Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Mol Genet Genomic Med ; 12(5): e2451, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760995

RESUMO

BACKGROUND: Ellis-van Creveld syndrome (EvCS) is a chondroectodermal dysplasia caused by germline pathogenic variants in ciliary complex subunit 1 and 2 genes (EVC, EVC2) on chromosome 4p16.2. This disease has a broad phenotype, and there are few described phenotype-genotype correlations. METHODS: Ethical Compliance: Written informed consent was obtained from the parents. Here, we report a genetically confirmed Mexican patient with EvCS having two inherited pathogenic variants in trans in EVC2: c.[1195C>T];[2161delC]. RESULTS: This patient allowed a genotypic-phenotypic comparison with another Mexican subject who presented a more attenuated phenotype; furthermore, our patient also presented cleft palate, a rarely reported feature. CONCLUSION: Our case shows the importance of comparing functional hemizygosity between patient's phenotypes when they share a variant, and our case also supports the association of alterations in the palate as part of the EvCS phenotype.


Assuntos
Fissura Palatina , Síndrome de Ellis-Van Creveld , Fenótipo , Humanos , Fissura Palatina/genética , Fissura Palatina/patologia , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/patologia , México , Masculino , Feminino , Peptídeos e Proteínas de Sinalização Intercelular
2.
J Med Genet ; 61(7): 633-644, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38531627

RESUMO

BACKGROUND: Ellis-van Creveld syndrome (EvC) is a recessive disorder characterised by acromesomelic limb shortening, postaxial polydactyly, nail-teeth dysplasia and congenital cardiac defects, primarily caused by pathogenic variants in EVC or EVC2. Weyers acrofacial dysostosis (WAD) is an ultra-rare dominant condition allelic to EvC. The present work aimed to enhance current knowledge on the clinical manifestations of EvC and WAD and broaden their mutational spectrum. METHODS: We conducted molecular studies in 46 individuals from 43 unrelated families with a preliminary clinical diagnosis of EvC and 3 affected individuals from a family with WAD and retrospectively analysed clinical data. The deleterious effect of selected variants of uncertain significance was evaluated by cellular assays. MAIN RESULTS: We identified pathogenic variants in EVC/EVC2 in affected individuals from 41 of the 43 families with EvC. Patients from each of the two remaining families were found with a homozygous splicing variant in WDR35 and a de novo heterozygous frameshift variant in GLI3, respectively. The phenotype of these patients showed a remarkable overlap with EvC. A novel EVC2 C-terminal truncating variant was identified in the family with WAD. Deep phenotyping of the cohort recapitulated 'classical EvC findings' in the literature and highlighted findings previously undescribed or rarely described as part of EvC. CONCLUSIONS: This study presents the largest cohort of living patients with EvC to date, contributing to better understanding of the full clinical spectrum of EvC. We also provide comprehensive information on the EVC/EVC2 mutational landscape and add GLI3 to the list of genes associated with EvC-like phenotypes.


Assuntos
Síndrome de Ellis-Van Creveld , Linhagem , Fenótipo , Humanos , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/patologia , Masculino , Feminino , Criança , Proteínas de Membrana/genética , Mutação , Pré-Escolar , Proteína Gli3 com Dedos de Zinco/genética , Adolescente , Adulto , Proteínas do Tecido Nervoso/genética , Estudos de Coortes , Lactente , Proteínas/genética , Estudos Retrospectivos , Peptídeos e Proteínas de Sinalização Intercelular
4.
BMC Med Genomics ; 16(1): 318, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062428

