Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 133, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720294

RESUMO

BACKGROUND: Low targeting efficacy and high toxicity continue to be challenges in Oncology. A promising strategy is the glycosylation of chemotherapeutic agents to improve their pharmacodynamics and anti-tumoral activity. Herein, we provide evidence of a novel approach using diglycosidases from fungi of the Hypocreales order to obtain novel rutinose-conjugates therapeutic agents with enhanced anti-tumoral capacity. RESULTS: Screening for diglycosidase activity in twenty-eight strains of the genetically related genera Acremonium and Sarocladium identified 6-O-α-rhamnosyl-ß-glucosidase (αRßG) of Sarocladium strictum DMic 093557 as candidate enzyme for our studies. Biochemically characterization shows that αRßG has the ability to transglycosylate bulky OH-acceptors, including bioactive compounds. Interestingly, rutinoside-derivatives of phloroglucinol (PR) resorcinol (RR) and 4-methylumbelliferone (4MUR) displayed higher growth inhibitory activity on pancreatic cancer cells than the respective aglycones without significant affecting normal pancreatic epithelial cells. PR exhibited the highest efficacy with an IC50 of 0.89 mM, followed by RR with an IC50 of 1.67 mM, and 4MUR with an IC50 of 2.4 mM, whereas the respective aglycones displayed higher IC50 values: 4.69 mM for phloroglucinol, 5.90 mM for resorcinol, and 4.8 mM for 4-methylumbelliferone. Further, glycoconjugates significantly sensitized pancreatic cancer cells to the standard of care chemotherapy agent gemcitabine. CONCLUSIONS: αRßG from S. strictum transglycosylate-based approach to synthesize rutinosides represents a suitable option to enhance the anti-proliferative effect of bioactive compounds. This finding opens up new possibilities for developing more effective therapies for pancreatic cancer and other solid malignancies.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Hypocreales/metabolismo , Rutina/farmacologia , Rutina/química , Acremonium , Gencitabina , Dissacarídeos/farmacologia , Dissacarídeos/química
2.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202092

RESUMO

(1) Background: The COVID-19 pandemic lacks treatments; for this reason, the search for potential compounds against therapeutic targets is still necessary. Bioinformatics tools have allowed the rapid in silico screening of possible new metabolite candidates from natural resources or repurposing known ones. Thus, in this work, we aimed to select phytochemical candidates from Peruvian plants with antiviral potential against three therapeutical targets of SARS-CoV-2. (2) Methods: We applied in silico technics, such as virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA estimation. (3) Results: Rutin, a compound present in Peruvian native plants, showed affinity against three targets of SARS-CoV-2. The molecular dynamics simulation demonstrated the high stability of receptor-ligand systems during the time of the simulation. Our results showed that the Mpro-Rutin system exhibited higher binding free energy than PLpro-Rutin and N-Rutin systems through MM/GBSA analysis. (4) Conclusions: Our study provides insight on natural metabolites from Peruvian plants with therapeutical potential. We found Rutin as a potential candidate with multiple pharmacological properties against SARS-CoV-2.


Assuntos
Antivirais/química , Antivirais/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Plantas/química , Plantas/metabolismo , Asteraceae/química , Asteraceae/metabolismo , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteases Semelhantes à Papaína de Coronavírus/antagonistas & inibidores , Proteases Semelhantes à Papaína de Coronavírus/química , Bases de Dados Factuais , Humanos , Lepidium/química , Lepidium/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peru , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/química , Rutina/química , Rutina/farmacologia , SARS-CoV-2
3.
Pak J Pharm Sci ; 34(2): 599-606, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275835

RESUMO

Annonacea species have been reported to possess antitumor properties. However, the in vitro and in vivo antitumor activities of Xylopia aromatica (Annonacea) have not yet been elucidated. This study aimed to investigate the effects of Xylopia aromatica leaves hexane fraction (XaHF) on Ehrlich ascites carcinoma cells lines (EAC), both in vitro and in vivo. In vitro assays revealed a significant cytotoxic effect with the two lower XaHF concentrations (62.5 and 32.3mg/mL). EAC (2.5x106 cells) were inoculated in the right flank of Swiss mice, and the animals were treated intraperitoneally with 32.3mg kg-1 of XaHF daily, for 20 days. Our findings indicate that XaHF suppressed the growth of EAC in vivo, with a significant decrease (46%) in tumor volume. There was also a decrease in the necrosis area (71%), inflammatory infiltrate, and MMP-2 expression. High-Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD) identified secondary metabolites possibly related to phenolic acids, flavonoids, and alkaloids. Thus, the results confirmed the antitumoral activity that may be related to the presence of the identified metabolites in XaHF extract.


