos , Oxirredução , Domínios Proteicos , Rubredoxinas/química , Tilacoides/efeitos dos fármacos , Tilacoides/ultraestrutura
16.
Biomed Res Int ; 2019: 2932585, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355252

RESUMO

Rubredoxins are a class of iron-containing proteins that play an important role in the reduction of superoxide in some anaerobic bacteria and also act as electron carriers in many biochemical processes. Unlike the more widely studied about rubredoxin proteins in anaerobic bacteria, very few researches about the function of rubredoxins have been proceeded in plants. Previous studies indicated that rubredoxins in A. thaliana may play a critical role in responding to oxidative stress. In order to identify more rubredoxins in plants that maybe have similar functions as the rubredoxin-like protein of A. thaliana, we identified and analyzed plant rubredoxin proteins using bioinformatics-based methods. Totally, 66 candidate rubredoxin proteins were identified based on public databases, exhibiting lengths of 187-360 amino acids with molecular weights of 19.856-37.117 kDa. The results of subcellular localization showed that these candidate rubredoxins were localized to the chloroplast, which might be consistent with the fact that rubredoxins were predominantly expressed in leaves. Analyses of conserved motifs indicated that these candidate rubredoxins contained rubredoxin and PDZ domains. The expression patterns of rubredoxins in glycophyte and halophytic plant under salt/drought stress revealed that rubredoxin is one of the important stress response proteins. Finally, the coexpression network of rubredoxin in Arabidopsis thaliana under abiotic was extracted from ATTED-II to explore the function and regulation relationship of rubredoxin in Arabidopsis thaliana. Our results showed that putative rubredoxin proteins containing PDZ and rubredoxin domains, localized to the chloroplast, may act with other proteins in chloroplast to responses to abiotic stress in higher plants. These findings might provide value inference to promote the development of plant tolerance to some abiotic stresses and other economically important crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Evolução Molecular , Rubredoxinas , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Domínios Proteicos , Rubredoxinas/química , Rubredoxinas/genética , Rubredoxinas/metabolismo
17.
J Am Chem Soc ; 140(32): 10250-10262, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30016865

RESUMO

Well-defined molecular systems for catalytic hydrogen production that are robust, easily generated, and active under mild aqueous conditions remain underdeveloped. Nickel-substituted rubredoxin (NiRd) is one such system, featuring a tetrathiolate coordination environment around the nickel center that is identical to the native [NiFe] hydrogenases and demonstrating hydrogenase-like proton reduction activity. However, until now, the catalytic mechanism has remained elusive. In this work, we have combined quantitative protein film electrochemistry with optical and vibrational spectroscopy, density functional theory calculations, and molecular dynamics simulations to interrogate the mechanism of H2 evolution by NiRd. Proton-coupled electron transfer is found to be essential for catalysis. The coordinating thiolate ligands serve as the sites of protonation, a role that remains debated in the native [NiFe] hydrogenases, with reduction occurring at the nickel center following protonation. The rate-determining step is suggested to be intramolecular proton transfer via thiol inversion to generate a NiIII-hydride species. NiRd catalysis is found to be completely insensitive to the presence of oxygen, another advantage over the native [NiFe] hydrogenase enzymes, with potential implications for membrane-less fuel cells and aerobic hydrogen evolution. Targeted mutations around the metal center are seen to increase the activity and perturb the rate-determining process, highlighting the importance of the outer coordination sphere. Collectively, these results indicate that NiRd evolves H2 through a mechanism similar to that of the [NiFe] hydrogenases, suggesting a role for thiolate protonation in the native enzyme and guiding rational optimization of the NiRd system.