RESUMO

BACKGROUND: Short-rib polydactyly syndrome (SRPS) refers to a group of lethal skeletal dysplasias that can be difficult to differentiate between subtypes or from other non-lethal skeletal dysplasias such as Ellis-van Creveld syndrome and Jeune syndrome in a prenatal setting. We report the ultrasound and genetic findings of four unrelated fetuses with skeletal dysplasias. METHODS: Systemic prenatal ultrasound examination was performed in the second or third trimester. Genetic tests including GTG-banding, single nucleotide polymorphism (SNP) array and exome sequencing were performed with amniocytes or aborted fetal tissues. RESULTS: The major and common ultrasound anomalies for the four unrelated fetuses included short long bones of the limbs and narrow thorax. No chromosomal abnormalities and pathogenic copy number variations were detected. Exome sequencing revealed three novel variants in the DYNC2H1 gene, namely NM_001080463.2:c.6809G > A p.(Arg2270Gln), NM_001080463.2:3133C > T p.(Gln1045Ter), and NM_001080463.2:c.337C > T p.(Arg113Trp); one novel variant in the IFT172 gene, NM_015662.3:4540-5 T > A; and one novel variant in the WDR19 gene, NM_025132.4:c.2596G > C p.(Gly866Arg). The genotypes of DYNC2H1, IFT172 and WDR19 and the phenotypes of the fetuses give hints for the diagnosis of short-rib thoracic dysplasia (SRTD) with or without polydactyly 3, 10, and 5, respectively. CONCLUSION: Our findings expand the mutation spectrum of DYNC2H1, IFT172 and WDR19 associated with skeletal ciliopathies, and provide useful information for prenatal diagnosis and genetic counseling on rare skeletal disorders.


Assuntos
Ciliopatias , Síndrome de Ellis-Van Creveld , Osteocondrodisplasias , Polidactilia , Gravidez , Feminino , Humanos , Variações do Número de Cópias de DNA , Síndrome de Ellis-Van Creveld/diagnóstico por imagem , Síndrome de Ellis-Van Creveld/genética , Diagnóstico Pré-Natal , Ciliopatias/diagnóstico por imagem , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
5.
Nucleic Acids Res ; 51(13): 6684-6701, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37326025

RESUMO

Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.


Assuntos
Cílios , Proteína Proto-Oncogênica c-ets-1 , Proteínas de Peixe-Zebra , Animais , Cromatina/genética , Cromatina/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/patologia , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas de Peixe-Zebra/metabolismo
6.
Mol Genet Genomic Med ; 11(8): e2183, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157924

RESUMO

BACKGROUND: Ellis-van Creveld (EvC) syndrome, caused by variants in EVC, is a rare genetic skeletal dysplasia. Its clinical phenotype is highly diverse. EvC syndrome is rarely reported in prenatal stages because its presentation overlaps with other diseases. METHODS: A Chinese pedigree diagnosed with EvC syndrome was enrolled in this study. Whole-exome sequencing (WES) was applied in the proband to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in family members. Minigene experiments were applied. RESULTS: WES identified a homozygous variant (NM_153717.3:c.153_174 + 42del) in EVC which was inherited from the heterozygous parents and confirmed by Sanger sequencing. Further experiments demonstrated that this variant disrupts the canonical splicing site and produces a new splicing site at NM_153717.3: c.-164_174del, which ultimately leads to a 337 bp deletion at the 3' end of exon 1 and loss of the start codon. CONCLUSION: This is the first reported case of EvC syndrome based on a splicing variant and detailed delineation of the aberrant splicing effect in the fetus. Our study demonstrates the pathogenesis of this new variant, expands the spectrum of EVC mutations, and demonstrates that WES is a powerful tool in the clinical diagnosis of diseases with genetic heterogeneity.


Assuntos
Síndrome de Ellis-Van Creveld , Proteínas de Membrana , Humanos , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Síndrome de Ellis-Van Creveld/genética , Mutação , Feto
7.
Genes (Basel) ; 14(4)2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-37107645

RESUMO

BACKGROUND: Ellis-van Creveld syndrome (EvCS) is an autosomal recessive ciliopathy with a disproportionate short stature, polydactyly, dystrophic nails, oral defects, and cardiac anomalies. It is caused by pathogenic variants in the EVC or EVC2 genes. To obtain further insight into the genetics of EvCS, we identified the genetic defect for the EVC2 gene in two Mexican patients. METHODS: Two Mexican families were enrolled in this study. Exome sequencing was applied in the probands to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in the parents. Finally, a prediction of the three-dimensional structure of the mutant proteins was made. RESULTS: One patient has a compound heterozygous EVC2 mutation: a novel heterozygous variant c.519_519 + 1delinsT inherited from her mother, and a heterozygous variant c.2161delC (p.L721fs) inherited from her father. The second patient has a previously reported compound heterozygous EVC2 mutation: nonsense mutation c.645G > A (p.W215*) in exon 5 inherited from her mother, and c.273dup (p.K92fs) in exon 2 inherited from her father. In both cases, the diagnostic was Ellis-van Creveld syndrome. Three-dimensional modeling of the EVC2 protein showed that truncated proteins are produced in both patients due to the generation of premature stop codons. CONCLUSION: The identified novel heterozygous EVC2 variants, c.2161delC and c.519_519 + 1delinsT, were responsible for the Ellis-van Creveld syndrome in one of the Mexican patients. In the second Mexican patient, we identified a compound heterozygous variant, c.645G > A and c.273dup, responsible for EvCS. The findings in this study extend the EVC2 mutation spectrum and may provide new insights into the EVC2 causation and diagnosis with implications for genetic counseling and clinical management.