Assuntos
Carcinoma de Ehrlich/metabolismo , Proliferação de Células/efeitos dos fármacos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta , Xylopia , Alcaloides/química , Animais , Aporfinas/química , Carcinoma de Ehrlich/patologia , Catequina/química , Linhagem Celular Tumoral , Ácido Clorogênico/química , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Flavonoides/química , Ácido Gálico/química , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Necrose , Fenóis/química , Extratos Vegetais/química , Quercetina/química , Rutina/química , Carga Tumoral/efeitos dos fármacos
4.
J Pharm Pharmacol ; 72(5): 738-747, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32162346

RESUMO

OBJECTIVES: The Biopharmaceutics Classification System (BCS) categorizes active pharmaceutical ingredients according to their solubility and permeability properties, which are susceptible to matrix or formulation effects. The aim of this research was to evaluate the matrix effects of a hydroethanolic extract of calyces from Physalis peruviana L. (HEE) and its butanol fraction (BF), on the biopharmaceutics classification of their major compound, quercetin-3-O-rutinoside (rutin, RU). METHODS: Rutin was quantified by HPLC-UV, and Caco-2 cell monolayer transport studies were performed to obtain the apparent permeability values (Papp ). Aqueous solubility was determined at pH 6.8 and 7.4. KEY FINDINGS: The Papp values followed this order: BF > HEE > RU (1.77 ± 0.02 > 1.53 ± 0.07 > 0.90 ± 0.03 × 10-5  cm/s). The lowest solubility values followed this order: HEE > RU > BF (2.988 ± 0.07 > 0.205 ± 0.002 > 0.189 ± 0.005 mg/ml). CONCLUSIONS: According to these results, rutin could be classified as BCS classes III (high solubility/low permeability) and IV (low solubility/low permeability), depending on the plant matrix. Further work needs to be done in order to establish how apply the BCS for research and development of new botanical drugs or for bioequivalence purposes.


Assuntos
Flores/química , Glucosídeos/química , Glucosídeos/classificação , Physalis/química , Extratos Vegetais/química , Quercetina/análogos & derivados , Rutina/química , Rutina/classificação , Biofarmácia/classificação , Butanóis/química , Células CACO-2 , Cromatografia Líquida de Alta Pressão , Etanol/química , Flores/metabolismo , Glucosídeos/metabolismo , Humanos , Intestinos/fisiologia , Extração Líquido-Líquido , Permeabilidade , Extratos Vegetais/metabolismo , Quercetina/química , Quercetina/classificação , Quercetina/metabolismo , Rutina/metabolismo , Solubilidade
5.
Int J Pharm ; 552(1-2): 401-406, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30308277

RESUMO

Unprotected chronic exposure to solar radiation can contribute to premature skin cancer and sunscreens are a key factor to avoid those detrimental effects. Currently, there is a growing interest in the photoprotector and antioxidant potential of bioactive substances, such as rutin, that could increase the sun protection factor (SPF) value and, also, donate multifunctional characteristics to sunscreens. Recent in vitro findings indicated that rutin, when incorporated into sunscreens, can provide antioxidant activity and SPF improvement. However, clinical studies are fundamental to determine this activity, due to the lack of repeatability of in vitro methodology and low correlation with the in vivo data. We aimed at evaluating the clinical safety and in vivo SPF of rutin by comparing sunscreen formulations containing 0.1% (w/w) rutin, 3.0% (w/w) butyl methoxydibenzoylmethane and 8.0% (w/w) octyl dimethyl PABA (2-ethylhexyl 4-(dimethylamino)benzoato) with a similar bioactive-free preparation. Additionally, skin hydration, in vitro SPF and in vitro antioxidant activity of rutin, in association with the ultraviolet (UV) filters, were investigated. The safety profile of the formulations under sun-exposed skin conditions qualified the formulas for clinical efficacy assays. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test confirmed the antioxidant properties of rutin, revealing around 40% increase in radical scavenging potential when the bioactive compound was present. Rutin in combination with the UV filters robustly elevated the clinical SPF around 70%, when compared with the bioactive-free formulation. To date, this is the first report in the specialized literature of an in vivo SPF measurement of a rutin-containing photoprotective preparation, supporting the claim that rutin is an effective and safe bioactive compound to be used in multifunctional sunscreens.