Assuntos
Hidrogenase/química , Hidrogenase/metabolismo , Níquel/química , Rubredoxinas/química , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Isótopos , Modelos Moleculares , Mutação , Conformação Proteica
18.
Biol Chem ; 399(7): 787-798, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29894292

RESUMO

Pseudomonas putida rubredoxin-2 (Rxn2) is an essential member of the alkane hydroxylation pathway and transfers electrons from a reductase to the membrane-bound hydroxylase. The regioselective hydroxylation of linear alkanes is a challenging chemical transformation of great interest for the chemical industry. Herein, we report the preparation and spectroscopic characterization of cobalt-substituted P. putida Rxn2 and a truncated version of the protein consisting of the C-terminal domain of the protein. Our spectroscopic data on the Co-substituted C-terminal domain supports a high-spin Co(II) with a distorted tetrahedral coordination environment. Investigation of the two-domain protein Rxn2 provides insights into the metal-binding properties of the N-terminal domain, the role of which is not well understood so far. Circular dichroism, electron paramagnetic resonance and X-ray absorption spectroscopies support an alternative Co-binding site within the N-terminal domain, which appears to not be relevant in nature. We have shown that chemical reconstitution in the presence of Co leads to incorporation of Co(II) into the active site of the C-terminal domain, but not the N-terminal domain of Rxn2 indicating distinct roles for the two rubredoxin domains.


Assuntos
Cobalto/química , Rubredoxinas/química , Domínio Catalítico , Dicroísmo Circular , Cobalto/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Pseudomonas putida/química , Rubredoxinas/metabolismo , Espectrometria por Raios X , Espectrofotometria Ultravioleta
19.
Methods Enzymol ; 599: 409-425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29746248

RESUMO

For over 20 years, nuclear resonance vibrational spectroscopy (NRVS) has been used to study vibrational dynamics of iron-containing materials. With the only selection rule being iron motion, 57Fe NRVS has become an excellent tool to study iron-containing enzymes. Over the past decade, considerable progress has been made in the study of complex metalloenzymes using NRVS. Iron cofactors in heme-containing globins; [2Fe2S], [3Fe4S], [4Fe4S] proteins; the [NiFe] and [FeFe] hydrogenases; and nitrogenases have been explored in a fashion not possible through traditional vibrational spectroscopy. In this chapter, we discuss the basics of NRVS, a strategy to perform NRVS, and a discussion of the application of NRVS on rubredoxin and [FeFe] hydrogenase.


Assuntos
Proteínas Ferro-Enxofre/química , Espectroscopia de Mossbauer/métodos , Proteínas Arqueais/química , Chlamydomonas reinhardtii/química , Hidrogenase/química , Modelos Moleculares , Oxirredução , Fótons , Proteínas de Plantas/química , Pyrococcus furiosus/química , Rubredoxinas/química , Software , Síncrotrons
20.
Biochemistry ; 57(16): 2308-2316, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29561598

RESUMO

Protein design is a powerful tool for interrogating the basic requirements for the function of a metal site in a way that allows for the selective incorporation of elements that are important for function. Rubredoxins are small electron transfer proteins with a reduction potential centered near 0 mV (vs normal hydrogen electrode). All previous attempts to design a rubredoxin site have focused on incorporating the canonical CXXC motifs in addition to reproducing the peptide fold or using flexible loop regions to define the morphology of the site. We have produced a rubredoxin site in an utterly different fold, a three-helix bundle. The spectra of this construct mimic the ultraviolet-visible, Mössbauer, electron paramagnetic resonance, and magnetic circular dichroism spectra of native rubredoxin. Furthermore, the measured reduction potential suggests that this rubredoxin analogue could function similarly. Thus, we have shown that an α-helical scaffold sustains a rubredoxin site that can cycle with the desired potential between the Fe(II) and Fe(III) states and reproduces the spectroscopic characteristics of this electron transport protein without requiring the classic rubredoxin protein fold.


Assuntos
Transporte de Elétrons/genética , Conformação Proteica em alfa-Hélice , Rubredoxinas/química , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/química , Ferro/química , Modelos Moleculares , Oxirredução , Rubredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...