Assuntos
Síndrome de Ellis-Van Creveld , Proteínas de Membrana , Humanos , Feminino , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Linhagem , Mutação , Códon sem Sentido
8.
J Pak Med Assoc ; 73(3): 687-689, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36932784

RESUMO

Ellis-Van Creveld Syndrome (EVC) is a rare genetic disorder with autosomal recessive inheritance, caused by mutations in two genes, EVC1 and EVC2 in the 4p16 chromosome. The exact prevalence of EVC is unknown and is estimated at approximately seven per million. It affects males and females equally. It is a constellation of four findings, including chondrodysplasia, polydactyly, ectodermal dysplasia, and congenital heart defects. Our case was unique as it had left inguinal hernia, short phallus, hyperpigmented scrotum, cryptorchidism, and other defining features of this syndrome. A multidisciplinary team managed this patient with regular follow up. Only six cases have been reported in Pakistan, and only one of them was reported in a neonate. This report highlights the importance of timely and proper multidisciplinary management of such disorders for better outcomes. It will also create awareness among medical professionals and will help them to identify promptly.


Assuntos
Displasia Ectodérmica , Síndrome de Ellis-Van Creveld , Humanos , Recém-Nascido , Masculino , Síndrome de Ellis-Van Creveld/complicações , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/genética , Mutação , Paquistão
9.
Eur J Hum Genet ; 31(4): 479-484, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599940

RESUMO

Deleterious variants of DYNC2H1 gene are associated with a wide spectrum of skeletal ciliopathies (SC). We used targeted parallel sequencing to analyze 25 molecularly unsolved families with different SCs. Deleterious DYNC2H1 variants were found in six sporadic patients and two monozygotic (MZ) twins. Clinical diagnoses included short rib-polydactyly type 3 in two cases, and asphyxiating thoracic dystrophy (ATD) in one case. Remarkably, clinical diagnosis fitted with EvC, mixed ATD/EvC and short rib-polydactyly/EvC phenotypes in three sporadic patients and the MZ twins. EvC/EvC-like features always occurred in compound heterozygotes sharing a previously unreported splice site change (c.6140-5A>G) or compound heterozygotes for two missense variants. These results expand the DYNC2H1 mutational repertoire and its clinical spectrum, suggesting that EvC may be occasionally caused by DYNC2H1 variants presumably acting as hypomorphic alleles.


Assuntos
Ciliopatias , Dineínas do Citoplasma , Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Ciliopatias/diagnóstico , Ciliopatias/genética , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/genética , Mutação , Polidactilia/genética
10.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36268591

RESUMO

The primary cilium is a sensory organelle, receiving signals from the external environment and relaying them into the cell. Mutations in proteins required for transport in the primary cilium result in ciliopathies, a group of genetic disorders that commonly lead to the malformation of organs such as the kidney, liver and eyes and skeletal dysplasias. The motor proteins dynein-2 and kinesin-2 mediate retrograde and anterograde transport, respectively, in the cilium. WDR34 (also known as DYNC2I2), a dynein-2 intermediate chain, is required for the maintenance of cilia function. Here, we investigated WDR34 mutations identified in Jeune syndrome, short-rib polydactyly syndrome and asphyxiating thoracic dysplasia patients. There is a poor correlation between genotype and phenotype in these cases, making diagnosis and treatment highly complex. We set out to define the biological impacts on cilia formation and function of WDR34 mutations by stably expressing the mutant proteins in WDR34-knockout cells. WDR34 mutations led to different spectrums of phenotypes. Quantitative proteomics demonstrated changes in dynein-2 assembly, whereas initiation and extension of the axoneme, localization of intraflagellar transport complex-B proteins, transition zone integrity and Hedgehog signalling were also affected.