Assuntos
Antioxidantes/administração & dosagem , Propiofenonas/administração & dosagem , Rutina/administração & dosagem , Fator de Proteção Solar , Protetores Solares/administração & dosagem , Raios Ultravioleta , para-Aminobenzoatos/administração & dosagem , Adolescente , Adulto , Antioxidantes/química , Feminino , Humanos , Masculino , Propiofenonas/química , Rutina/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Testes de Irritação da Pele , Protetores Solares/química , Adulto Jovem , para-Aminobenzoatos/química
6.
Molecules ; 22(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28973959

RESUMO

The effect of variation of harvest season and cultivar on the total phenolic content (TPC), total flavonoid content (TFC), HPLC-UV/DAD profile and antioxidant properties in Vaccinium ashei (Rabbiteye blueberry) leaves grown in Brazil was evaluated. The cultivars collected in December and March were Aliceblue, Powderblue, Climax, Bluegem and FloridaM. It was observed that leaves from March had the highest TPC values (222 ± 1 mg gallic acid equivalents/g to Aliceblue cultivar) and highest TFC values (49.8 ± 0.8 and 48.7 ± 0.7 µg rutin/g to Clímax and Powderblue cultivars, respectively). The chromatographic profile was quantitatively similar, however, the proportions of each compound were influenced by cultivar and harvest season. Chlorogenic acid and rutin were the main identified phenolic compounds, but chlorogenic acid was the most abundant in both harvest seasons. Antioxidant capacities values ranged from 5.80 ± 0.04 to 105 ± 2 µg/mL (DPPH) and 178 ± 5 to 431 ± 8 mmol Trolox/100 g (ORAC). The cultivar Bluegem by March had the highest values in both assays. The results indicate that the blueberry leaves from different cultivars and harvest seasons have different phenolic compounds content and different antioxidant capacities. In addition, the antioxidant properties demonstrated a high correlation with rutin content.


Assuntos
Antioxidantes/química , Fenóis/química , Extratos Vegetais/química , Folhas de Planta/química , Vaccinium/química , Ácido Clorogênico/química , Flavonoides/química , Estrutura Molecular , Fenóis/análise , Rutina/química , Estações do Ano , Relação Estrutura-Atividade
7.
Chem Biol Interact ; 274: 89-99, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28693884

RESUMO

Rutin is a glycosylated flavonoid present in many fruits and plants that has been demonstrated to have anti-inflammatory and antioxidant properties. However, little is known about the mechanisms underlying microglial activation and its effects on the regulation of cytokines and chemokines associated with inflammatory responses in the central nervous system. In this study we examined the effect of rutin on resting or lipopolysaccharide (LPS)-stimulated microglia and characterized their modulation to an activated M1 phenotype or an alternatively activated M2 phenotype. Microglial cells were treated with rutin (1-100 µM); alternatively, microglial cells were stimulated with LPS and the cells were then treated with rutin (50 µM). The results revealed that rutin treatment was not toxic to microglial cells and induced a dose-dependent increase in microglial proliferation associated with changes in morphology after 24 h of treatment. Rutin also induced microglial activation characterized by an increase in OX-42 positive cells and a large proportion of cells with a CD150/CD206-positive M2 phenotype. Rutin also induced a decrease in the mRNA levels of TNF, IL1ß, IL6 and iNOS, reduced the production of IL6, TNF, and nitric oxide, and increased production of the M2 regulatory cytokine IL10 and arginase. Rutin also significantly inhibited the LPS-induced expression of PTGS2, IL18 and TGFß mRNA. These findings show that rutin has the ability to promote microglial proliferation and induces microglial polarization to the M2 profile when cells are stimulated with LPS. These results point this flavonoid as a possible alternative in the treatment or prevention of neurodegenerative disorders.


Assuntos
Anti-Inflamatórios/farmacologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Microglia/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Rutina/farmacologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Animais , Anti-Inflamatórios/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 2/metabolismo , Citocinas/análise , Flavonoides/química , Flavonoides/farmacologia , Interleucina-18/genética , Interleucina-18/metabolismo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptor de Manose , Microglia/citologia , Microglia/metabolismo , Óxido Nítrico/metabolismo , Fenótipo , Ratos , Ratos Wistar , Rutina/química , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
8.
Food Chem ; 229: 44-49, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28372198

RESUMO

The enzymatic deglycosylation of the plant flavonoid rutin (quercetin-3-O-(6-O-α-l-rhamnopyranosyl-ß-d-glucopyranoside) is usually assessed by means of high performance liquid chromatography (HPLC). We have developed a spectrophotometric method for the quantification of the released quercetin. After the enzymatic reaction, quercetin is extracted with ethyl acetate, and subsequently oxidized under basic conditions. The absorbance of quercetin autooxidation products at 320nm was correlated with the quercetin concentration by linear regression (molar extinction coefficient 23.2 (±0.3)×103M-1cm-1). With this method, rutin-deglycosylation activity in buckwheat flour and a commercial naringinase was measured, and showed no significant differences with the results obtained by HPLC. The convenience of this method resides on the enzymatic activity quantification using the natural substrate by UV-visible spectrometry. Moreover, the simplicity and speed of analysis allows its application for a large number of samples.


