Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 10827, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616716

RESUMO

Weill-Marchesani syndrome (WMS) is a rare disorder displaying short stature, brachydactyly and joint stiffness, and ocular features including microspherophakia and ectopia lentis. Brachydactyly and joint stiffness appear less commonly in patients with WMS4 caused by pathogenic ADAMTS17 variants. Here, we investigated a large family with WMS from Newfoundland, Canada. These patients displayed core WMS features, but with proportionate hands that were clinically equivocal for brachydactyly. Whole exome sequencing and autozygosity mapping unveiled a novel pathogenic missense ADAMTS17 variant (c.3068 G > A, p.C1023Y). Sanger sequencing demonstrated variant co-segregation with WMS, and absence in 150 population matched controls. Given ADAMTS17 involvement, we performed deep phenotyping of the patients' hands. Anthropometrics applied to hand roentgenograms showed that metacarpophalangeal measurements of affected patients were smaller than expected for their age and sex, and when compared to their unaffected sibling. Furthermore, we found a possible sub-clinical phenotype involving markedly shortened metacarpophalangeal bones with intrafamilial variability. Transfection of the variant ADAMTS17 into HEK293T cells revealed significantly reduced secretion into the extracellular medium compared to wild-type. This work expands understanding of the molecular pathogenesis of ADAMTS17, clarifies the variable hand phenotype, and underscores a role for anthropometrics in characterizing sub-clinical brachydactyly in these patients.


Assuntos
Proteínas ADAMTS/genética , Braquidactilia , Dedos/anormalidades , Mutação de Sentido Incorreto , Síndrome de Weill-Marchesani/etiologia , Síndrome de Weill-Marchesani/genética , Antropometria , Secreções Corporais , Canadá , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo , Sequenciamento do Exoma
2.
Methods Cell Biol ; 143: 223-246, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310780

RESUMO

Fibrillins are one of the major components of supramolecular fibrous structures in the extracellular matrix of elastic and nonelastic tissues, termed microfibrils. Microfibrils provide tensile strength in nonelastic tissues and scaffolds for the assembly of tropoelastin in elastic tissues, and act a regulator of growth factor bioavailability and activity in connective tissues. Mutations in fibrillins lead to a variety of connective tissue disorders including Marfan syndrome, stiff skin syndrome, dominant Weill-Marchesani syndrome, and others. Therefore, fibrillins are frequently studied to understand the pathophysiology of these diseases and to identify effective treatment strategies. Extraction of endogenous microfibrils from cells and tissues can aid in obtaining structural insights of microfibrils. Recombinant production of fibrillins is an important tool which can be utilized to study the properties of normal fibrillins and the consequences of disease causing mutations. Other means of studying the role of fibrillins in the context of various physiological settings is by knocking down the mRNA expression and analyzing its downstream consequences. It is also important to study the interactome of fibrillins by protein-protein interactions, which can be derailed in pathological situations. Interacting proteins can affect the assembly of fibrillins in cells and tissues or can affect the levels of growth factors in the matrix. This chapter describes important techniques in the field that facilitate answering relevant questions of fibrillin biology and pathophysiology.


Assuntos
Matriz Extracelular/química , Fibrilinas/química , Microfibrilas/química , Imagem Molecular/métodos , Mapeamento de Interação de Proteínas/métodos , Animais , Contratura/etiologia , Contratura/patologia , Matriz Extracelular/patologia , Matriz Extracelular/ultraestrutura , Fibrilinas/isolamento & purificação , Fibrilinas/metabolismo , Fibrilinas/ultraestrutura , Humanos , Síndrome de Marfan/etiologia , Síndrome de Marfan/patologia , Imagem Molecular/instrumentação , Mapeamento de Interação de Proteínas/instrumentação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Dermatopatias Genéticas/etiologia , Dermatopatias Genéticas/patologia , Síndrome de Weill-Marchesani/etiologia , Síndrome de Weill-Marchesani/patologia
3.
Hum Mutat ; 33(8): 1182-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22539340

RESUMO

Latent transforming growth factor (TGF) beta-binding protein 2 (LTBP2) is an extracellular matrix (ECM) protein that associates with fibrillin-1 containing microfibrils. Various factors prompted considering LTBP2 in the etiology of isolated ectopia lentis and associated conditions such as Weill-Marchesani syndrome (WMS) and Marfan syndrome (MFS). LTBP2 was screened in 30 unrelated Iranian patients. Mutations were found only in one WMS proband and one MFS proband. Homozygous c.3529G>A (p.Val1177Met) was shown to cause autosomal recessive WMS or WM-like syndrome by several approaches, including homozygosity mapping. Light, fluorescent, and electron microscopy evidenced disruptions of the microfibrillar network in the ECM of the proband's skin. In conjunction with recent findings regarding other ECM proteins, the results presented strongly support the contention that anomalies in WMS patients are due to disruptions in the ECM. Heterozygous c.1642C >T (p.Arg548*) possibly contributed to MFS-related phenotypes, including ocular manifestations, mitral valve prolapse, and pectus excavatum, but was not cause of MFS.


Assuntos
Matriz Extracelular/metabolismo , Proteínas de Ligação a TGF-beta Latente/genética , Síndrome de Weill-Marchesani/etiologia , Síndrome de Weill-Marchesani/genética , Feminino , Predisposição Genética para Doença/genética , Heterozigoto , Humanos , Masculino , Microfibrilas/metabolismo , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...