Assuntos
Dineínas , Síndrome de Ellis-Van Creveld , Humanos , Dineínas/genética , Dineínas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Cílios/genética , Cílios/metabolismo , Mutação/genética
11.
J Med Genet ; 60(4): 337-345, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927022

RESUMO

BACKGROUND: Ellis-Van Creveld (EVC) syndrome is one of the entities belonging to the skeletal ciliopathies short rib-polydactyly subgroup. Major signs are ectodermal dysplasia, chondrodysplasia, polydactyly and congenital cardiopathy, with a high degree of variability in phenotypes ranging from lethal to mild clinical presentations. The EVC and EVC2 genes are the major genes causative of EVC syndrome. However, an increased number of genes involved in the ciliopathy complex have been identified in EVC syndrome, leading to a better understanding of its physiopathology, namely, WDR35, GLI1, DYNC2LI1, PRKACA, PRKACB and SMO. They all code for proteins located in the primary cilia, playing a key role in signal transduction of the Hedgehog pathways. METHODS: The aim of this study was the analysis of 50 clinically identified EVC cases from 45 families to further define the phenotype and molecular bases of EVC. RESULTS: Our detection rate in the cohort of 45 families was of 91.11%, with variants identified in EVC/EVC2 (77.8%), DYNC2H1 (6.7%), DYNC2LI1 (2.2%), SMO (2.2%) or PRKACB (2.2%). No distinctive feature was remarkable of a specific genotype-phenotype correlation. Interestingly, we identified a high proportion of heterozygous deletions in EVC/EVC2 of variable sizes (26.92%), mostly inherited from the mother, and probably resulting from recombinations involving Alu sequences. CONCLUSION: We confirmed that EVC and EVC2 are the major genes involved in the EVC phenotype and highlighted the high prevalence of previously unreported CNVs (Copy Number Variation).


Assuntos
Síndrome de Ellis-Van Creveld , Polidactilia , Humanos , Proteínas Hedgehog/genética , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Variações do Número de Cópias de DNA/genética , Fenótipo
12.
Am J Med Genet C Semin Med Genet ; 190(1): 36-46, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35393766

RESUMO

Ellis-van Creveld syndrome (EvC) is an autosomal recessive genetic disorder involving pathogenic variants of EVC and EVC2 genes and classified as a ciliopathy. The syndrome is caused by mutations in the EVC gene on chromosome 4p16, and EVC2 gene, located close to the EVC gene, in a head-to-head configuration. Regardless of the affliction of EVC or EVC2, the clinical features of Ellis-van Creveld syndrome are similar. Both these genes are expressed in tissues such as, but not limited to, the heart, liver, skeletal muscle, and placenta, while the predominant expression in the craniofacial tissues is that of EVC2. Biallelic mutations of EVC and EVC2 affect Hedgehog signaling and thereby ciliary function, crucial factors in vertebrate development, culminating in the phenotypical features characteristic of EvC. The clinical features of Ellis-van Creveld syndrome are consistent with significant abnormalities in morphogenesis and differentiation of the affected tissues. The robust role of primary cilia in histodifferentiation and morphodifferentiation of oral, perioral, and craniofacial tissues is becoming more evident in the most recent literature. In this review, we give a summary of the mechanistic role of primary cilia in craniofacial development, taking Ellis-van Creveld syndrome as a representative example.


Assuntos
Síndrome de Ellis-Van Creveld , Cílios , Síndrome de Ellis-Van Creveld/genética , Síndrome de Ellis-Van Creveld/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Mutação , Transdução de Sinais
13.
Interact Cardiovasc Thorac Surg ; 34(1): 153-155, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34999795

RESUMO

Asphyxiating thoracic dysplasia is a rare and dangerous genetic disease. Many children with this disease die early in life of severe hypoxia, and it is extremely rare that they survive to adulthood. We recently treated a 36-year-old patient who had asphyxiating thoracic dysplasia with a special surgical method and achieved satisfactory results. A review of the literature showed that this patient is the oldest surviving person with this condition.