Assuntos
Flavonoides/química , Complexos Multienzimáticos/química , Rutina/química , Espectrofotometria/métodos , beta-Glucosidase/química , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Rutina/análise , Raios Ultravioleta
9.
Free Radic Res ; 50(12): 1350-1360, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27733068

RESUMO

INTRODUCTION: Acute pancreatitis (AP) may be severe and cause hospitalization or death, and the available treatment is insufficient to control pancreatic inflammation and pain. Rutin is a natural flavonoid with the potential to treat AP via anti-inflammatory, antinociceptive, and antioxidant activities. AIM: This study investigated the beneficial effects of rutin on experimental AP induced by l-arginine administration in mice. METHODS: The l-arginine-induced AP model was used in Swiss mice (n = 6-8). Mice submitted to AP induction were treated with rutin (37.5, 75, or 150 mg kg-1, p.o.) or vehicle (saline) after 24, 36, 48, and 60 h of AP induction. Abdominal hyperalgesia, serum enzymes, interleukin (IL)-6 levels, pancreatic inflammatory parameters, malondialdehyde (MDA) levels, antioxidant enzyme activities, and 3-nitrotyrosine contents were measured 72 h after induction. RESULTS: Mice submitted to l-arginine injections developed abdominal hyperalgesia and increased serum amylase, lipase, C-reactive protein and IL-6 concentrations; and increased pancreatic myeloperoxidase activity, edema index, MDA, and 3-nitrotyrosine contents. A marked decrease in catalase activity was observed in the pancreas without alterations of superoxide dismutase (SOD) activity compared with the control group. Rutin treatment significantly impaired all the parameters that were altered by AP induction, but increased catalase and SOD activities in the pancreas compared with the vehicle-treated group. CONCLUSION: Rutin treatment exerted a protective effect on l-arginine-induced AP by mechanisms involving the reduction of oxidative stress, which suggests that this flavonoid has a potential for future approaches designed for the management of AP.


Assuntos
Pâncreas/patologia , Pancreatite/tratamento farmacológico , Rutina/uso terapêutico , Doença Aguda , Animais , Antioxidantes , Flavonoides , Masculino , Camundongos , Estresse Oxidativo , Rutina/química
10.
BMC Complement Altern Med ; 16: 275, 2016 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-27496015

RESUMO

BACKGROUND: Hancornia speciosa Gomes (Apocynaceae), popularly known as "mangabeira," has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and gastric disorders. Although the ethnobotany indicates that its fruits can be used for the treatment of ulcers and inflammatory disorders, only few studies have been conducted to prove such biological activities. This study investigated the anti-inflammatory properties of the aqueous extract of the fruits of H. speciosa Gomes as well as its bioactive compounds using in vivo experimental models. METHODS: The bioactive compounds were identified by High Performance Liquid Chromatography coupled with diode array detector (HPLC-DAD) and Liquid Chromatography coupled with Mass Spectrometry (LC-MS). The anti-inflammatory properties were investigated through in vivo tests, which comprised xylene-induced ear edema, carrageenan-induced peritonitis and zymosan-induced air pouch. The levels of IL-1ß, IL-6, IL-12 and TNF-α were determined using ELISA. RESULTS: Rutin and chlorogenic acid were identified in the extract as the main secondary metabolites. In addition, the extract as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and also reduced the cell migration in both carrageenan-induced peritonitis and zymosan-induced air pouch models. Reduced levels of cytokines were also observed. CONCLUSION: This is the first study that demonstrated the anti-inflammatory activity of the extract of H. speciosa fruits against different inflammatory agents in animal models, suggesting that its bioactive molecules, especially rutin and chlorogenic acid are, at least in part, responsible for such activity. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that its aqueous extract has therapeutical potential for the development of herbal drugs with anti-inflammatory properties.


Assuntos
Anti-Inflamatórios/farmacologia , Apocynaceae/química , Ácido Clorogênico/farmacologia , Frutas/química , Extratos Vegetais/farmacologia , Rutina/farmacologia , Animais , Anti-Inflamatórios/química , Ácido Clorogênico/química , Edema , Feminino , Inflamação/metabolismo , Interleucinas/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peritonite , Extratos Vegetais/química , Rutina/química
11.
Int Immunopharmacol ; 36: 165-172, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27155392