Assuntos
Síndrome de Ellis-Van Creveld , Adulto , Criança , Síndrome de Ellis-Van Creveld/genética , Humanos
14.
Genes (Basel) ; 14(1)2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672825

RESUMO

Objective: To investigate dental anomalies and the molecular etiology of a patient with Ellis−van Creveld syndrome and two patients with Bardet−Biedl syndrome, two examples of ciliopathies. Patients and Methods: Clinical examination, radiographic evaluation, whole exome sequencing, and Sanger direct sequencing were performed. Results: Patient 1 had Ellis−van Creveld syndrome with delayed dental development or tooth agenesis, and multiple frenula, the feature found only in patients with mutations in ciliary genes. A novel homozygous mutation in EVC2 (c.703G>C; p.Ala235Pro) was identified. Patient 2 had Bardet−Biedl syndrome with a homozygous frameshift mutation (c.389_390delAC; p.Asn130ThrfsTer4) in BBS7. Patient 3 had Bardet−Biedl syndrome and carried a heterozygous mutation (c.389_390delAC; p.Asn130ThrfsTer4) in BBS7 and a homozygous mutation in BBS2 (c.209G>A; p.Ser70Asn). Her clinical findings included global developmental delay, disproportionate short stature, myopia, retinitis pigmentosa, obesity, pyometra with vaginal atresia, bilateral hydronephrosis with ureteropelvic junction obstruction, bilateral genu valgus, post-axial polydactyly feet, and small and thin fingernails and toenails, tooth agenesis, microdontia, taurodontism, and impaired dentin formation. Conclusions: EVC2, BBS2, and BBS7 mutations found in our patients were implicated in malformation syndromes with dental anomalies including tooth agenesis, microdontia, taurodontism, and impaired dentin formation.


Assuntos
Síndrome de Bardet-Biedl , Síndrome de Ellis-Van Creveld , Anormalidades Dentárias , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Proteínas do Citoesqueleto/genética , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/genética , Mutação , Proteínas/genética , Anormalidades Dentárias/genética
15.
Am J Med Genet A ; 185(10): 2888-2894, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34037314

RESUMO

Ellis-van Creveld (EvC) syndrome is an autosomal recessive disease, characterized by ectodermal, skeletal, and cardiac anomalies. We report intrafamilial phenotypic variability in three new EvC syndrome cases. Affected males in this study showed only ectodermal abnormalities, whereas an affected female showed the classical presentation of EvC Syndrome, including bilateral postaxial polydactyly of hands and feet, and congenital heart defects. Whole exome sequencing was performed to identify the causative variant, followed by validation and segregation analysis using Sanger sequencing. A homozygous deletion variant (c.731_757del) was identified in exon 6 of the EVC gene (NM_153717.2). The identified variant is considered to be the most likely candidate variant for the EvC syndrome in the family based on previous reports validating the role of EVC variants in the EvC syndrome. The disease correctly segregated in the family members, as all affected members were homozygous, and obligate carriers were heterozygous. Our family is remarkable in highlighting the variable expressivity of the EvC phenotype within the same family, due to a homozygous deletion mutation in the EVC gene. The variable expressivity might be due to the hypomorphic nature of mutation, or the presence of additional variants in modifier genes or in the regulatory regions of the EVC/EVC2 genes.


Assuntos
Síndrome de Ellis-Van Creveld/genética , Cardiopatias Congênitas/genética , Proteínas de Membrana/genética , Polidactilia/genética , Variação Biológica da População/genética , Criança , Ectoderma/anormalidades , Ectoderma/patologia , Síndrome de Ellis-Van Creveld/diagnóstico , Síndrome de Ellis-Van Creveld/patologia , Éxons/genética , Feminino , Coração/fisiopatologia , Cardiopatias Congênitas/patologia , Heterozigoto , Homozigoto , Humanos , Recém-Nascido , Masculino , Linhagem , Polidactilia/patologia , Deleção de Sequência/genética , Esqueleto/anormalidades , Esqueleto/patologia , Sequenciamento do Exoma
16.
Clin Dysmorphol ; 30(3): 142-146, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34016807

RESUMO

KIAA0753-related skeletal ciliopathy is a recently described recessive disorder causing skeletal dysplasia and overlapping features of certain ciliopathies; Joubert, Jeune and Oro-facial-digital syndromes. We describe a ninth case that expands the phenotype; a 10-year-old girl with rhizomelic short stature (-5.6 SD), macrocephaly, developmental delay, CNS anomalies (thin corpus callosum, bilateral ventriculomegaly), cone-rod dystrophy, nystagmus, mild conductive hearing loss and recurrent chest infections secondary to confirmed ciliary dyskinesia. Testing for FGFR3 achondroplasia-related hotspots and mucopolysaccharidosis were negative. Whole-exome sequencing, aged eight, via skeletal dysplasia panel analysis and subsequent whole-genome sequencing (via the 100,000 genomes project) found no cause. WGS data reanalysis using exomiser uncovered compound heterozygous pathogenic KIAA0753 variants (frameshift and splice site). Further clinical and radiological surveys were consistent with the expected phenotype. We discuss the emerging phenotype of this uncommon disorder. This report details the sixth published case of skeletal dysplasia in all cases of KIAA0753-related disease and the first case to describe a novel c.1830-2A>G splice variant. Our case is the eldest woman reported to date (aged ten years) and the only known case to report associated hearing loss, leg-length discrepancy, pectus carinatum, respiratory ciliary dyskinesia and late-onset (9 years old) neuro-degenerative regression.


Assuntos
Ciliopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/genética , Criança , Deficiências do Desenvolvimento/genética , Síndrome de Ellis-Van Creveld/genética , Anormalidades do Olho/genética , Feminino , Mutação da Fase de Leitura/genética , Predisposição Genética para Doença/genética , Humanos , Doenças Renais Císticas/genética , Megalencefalia/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/genética , Síndromes Orofaciodigitais/genética , Linhagem , Sequenciamento do Exoma
17.
Nat Genet ; 53(4): 467-476, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33731941

RESUMO

Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for nongenetic confounding factors. We differentiated these cells into cranial neural crest cells, the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific sixfold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.


Assuntos
Quimera/genética , Síndrome de Ellis-Van Creveld/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Crista Neural/metabolismo , Pan troglodytes/genética , Crânio/metabolismo , Animais , Evolução Biológica , Diferenciação Celular , Quimera/metabolismo , Síndrome de Ellis-Van Creveld/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Feminino , Expressão Gênica , Genótipo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Masculino , Camundongos , Camundongos Knockout , Crista Neural/patologia , Pan troglodytes/anatomia & histologia , Pan troglodytes/metabolismo , Fenótipo , Transdução de Sinais , Crânio/anatomia & histologia , Especificidade da Espécie , Tetraploidia
18.
Clin Genet ; 99(5): 694-703, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33495992

RESUMO

Protein disulfide isomerase A6 (PDIA6) is an unfolded protein response (UPR)-regulating protein. PDIA6 regulates the UPR sensing proteins, Inositol requiring enzyme 1, and EIF2AK3. Biallelic inactivation of the two genes in mice and humans resulted in embryonic lethality, diabetes, skeletal defects, and renal insufficiency. We recently showed that PDIA6 inactivation in mice caused embryonic and early lethality, diabetes and immunodeficiency. Here, we present a case with asphyxiating thoracic dystrophy (ATD) syndrome and infantile-onset diabetes. Whole exome sequencing revealed a homozygous frameshift variant in the PDIA6 gene. RNA expression was reduced in a gene dosage-dependent manner, supporting a loss-of-function effect of this variant. Phenotypic correlation with the mouse model recapitulated the growth defect and delay, early lethality, coagulation, diabetes, immunological, and polycystic kidney disease phenotypes. In general, the phenotype of the current patient is consistent with phenotypes associated with the disruption of PDIA6 and the sensors of UPR in mice and humans. This is the first study to associate ATD to the UPR gene, PDIA6. We recommend screening ATD cases with or without insulin-dependent diabetes for variants in PDIA6.


Assuntos
Síndrome de Ellis-Van Creveld/genética , Doenças do Prematuro/genética , Mutação com Perda de Função , Isomerases de Dissulfetos de Proteínas/genética , Resposta a Proteínas não Dobradas/genética , Anormalidades Múltiplas/genética , Alelos , Animais , Consanguinidade , Síndrome de Ellis-Van Creveld/diagnóstico por imagem , Técnicas de Inativação de Genes , Idade Gestacional , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Linhagem
19.
Hum Mutat ; 41(12): 2087-2093, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906221

RESUMO

Clinical expression of Ellis-van Creveld syndrome (EvC) is variable and mild phenotypes have been described, including patients with mostly cardiac and limb involvement. Whether these cases are part of the EvC phenotypic spectrum or separate conditions is disputed. Herein, we describe a family with vertical transmission of atrioventricular canal defect (AVCD), common atrium, and postaxial polydactyly. Targeted sequencing of EVC, EVC2, WDR35, DYNC2LI1, and DYNC2H1 identified different compound heterozygosity in EVC genotypes in the two affected members, consisting of a nonsense (p.Arg622Ter) and a missense (p.Arg663Pro) variant in the father, and the same nonsense variant and a noncanonical splice-site in-frame change (c.1316-7A>G) in the daughter. Complementary DNA sequencing, immunoblot, and immunofluorescence experiments using patient-derived fibroblasts and Evc-/- mouse embryonic fibroblasts showed that p.Arg622Ter is a loss-of-function mutation, whereas p.Arg663Pro and the splice-site change c.1316-7A>G are hypomorphic variants resulting in proteins that retain, in part, the ability to complex with EVC2. Our molecular and functional data demonstrate that at least in some cases the condition characterized as "common atrium/AVCD with postaxial polydactyly" is a mild form of EvC due to hypomorphic EVC mutations, further supporting the occurrence of genotype-phenotype correlations in this syndrome.


Assuntos
Síndrome de Ellis-Van Creveld/genética , Dedos/anormalidades , Predisposição Genética para Doença , Defeitos dos Septos Cardíacos/genética , Proteínas de Membrana/genética , Mutação/genética , Polidactilia/genética , Dedos do Pé/anormalidades , Adulto , Animais , Criança , Pré-Escolar , Síndrome de Ellis-Van Creveld/diagnóstico por imagem , Família , Feminino , Dedos/diagnóstico por imagem , Defeitos dos Septos Cardíacos/diagnóstico por imagem , Humanos , Masculino , Camundongos , Linhagem , Polidactilia/diagnóstico por imagem , Dedos do Pé/diagnóstico por imagem
20.
Genet Med ; 22(12): 2041-2051, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32753734

RESUMO

PURPOSE: Determining the role of DYNC2H1 variants in nonsyndromic inherited retinal disease (IRD). METHODS: Genome and exome sequencing were performed for five unrelated cases of IRD with no identified variant. In vitro assays were developed to validate the variants identified (fibroblast assay, induced pluripotent stem cell [iPSC] derived retinal organoids, and a dynein motility assay). RESULTS: Four novel DYNC2H1 variants (V1, g.103327020_103327021dup; V2, g.103055779A>T; V3, g.103112272C>G; V4, g.103070104A>C) and one previously reported variant (V5, g.103339363T>G) were identified. In proband 1 (V1/V2), V1 was predicted to introduce a premature termination codon (PTC), whereas V2 disrupted the exon 41 splice donor site causing incomplete skipping of exon 41. V1 and V2 impaired dynein-2 motility in vitro and perturbed IFT88 distribution within cilia. V3, homozygous in probands 2-4, is predicted to cause a PTC in a retina-predominant transcript. Analysis of retinal organoids showed that this new transcript expression increased with organoid differentiation. V4, a novel missense variant, was in trans with V5, previously associated with Jeune asphyxiating thoracic dystrophy (JATD). CONCLUSION: The DYNC2H1 variants discussed herein were either hypomorphic or affecting a retina-predominant transcript and caused nonsyndromic IRD. Dynein variants, specifically DYNC2H1 variants are reported as a cause of non syndromic IRD.


Assuntos
Síndrome de Ellis-Van Creveld , Degeneração Retiniana , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Éxons , Humanos , Mutação , Linhagem , Retina , Degeneração Retiniana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...