RESUMO

Ilex paraguariensis is a native plant from Southern America, where it is used as a beverage. In traditional medicine, it is used to treat many diseases including inflammation. However, we do not yet know precisely how this effect occurs. We therefore evaluated its anti-inflammatory effect in a murine model of pleurisy. The standardized CE, BF and ARF fractions, Caf, Rut and CGA were able to reduce leukocyte migration, exudate concentration, MPO and ADA activities and NOx levels. Moreover, I. paraguariensis also inhibited the release of Th1/Th17 pro-inflammatory cytokines, while increasing IL-10 production and improving the histological architecture of inflamed lungs. In addition, its major compounds decreased p65 NF-κB phosphorylation. Based on our results, we can conclude that I. paraguariensis exerts its anti-inflammatory action by attenuating the Th1/Th17 polarization in this model. This fact suggests that the use of this plant as a beverage can protect against Th1/Th17 inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ilex paraguariensis/imunologia , Leucócitos/efeitos dos fármacos , Medicina Tradicional , Extratos Vegetais/uso terapêutico , Pleurisia/tratamento farmacológico , Animais , Cafeína/química , Cafeína/uso terapêutico , Movimento Celular/efeitos dos fármacos , Ácido Clorogênico/química , Ácido Clorogênico/uso terapêutico , Modelos Animais de Doenças , Feminino , Humanos , Interleucina-10/metabolismo , Leucócitos/fisiologia , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Rutina/química , Rutina/uso terapêutico , América do Sul , Células Th1/imunologia , Células Th17/imunologia
12.
Food Chem ; 204: 420-426, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26988520

RESUMO

Quercetin-3-O-rutinoside (rutin), quercetin-3-O-glucoside (isoquercetin) and quercetin have shown antioxidant, cytoprotective, vasoprotective, antiproliferative and antiinflammatory properties. The aim of this work was to determine the conversion of rutin to isoquercetin and quercetin during the production of poly(l-lactic acid) films with potential to deliver these flavonoids toward tissues, pharmaceuticals or food matrices. Three poly(l-lactic acid) formulations with 17.7, 39.6 and 39.1mg/g of rutin were prepared by the extrusion process. Processing temperatures (130-165°C) promoted the deglycosylation of rutin to produce isoquercetin and subsequently quercetin, identified by high performance liquid chromatography coupled to mass spectrometry. The effect of the process on the antioxidant activity of the films was determined by measuring the capacity to scavenge 2,2 diphenyl-1-picrylhydrazyl radicals. The material with the highest proportion of quercetin showed the highest antioxidant activity which could be used to produce delivering devices of the flavonoids to tissues, pharmaceuticals or food matrices.


Assuntos
Quercetina/análogos & derivados , Quercetina/química , Rutina/química , Antioxidantes/química , Materiais Biocompatíveis/química , Cromatografia Líquida de Alta Pressão/métodos , Glicosilação , Espectrometria de Massas
13.
s.l; s.n; s.n; dez. 2015. 184 p. ilus, tab, graf.
Tese em Português | LILACS | ID: biblio-834049

RESUMO

A associação de filtros solares a compostos bioativos tem sido estudada com ênfase na última década. Contudo, a solubilidade limitada dos compostos naturais, tais como a rutina, restringe o desenvolvimento de preparações cosméticas seguras, funcionais e estáveis. A proposta deste estudo envolveu a obtenção de nanoestruturas de gelatina (contendo ou não rutina) para aplicação em protetores solares. Os objetivos específicos foram: (1) preparar partículas de gelatina; (2) realizar a caracterização física, físico-química, morfológica, térmica e funcional (in vitro); (3) avaliar a citotoxicidade e a penetração/permeação curtânea in vitro dos sistemas; (4) desenvolver fotoprotetores bioativos de eficácia estimada in vitro; e (5) determinar a segurança e eficácia clínica fotoprotetora das preparações contendo as estruturas proteicas. As nanopartículas apresentaram-se esféricas e com diâmetro médio e índice de polidispersividade variando entre 318,9 ± 6,9 (B-NC) a 442,8 ± 4,9 nm (R-NC) e 0,06 ± 0,03 (B-NC) a 0,12 ± 0,01 (R-NC), respectivamente. Os valores do potencial zeta apresentaram-se entre -28,5 ± 0,9 mV (B-NC) e -26,6 ± 0,5 mV (R-NC). R-NC apresentou eficiência de associação equivalente a 51,8 ± 1,4%. Os ensaios de segurança das nanopartículas evidenciaram perfil citotóxico adequado para aplicação cosmética, bem como, a ausente tendência de penetração/permeação cutânea. Tendo em vista os resultados obtidos in vitro, as nanopartículas contendo rutina apresentaram capacidade antioxidante 74% superior à rutina em seu estado livre e contribuíram para o aumento de 48% do fator de proteção solar (FPS) quando associada à avobenzona (butyl methoxydibenzoylmethane), ao p-metoxicinamato de octila (ethylhexyl methoxycinnamate) e ao octil dimetil PABA (ethylhexyl dimethyl PABA). A avaliação da eficácia clínica das formulações evidenciou a influência da nanopartícula, sem adição do flavonoide, na proteção da pele contra a formação do eritema UV induzido. Por meio da avaliação dos aspectos funcionais, foi possível constatar, in vitro e in vivo, que a adição das nanopartículas em sistemas fotoprotetores influenciou seu perfil de transmitância da radiação UV, bem como, seus efeitos sobre o eritema UV induzido. Os resultados obtidos apresentaram perspectivas de aplicação prática no desenvolvimento de produtos cosméticos fotoprotetores associados a substâncias bioativas, por meio de plataforma nanotecnológica


Especially, in the last decade, the association of chemical filters and bioactive compounds has been studied by several authors. However, the limited solubility of natural compounds, such as rutin restricts the development of safe and stable cosmetic preparations. The aim of this work was the development of gelatin nanoparticles (with or without rutin) as an ingredient in sunscreens. The specific goals were: (1) the development of rutin-loaded gelatin nanoparticles; (2) to perform the physical, physical-chemical, morphological, thermal and functional (in vitro) analysis; (3) to assess the cytotoxicity and skin penetration / permeation in vitro of the nanoparticles; (4) to develop bioactive sunscreens and to perform the in vitro photoprotection efficacy assay; and (5) to evaluate the in vivo sun protection factor (SPF) of the formulations. The nanoparticles were spherical with an average size and polydispersive index between 318.9 ± 6.9 nm (B-NC) at 442.8 nm ± 4.9 (R-NC), and 0.06 ± 0, 03 (B-NC) to 0.12 ± 0.01 (R-NC). The zeta potential values were high and negative, ranging from - 28.5 ± 0.9 mV (B-NC) and -26.6 ± 0.5 mV (R-NC). R-NC entrapment efficient was 51.8 ± 1.4%. The nanoparticle safety assessment showed a cytotoxic profile suitable for cosmetic application, as well as the absent trend of penetration/ permeation of the skin. The in vitro results indicated that the rutin-loaded gelatin nanoparticles increased 74% the antioxidant profile in comparison with free rutin and also increased 48% the SPF (in vitro) when combined with butyl methoxydibenzoylmethane, ethylhexyl methoxycinnamate and ethylhexyl dimethyl PABA. The assessment of the clinical efficacy assays showed the influence of blank nanoparticle in the protection of the skin against UV-induced erythema response. It was established in vitro and in vivo that the addition of gelatin nanoparticles in sunscreens influenced its UV transmittance profile, as well as its anti-erythema effects on the skin. The results have practical application in the development of sunscreen with bioactive ingredients and at the design of an innovative ingredient with a chemopreventive profile


Assuntos
Protetores Solares/análise , Nanotecnologia , Gelatina/química , Rutina/química , Cosméticos , Nanopartículas/análise
14.
Chem Biol Interact ; 239: 184-91, 2015 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-26091902

RESUMO

Synthesis of compounds analogous to natural products from secondary metabolites, such as flavonoids, is a promising source of novel drugs. Rutin (quercetin-3-O-rutinoside) is a natural flavone, which has, in its chemical structure, different sites for coordination with transition metals and the complexation with these metals enhances its biological properties. Rutin-zinc(II), a flavonoid-metal complex, was synthesized and characterized by UV-VIS, FT-IR, elemental analysis and (1)H NMR. The antioxidant and antitumor activities, as well as the cytotoxicity and in vivo toxicity of this complex were evaluated and compared with the free rutin. Rutin-zinc(II) has not shown any cytotoxicity against normal cells (fibroblasts and HUVECs) or toxicity in BALB/c mice, but has shown antioxidant activity in vitro and cytotoxicity against leukemia (KG1, K562 and Jurkat), multiple myeloma (RPMI8226) and melanoma (B16F10 and SK-Mel-28) cell lines in vitro. In Ehrlich ascites carcinoma model, Rutin-zinc(II) modulated the mitochondrial membrane potential and the expression of genes related to cell cycle progression, angiogenesis and apoptosis.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Rutina/química , Zinco/química , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular/efeitos dos fármacos , Técnicas de Química Sintética , Complexos de Coordenação/síntese química , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Espectroscopia de Ressonância Magnética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Rutina/farmacologia , Testes de Toxicidade Subcrônica , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Planta Med ; 81(9): 742-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26008200

RESUMO

Propolis is a cereus resin with a complex chemical composition that possesses a wide range of biological activities. The aim of this study was to evaluate the in vitro anti-Giardia lamblia activity of Sonoran propolis collected from three different areas of Sonoran Desert in northwestern Mexico (Caborca, Pueblo de Alamos, and Ures) and some of its chemical constituents. Additionally, we also analyzed the seasonal effect on the anti-G. lamblia activity of propolis. G. lamblia trophozoite cultures were treated with different concentrations of Sonoran propolis or chemical compounds during 48 h cell proliferation and cell viability were determined. Ures propolis showed the highest inhibitory activity against G. lamblia (IC50 63.8 ± 7.1 µg/mL) in a dose-dependent manner (Ures > Pueblo de Alamos > Caborca). Season had a significant effect on the in vitro anti-G. lamblia activity of Ures propolis. Summer propolis showed the highest inhibitory effect on the G. lamblia trophozoite growth (IC50 23.8 ± 2.3 µg/mL), followed by propolis collected during winter (IC50 59.2 ± 34.7 µg/mL), spring (IC50 102.5 ± 15.3 µg/mL), and autumn (IC50 125.0 ± 3.1 µg/mL). Caffeic acid phenethyl ester, an Ures propolis exclusive constituent, had the highest growth-inhibitory activity towards G. lamblia [IC50 63.1 ± 0.9 µg/mL (222.1 ± 3.2 µM)]. To our knowledge, this is the first study showing that caffeic acid phenethyl ester possesses antiparasitic activity against G. lamblia. Naringenin [IC50 125.7 ± 20.7 µg/mL (461.8 ± 76.3 µM)], hesperetin [IC50 149.6 ± 24.8 µg/mL (494.9 ± 82.2 µM)], and pinocembrin [IC50 174.4 ± 26.0 µg/mL (680.6 ± 101.7 µM)] showed weak anti-G. lamblia activity. On the other hand, chrysin and rutin did not show significant antiparasitic activity. In conclusion, our results suggest that Sonoran propolis and some of its chemical constituents had inhibitory effects on the in vitro growth of G. lamblia trophozoites.


Assuntos
Ácidos Cafeicos/farmacologia , Giardia lamblia/efeitos dos fármacos , Álcool Feniletílico/análogos & derivados , Própole/química , Animais , Ácidos Cafeicos/química , Ácidos Cafeicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Giardia lamblia/crescimento & desenvolvimento , México , Álcool Feniletílico/química , Álcool Feniletílico/isolamento & purificação , Álcool Feniletílico/farmacologia , Rutina/química , Rutina/isolamento & purificação , Rutina/farmacologia , Trofozoítos/efeitos dos fármacos , Trofozoítos/crescimento & desenvolvimento
16.
Genet Mol Res ; 14(4): 19040-8, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26782554

RESUMO

In this study, five common buckwheats and nine tartary buckwheats grown at different locations were analyzed for the contents of rutin, quercetin, and amino acids by high-performance liquid chromatography and spectrophotometry. The rutin content was higher than quercetin in buckwheat seeds. Rutin content was in the range from 0.05 (0.05 g per 100 g dry seeds) to 1.35% of buckwheat seeds. Quercetin content varied from 0.01 to 0.17% and in some common buckwheats it was even difficult to detect. Comparatively, tartary buckwheat seeds contained more rutin and quercetin than common buckwheat seeds. Meanwhile, the bran has higher rutin content than the farina in tartary buckwheat seeds, with a respective content of 0.45 to 1.19% and 0.14 to 0.67%. It was found that amino acid contents were around 1.79 to 12.65% (farina) and 5.74 to 7.89% (bran) in common buckwheats, and 1.73 to 5.63% (farina) and 2.64 to 16.78% (bran) in tartary buckwheat seeds. The highest total rutin content was found to be 1.35% in tartary buckwheat seeds from Sichuan, China. The highest total amounts of amino acid were detected to be 20.13% in tartary buckwheat seeds from Changzhi, Shanxi Province (China). Our results suggested that food products made of whole-buckwheat flour are healthier than those made of fine white flour.


Assuntos
Aminoácidos/química , Fagopyrum/química , Extratos Vegetais/química , Quercetina/química , Rutina/química , Sementes/química , Aminoácidos/isolamento & purificação , China , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/isolamento & purificação , Quercetina/isolamento & purificação , Rutina/isolamento & purificação
17.
Biomed Res Int ; 2014: 941318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901000

RESUMO

The aims of this work were to evaluate the in vitro and in vivo schistosomicidal properties of the methanolic extract of the aerial parts of Mitracarpus frigidus (MFM) and to determine its HPLC profile. For the in vitro experiment, four pairs of adult worms, obtained from infected mice, were exposed to different concentrations of MFM (100 to 400 µg/mL) for 24 and 48 h and analyzed under an inverted microscope. For the in vivo experiment, mice were inoculated with cercariae and, 20 days after infection, MFM (100 and 300 mg/kg) was administered orally for the following 25 days. Mice were euthanized after 60 days. MFM showed in vitro schistosomicidal activity, exhibiting the opening of the gynaecophoral canal of some male schistosomes, the presence of contorted muscles, vesicles, and the darkening of the paired worms skin. In vivo experiments showed that MFM treatments significantly reduced total worm count, as praziquantel, showing a decrease in liver and spleen weight. Also, a significant reduction in granuloma density was observed. MFM treatment did not cause alterations in the liver function of either infected or noninfected mice. The HPLC chromatogram profile showed the presence of kaempferol-O-rutinoside, rutin, kaempferol, psychorubrin, and ursolic acid.


Assuntos
Extratos Vegetais/farmacologia , Plantas Medicinais/química , Rubiaceae/química , Schistosoma mansoni/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Granuloma/tratamento farmacológico , Quempferóis/química , Fígado/efeitos dos fármacos , Masculino , Camundongos , Naftoquinonas/química , Extratos Vegetais/química , Rutina/química , Esquistossomicidas/farmacologia , Baço/efeitos dos fármacos , Triterpenos/química , Ácido Ursólico
18.
Food Chem ; 141(1): 266-73, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23768357

RESUMO

Bioavailability and biological properties of flavonoid glycosides can be improved after the enzymatic hydrolysis of specific glycosyl groups. In this study, we evaluate the antioxidant and antiproliferative potential of rutin after enzymatic hydrolysis performed by α-l-rhamnosidases (hesperidinase from Penicillium sp. and naringinase from Penicillium decumbens) previously heated at 70°C for 30 min to inactivate the undesirable ß-d-glucosidase activity. The highest in vitro antioxidant activity determined by DPPH radical scavenging was achieved with rutin hydrolyzed by hesperidinase. Rutin was predominantly bioconverted into quercetin-3-glucoside. There was no statistical difference between xanthine oxidase inhibition by rutin before and after hydrolysis. However, in vitro inhibitory activity against ten human tumor cell lines showed that hydrolyzed rutin exerted a more potent antiproliferative effect than quercetin and rutin on various cancer cell lines, specially glioma, and ovarian and breast adenocarcinomas. These results indicate that quercetin-3-glucoside could be a promising functional derivative obtained by rutin hydrolysis.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteínas Fúngicas/química , Glicosídeo Hidrolases/química , Complexos Multienzimáticos/química , Penicillium/enzimologia , Rutina/química , Rutina/farmacologia , beta-Glucosidase/química , Linhagem Celular Tumoral , Glicosilação , Humanos , Hidrólise , Estrutura Molecular
19.
Enzyme Microb Technol ; 52(4-5): 296-301, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23540933

RESUMO

A biosensor based on the iridium nanoparticles dispersed in ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate (Ir-BMI·PF6) and a celery (Apium graveolens) extract as a source of polyphenol oxidase (PPO) was constructed. A modified support based on ß-cyclodextrin (ß-CDEP) was used for enzyme immobilization. The behavior of phenolic compounds was investigated by square-wave voltammetry and rutin was selected by presenting the greatest signal. The best performance was obtained with a composition of 70:10:10:10% (w/w/w/w) of the graphite powder:ß-CDEP:Nujol:Ir-BMI·PF6 composition, a PPO concentration of 500unitsmL(-1), in 0.1M phosphate buffer solution (pH 6.0) with frequency, pulse amplitude and scan increment at 100Hz, 60mV, and 3.0mV, respectively. Under optimized conditions, the cathodic currents increased linearly for the rutin concentration range of 1.3×10(-7)-2.0×10(-6)M with a detection limit of 7.9×10(-8)M. This sensor demonstrated acceptable repeatability and reproducibility and the results for the rutin recovery ranged from 92.8 to 103.4%. A relative error of 0.7% was obtained in the rutin determination in simulated samples.


Assuntos
Técnicas Biossensoriais/métodos , Catecol Oxidase/metabolismo , Fenóis/análise , Apium/enzimologia , Técnicas Biossensoriais/estatística & dados numéricos , Catecol Oxidase/química , Técnicas Eletroquímicas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Irídio , Nanopartículas Metálicas , Modelos Moleculares , Fenóis/química , Reprodutibilidade dos Testes , Rutina/análise , Rutina/química , beta-Ciclodextrinas
20.
J Inorg Biochem ; 107(1): 34-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22172500

RESUMO

The antioxidant activity of flavonoids may involve their ability to complex body iron in non-redox-active forms. In this study, it was found that the catechol flavonoids rutin and quercetin are able to suppress redox-active labile plasma iron (LPI) in both buffered solution and in iron-overloaded sera. Both flavonoids are effective in loading the metal into the iron-transport protein transferrin. Iron derivatives of quercetin and rutin are able to permeate cell membranes, however, only free quercetin is able to gain access to the cytosol and decrease intracellular labile iron pools. These results suggest that the antioxidant activity of quercetin may be dependent on its ability to shuttle labile iron from cell compartments followed by its transfer to transferrin.


Assuntos
Antioxidantes/farmacologia , Quelantes de Ferro/farmacologia , Ferro/sangue , Quercetina/farmacologia , Animais , Antioxidantes/química , Ácido Ascórbico/química , Ligação Competitiva , Bovinos , Complexos de Coordenação/química , Deferiprona , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Fluoresceínas/química , Células HeLa , Humanos , Ferro/química , Quelantes de Ferro/química , Oxirredução , Piridonas/química , Piridonas/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Quercetina/química , Rutina/química , Rutina/farmacologia , Transferrina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA