Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.061
Filtrar
1.
J Transl Med ; 22(1): 535, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840216

RESUMO

BACKGROUND: Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS: We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS: We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS: S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.


Assuntos
Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mitocôndrias , NF-kappa B , Fosforilação Oxidativa , Síndrome do Desconforto Respiratório , Receptores de Esfingosina-1-Fosfato , Animais , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Inflamação/patologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , NF-kappa B/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Receptores de Lisoesfingolipídeo/metabolismo , Receptores de Lisoesfingolipídeo/antagonistas & inibidores , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores
2.
Biomed Pharmacother ; 175: 116773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38776679

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a significant global burden of morbidity and mortality, with lung injury being the primary cause of death in affected patients. The pathogenesis of lung injury, however, remains a complex issue. In recent years, the role of the immune system in lung injury has attracted extensive attention worldwide. Despite advancements in our understanding of various lung injury subtypes, significant limitations persist in both prevention and treatment. This review investigates the immunopathogenesis of ALI/ARDS, aiming to elucidate the pathological processes of lung injury mediated by dendritic cells (DCs), natural killer (NK) cells, phagocytes, and neutrophils. Furthermore, the article expounds on the critical contributions of gut microbiota, inflammatory pathways, and cytokine storms in the development of ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Humanos , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia , Microbioma Gastrointestinal/imunologia , Células Dendríticas/imunologia , Neutrófilos/imunologia , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Pulmão/patologia
3.
Cell Biochem Funct ; 42(4): e4031, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760985

RESUMO

Super-enhancers play prominent roles in driving robust pathological gene expression, but they are hidden in human genome at noncoding regions, making them difficult to explore. Leukemia inhibitory factor (LIF) is a multifunctional cytokine crucially involved in acute respiratory distress syndrome (ARDS) and lung cancer progression. However, the mechanisms governing LIF regulation in disease contexts remain largely unexplored. In this study, we observed elevated levels of LIF in the bronchoalveolar lavage fluid (BALF) of patients with sepsis-related ARDS compared to those with nonsepsis-related ARDS. Furthermore, both basal and LPS-induced LIF expression were under the control of super-enhancers. Through analysis of H3K27Ac ChIP-seq data, we pinpointed three potential super-enhancers (LIF-SE1, LIF-SE2, and LIF-SE3) located proximal to the LIF gene in cells. Notably, genetic deletion of any of these three super-enhancers using CRISPR-Cas9 technology led to a significant reduction in LIF expression. Moreover, in cells lacking these super-enhancers, both cell growth and invasion capabilities were substantially impaired. Our findings highlight the critical role of three specific super-enhancers in regulating LIF expression and offer new insights into the transcriptional regulation of LIF in ARDS and lung cancer.


Assuntos
Fator Inibidor de Leucemia , Neoplasias Pulmonares , Síndrome do Desconforto Respiratório , Humanos , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/genética , Síndrome do Desconforto Respiratório/patologia , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Líquido da Lavagem Broncoalveolar/química , Elementos Facilitadores Genéticos , Proliferação de Células , Masculino
4.
Biochem Biophys Res Commun ; 716: 150019, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703555

RESUMO

- Acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) is a life-threatening condition marked by severe lung inflammation and increased lung endothelial barrier permeability. Endothelial glycocalyx deterioration is the primary factor of vascular permeability changes in ARDS/ALI. Although previous studies have shown that phospholipase D2 (PLD2) is closely related to the onset and progression of ARDS/ALI, its role and mechanism in the damage of endothelial cell glycocalyx remains unclear. We used LPS-induced ARDS/ALI mice (in vivo) and LPS-stimulated injury models of EA.hy926 endothelial cells (in vitro). We employed C57BL/6 mice, including wild-type and PLD2 knockout (PLD2-/-) mice, to establish the ARDS/ALI model. We applied immunofluorescence and ELISA to examine changes in syndecan-1 (SDC-1), matrix metalloproteinase-9 (MMP9), inflammatory cytokines (TNF-α, IL-6, and IL-1ß) levels and the effect of external factors, such as phosphatidic acid (PA), 1-butanol (a PLD inhibitor), on SDC-1 and MMP9 expression levels. We found that PLD2 deficiency inhibits SDC-1 degradation and MMP9 expression in LPS-induced ARDS/ALI. Externally added PA decreases SDC-1 levels and increases MMP9 in endothelial cells, hence underlining PA's role in SDC-1 degradation. Additionally, PLD2 deficiency decreases the production of inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in LPS-induced ARDS/ALI. In summary, these findings suggest that PLD2 deficiency plays a role in inhibiting the inflammatory process and protecting against endothelial glycocalyx injury in LPS-induced ARDS/ALI.


Assuntos
Lesão Pulmonar Aguda , Glicocálix , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase D , Síndrome do Desconforto Respiratório , Animais , Fosfolipase D/metabolismo , Fosfolipase D/genética , Glicocálix/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Camundongos , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Sindecana-1/metabolismo , Sindecana-1/genética , Citocinas/metabolismo , Linhagem Celular
5.
Inflamm Res ; 73(6): 997-1018, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615296

RESUMO

BACKGROUND: ALI/ARDS is a syndrome of acute onset characterized by progressive hypoxemia and noncardiogenic pulmonary edema as the primary clinical manifestations. Necroptosis is a form of programmed cell necrosis that is precisely regulated by molecular signals. This process is characterized by organelle swelling and membrane rupture, is highly immunogenic, involves extensive crosstalk with various cellular stress mechanisms, and is significantly implicated in the onset and progression of ALI/ARDS. METHODS: The current body of literature on necroptosis and ALI/ARDS was thoroughly reviewed. Initially, an overview of the molecular mechanism of necroptosis was provided, followed by an examination of its interactions with apoptosis, pyroptosis, autophagy, ferroptosis, PANOptosis, and NETosis. Subsequently, the involvement of necroptosis in various stages of ALI/ARDS progression was delineated. Lastly, drugs targeting necroptosis, biomarkers, and current obstacles were presented. CONCLUSION: Necroptosis plays an important role in the progression of ALI/ARDS. However, since ALI/ARDS is a clinical syndrome caused by a variety of mechanisms, we emphasize that while focusing on necroptosis, it may be more beneficial to treat ALI/ARDS by collaborating with other mechanisms.


Assuntos
Lesão Pulmonar Aguda , Necroptose , Humanos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/imunologia , Animais , Síndrome do Desconforto Respiratório/patologia , Autofagia , Apoptose
6.
Nature ; 628(8009): 835-843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600381

RESUMO

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Assuntos
Lesão Pulmonar , Necroptose , Infecções por Orthomyxoviridae , Inibidores de Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Feminino , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/virologia , Células Epiteliais Alveolares/metabolismo , Vírus da Influenza A/classificação , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Lesão Pulmonar/complicações , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Lesão Pulmonar/virologia , Camundongos Endogâmicos C57BL , Necroptose/efeitos dos fármacos , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/prevenção & controle , Síndrome do Desconforto Respiratório/virologia
7.
Mol Med ; 30(1): 53, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649840

RESUMO

OBJECTIVE: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with significant mortality rates. The role of Fcgr2b in the pathogenesis of ALI/ARDS is not fully elucidated. This study aimed to investigate the functions of Fcgr2b in ALI/ARDS and explore its underlying mechanisms. METHODS: Methods: In this study, rat models of ARDS and pulmonary microvascular endothelial cell (PMVEC) injury models were established through the administration of lipopolysaccharide (LPS). The expression levels of Fcgr2b and Elk1 were quantified in both LPS-induced ARDS rats and PMVECs. Subsequent gain- and loss-of-function experiments were conducted, followed by comprehensive assessments of lung tissue for pathomorphological changes, edema, glycogen storage, fibrosis, and infiltration of inflammatory cells. Additionally, bronchoalveolar lavage fluid was analyzed for T-helper 17 (Th17) cell infiltration, inflammatory response, and microvascular permeability to evaluate lung injury severity in ARDS models. Furthermore, the activity, cytotoxicity, apoptosis, and angiogenic potential of PMVECs were assessed to gauge cell injury. The interaction between Elk1 and Fcgr2b was also examined to confirm their regulatory relationship. RESULTS: In the context of LPS-induced ARDS and PMVEC injury, Fcgr2b expression was markedly reduced, whereas Elk1 expression was elevated. Overexpression of Fcgr2b led to a decrease in Th17 cell infiltration and mitigated lung tissue damage in ARDS models, in addition to reducing LPS-induced injury in PMVECs. Elk1 was found to suppress Fcgr2b transcription through the recruitment of histone 3 lysine 9 trimethylation (H3K9me3). Knockdown of Elk1 diminished Th17 cell infiltration and lung tissue damage in ARDS models, and alleviated LPS-induced injury in PMVECs, effects that were reversed upon Fcgr2b upregulation. CONCLUSION: Elk1 negatively regulates Fcgr2b transcription, thereby augmenting the inflammatory response and exacerbating lung injury in LPS-induced ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Células Endoteliais , Lipopolissacarídeos , Receptores de IgG , Síndrome do Desconforto Respiratório , Proteínas Elk-1 do Domínio ets , Animais , Masculino , Ratos , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/etiologia , Células Endoteliais/metabolismo , Proteínas Elk-1 do Domínio ets/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Pulmão/patologia , Pulmão/metabolismo , Ratos Wistar , Receptores de IgG/metabolismo , Receptores de IgG/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/genética , Células Th17/metabolismo , Células Th17/imunologia , Transcrição Gênica
8.
Cell Commun Signal ; 22(1): 241, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664775

RESUMO

Sepsis, a prevalent critical condition in clinics, continues to be the leading cause of death from infections and a global healthcare issue. Among the organs susceptible to the harmful effects of sepsis, the lungs are notably the most frequently affected. Consequently, patients with sepsis are predisposed to developing acute lung injury (ALI), and in severe cases, acute respiratory distress syndrome (ARDS). Nevertheless, the precise mechanisms associated with the onset of ALI/ARDS remain elusive. In recent years, there has been a growing emphasis on the role of endothelial cells (ECs), a cell type integral to lung barrier function, and their interactions with various stromal cells in sepsis-induced ALI/ARDS. In this comprehensive review, we summarize the involvement of endothelial cells and their intricate interplay with immune cells and stromal cells, including pulmonary epithelial cells and fibroblasts, in the pathogenesis of sepsis-induced ALI/ARDS, with particular emphasis placed on discussing the several pivotal pathways implicated in this process. Furthermore, we discuss the potential therapeutic interventions for modulating the functions of endothelial cells, their interactions with immune cells and stromal cells, and relevant pathways associated with ALI/ARDS to present a potential therapeutic strategy for managing sepsis and sepsis-induced ALI/ARDS.


Assuntos
Lesão Pulmonar Aguda , Células Endoteliais , Síndrome do Desconforto Respiratório , Sepse , Humanos , Sepse/complicações , Sepse/patologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/etiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/etiologia , Células Endoteliais/patologia , Animais
9.
Exp Cell Res ; 438(1): 114030, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583855

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious lung condition that often leads to hospitalization in intensive care units and a high mortality rate. Sevoflurane is a volatile anesthetic with growing interest for sedation in ventilated patients with ARDS. It has been shown to have potential lung-protective effects, such as reduced inflammation and lung edema, or improved arterial oxygenation. In this study, we investigated the effects of sevoflurane on lung injury in cultured human carcinoma-derived lung alveolar epithelial (A549) cells. We found that sevoflurane was associated with improved wound healing after exposure to inflammatory cytokines, with preserved cell proliferation but no effect on cell migration properties. Sevoflurane exposure was also associated with enhanced cell viability and active autophagy in A549 cells exposed to cytokines. These findings suggest that sevoflurane may have beneficial effects on lung epithelial injury by promoting alveolar epithelial wound healing and by influencing the survival and proliferation of A549 epithelial cells in vitro. Further research is needed to confirm these findings and to investigate the key cellular mechanisms explaining sevoflurane's potential effects on lung epithelial injury.


Assuntos
Proliferação de Células , Sobrevivência Celular , Síndrome do Desconforto Respiratório , Sevoflurano , Cicatrização , Sevoflurano/farmacologia , Humanos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Cicatrização/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células A549 , Proliferação de Células/efeitos dos fármacos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Movimento Celular/efeitos dos fármacos , Anestésicos Inalatórios/farmacologia , Citocinas/metabolismo , Autofagia/efeitos dos fármacos , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia
10.
Malar J ; 23(1): 110, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637828

RESUMO

BACKGROUND: Conventional natural killer (cNK) cells play an important role in the innate immune response by directly killing infected and malignant cells and by producing pro- and anti-inflammatory cytokines. Studies on their role in malaria and its complications have resulted in conflicting results. METHODS: Using the commonly used anti-NK1.1 depletion antibodies (PK136) in an in-house optimized experimental model for malaria-associated acute respiratory distress syndrome (MA-ARDS), the role of cNK cells was investigated. Moreover, flow cytometry was performed to characterize different NK cell populations. RESULTS: While cNK cells were found to be dispensable in the development of MA-ARDS, the appearance of a NK1.1+ cell population was observed in the lungs upon infection despite depletion with anti-NK1.1. Detailed characterization of the unknown population revealed that this population consisted of a mixture of monocytes and macrophages that bind the anti-NK1.1 antibody in an aspecific way. This aspecific binding may occur via Fcγ receptors, such as FcγR4. In contrast, in vivo depletion using anti-NK1.1 antibodies was proved to be specific for cNK cells. CONCLUSION: cNK cells are dispensable in the development of experimental MA-ARDS. Moreover, careful flow cytometric analysis, with a critical mindset in relation to potential aspecific binding despite the use of commercially available Fc blocking reagents, is critical to avoid misinterpretation of the results.


Assuntos
Malária , Síndrome do Desconforto Respiratório , Camundongos , Animais , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/patologia , Células Matadoras Naturais , Células Mieloides/patologia , Malária/complicações
11.
Cell Mol Immunol ; 21(5): 510-526, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472357

RESUMO

Acetaldehyde dehydrogenase 2 (ALDH2) mutations are commonly found in a subgroup of the Asian population. However, the role of ALDH2 in septic acute respiratory distress syndrome (ARDS) remains unknown. Here, we showed that human subjects carrying the ALDH2rs671 mutation were highly susceptible to developing septic ARDS. Intriguingly, ALDH2rs671-ARDS patients showed higher levels of blood cell-free DNA (cfDNA) and myeloperoxidase (MPO)-DNA than ALDH2WT-ARDS patients. To investigate the mechanisms underlying ALDH2 deficiency in the development of septic ARDS, we utilized Aldh2 gene knockout mice and Aldh2rs671 gene knock-in mice. In clinically relevant mouse sepsis models, Aldh2-/- mice and Aldh2rs671 mice exhibited pulmonary and circulating NETosis, a specific process that releases neutrophil extracellular traps (NETs) from neutrophils. Furthermore, we discovered that NETosis strongly promoted endothelial destruction, accelerated vascular leakage, and exacerbated septic ARDS. At the molecular level, ALDH2 increased K48-linked polyubiquitination and degradation of peptidylarginine deiminase 4 (PAD4) to inhibit NETosis, which was achieved by promoting PAD4 binding to the E3 ubiquitin ligase CHIP. Pharmacological administration of the ALDH2-specific activator Alda-1 substantially alleviated septic ARDS by inhibiting NETosis. Together, our data reveal a novel ALDH2-based protective mechanism against septic ARDS, and the activation of ALDH2 may be an effective treatment strategy for sepsis.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Armadilhas Extracelulares , Camundongos Knockout , Neutrófilos , Síndrome do Desconforto Respiratório , Sepse , Animais , Sepse/complicações , Humanos , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/patologia , Camundongos , Armadilhas Extracelulares/metabolismo , Masculino , Modelos Animais de Doenças , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Camundongos Endogâmicos C57BL , Ubiquitinação , Feminino , Peroxidase/metabolismo , Mutação
12.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L562-L573, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469626

RESUMO

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.


Assuntos
Dipeptidil Peptidase 4 , Lipopolissacarídeos , Macrófagos Alveolares , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Líquido da Lavagem Broncoalveolar , Permeabilidade Capilar , Células Cultivadas , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Pulmão/patologia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo
13.
Free Radic Biol Med ; 218: 132-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554812

RESUMO

Acute respiratory distress syndrome (ARDS) is an acute and severe clinical complication lacking effective therapeutic interventions. The disruption of the lung epithelial barrier plays a crucial role in ARDS pathogenesis. Recent studies have proposed the involvement of abnormal mitochondrial dynamics mediated by dynamin-related protein 1 (Drp1) in the mechanism of impaired epithelial barrier in ARDS. Hydrogen is an anti-oxidative stress molecule that regulates mitochondrial function via multiple signaling pathways. Our previous study confirmed that hydrogen modulated oxidative stress and attenuated acute pulmonary edema in ARDS by upregulating thioredoxin 1 (Trx1) expression, but the exact mechanism remains unclear. This study aimed to investigate the effects of hydrogen on mitochondrial dynamics both in vivo and in vitro. Our study revealed that hydrogen inhibited lipopolysaccharide (LPS)-induced phosphorylation of Drp1 (at Ser616), suppressed Drp1-mediated mitochondrial fission, alleviated epithelial tight junction damage and cell apoptosis, and improved the integrity of the epithelial barrier. This process was associated with the upregulation of Trx1 in lung epithelial tissues of ARDS mice by hydrogen. In addition, hydrogen treatment reduced the production of reactive oxygen species in LPS-induced airway epithelial cells (AECs) and increased the mitochondrial membrane potential, indicating that the mitochondrial dysfunction was restored. Then, the expression of tight junction proteins occludin and zonula occludens 1 was upregulated, and apoptosis in AECs was alleviated. Remarkably, the protective effects of hydrogen on the mitochondrial and epithelial barrier were eliminated after applying the Trx1 inhibitor PX-12. The results showed that hydrogen significantly inhibited the cell apoptosis and the disruption of epithelial tight junctions, maintaining the integrity of the epithelial barrier in mice of ARDS. This might be related to the inhibition of Drp1-mediated mitochondrial fission through the Trx1 pathway. The findings of this study provided a new theoretical basis for the application of hydrogen in the clinical treatment of ARDS.


Assuntos
Dinaminas , Hidrogênio , Lipopolissacarídeos , Dinâmica Mitocondrial , Síndrome do Desconforto Respiratório , Tiorredoxinas , Animais , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Dinaminas/metabolismo , Dinaminas/genética , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/patologia , Camundongos , Humanos , Hidrogênio/farmacologia , Lipopolissacarídeos/toxicidade , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Modelos Animais de Doenças , Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos
14.
Am J Pathol ; 194(6): 989-1006, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442803

RESUMO

Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of Fcna, but not Fcnb, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in Fcna knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, GSDMD knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas Fcn2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.


Assuntos
Armadilhas Extracelulares , Camundongos Knockout , Neutrófilos , Proteínas de Ligação a Fosfato , Piroptose , Armadilhas Extracelulares/metabolismo , Animais , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Humanos , Neutrófilos/metabolismo , Neutrófilos/patologia , Ficolinas , Lectinas/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia , Masculino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
15.
Int J Biochem Cell Biol ; 169: 106530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246263

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) has a high mortality rate and incidence of complications. The pathophysiology of ALI/ARDS is still not fully understood. The lipopolysaccharide (LPS)-induced mouse model of ALI has been widely used to study human ALI/ARDS. Sulfasalazine (SASP) has antibacterial and anti-inflammatory effects and is used for treating inflammatory bowel and rheumatic diseases. However, the effect of SASP on LPS-induced ALI in mice has not yet been reported. Therefore, we aimed to investigate the effect of SASP on LPS-induced ALI in mice. Mice were intraperitoneally injected with SASP 2 h before or 4 h after LPS modeling. Pulmonary pathological damage was measured based on inflammatory factor expression (malondialdehyde and superoxide dismutase levels) in the lung tissue homogenate and alveolar lavage fluid. The production of inflammatory cytokines and occurrence of oxidative stress in the lungs induced by LPS were significantly mitigated after the prophylactic and long-term therapeutic administration of SASP, which ameliorated ALI caused by LPS. SASP reduced both the production of inflammatory cytokines and occurrence of oxidative stress in RAW264.7 cells, which respond to LPS. Moreover, its mechanism contributed to the suppression of NF-κB and nuclear translocation. In summary, SASP treatment ameliorates LPS-induced ALI by mediating anti-inflammatory and antioxidant effects, which may be attributed to the inhibition of NF-κB activation and promotion of antioxidant defenses. Thus, SASP may be a promising pharmacologic agent for ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Sulfassalazina/efeitos adversos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/patologia
16.
Respir Res ; 25(1): 37, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238778

RESUMO

Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.


Assuntos
Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Respiração Artificial/métodos , Pulmão/patologia , Alvéolos Pulmonares/patologia , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/patologia , Pressão Positiva Contínua nas Vias Aéreas/métodos , Volume de Ventilação Pulmonar , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Lesão Pulmonar Induzida por Ventilação Mecânica/patologia
17.
Exp Cell Res ; 435(1): 113909, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184221

RESUMO

Endothelial dysfunction plays a pivotal role in the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Dipeptidyl peptidase IV (DPP-4), a cell surface glycoprotein, has been implicated in endothelial inflammation and barrier dysfunction. In this study, the role of DPP-4 on lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cells (HPMECs) dysfunction and the underlying mechanism were investigated by siRNA-mediated knockdown of DPP-4. Our results indicated that LPS (1 µg/ml) challenge resulted in either the production and releasing of DPP-4, as well as the secretion of IL-6 and IL-8 in HPMECs. DPP-4 knockdown inhibited chemokine releasing and monolayer hyper-permeability in LPS challenged HPMECs. When cocultured with human polymorphonuclear neutrophils (PMNs), DPP4 knockdown suppressed LPS-induced neutrophil-endothelial adhesion, PMN chemotaxis and trans-endothelial migration. Western blotting showed that DPP-4 knockdown attenuated LPS-induced activation of TLR4/NF-κB pathway. Immunoprecipitation and liquid chromatography-tandem mass spectrometry revealed that DPP-4 mediated LPS-induced endothelial inflammation by interacting with integrin-α5ß1. Moreover, exogenous soluble DPP-4 treatment sufficiently activated integrin-α5ß1 downstream FAK/AKT/NF-κB signaling, thereafter inducing ICAM-1 upregulation in HPMECs. Collectively, our results suggest that endothelia synthesis and release DPP-4 under the stress of endotoxin, which interact with integrin-α5ß1 complex in an autocrine or paracrine manner to exacerbate endothelial inflammation and enhance endothelial cell permeability. Therefore, blocking DDP-4 could be a potential therapeutic strategy to prevent endothelial dysfunction in ALI/ARDS.


Assuntos
Células Endoteliais , Síndrome do Desconforto Respiratório , Humanos , Células Endoteliais/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Integrina alfa5beta1/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Síndrome do Desconforto Respiratório/patologia
18.
Sci Rep ; 14(1): 2162, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272980

RESUMO

Mortality and morbidity of Acute Respiratory Distress Syndrome (ARDS) are largely unaltered. A possible new approach to treatment of ARDS is offered by the discovery of inflammatory subphenotypes. In an ovine model of ARDS phenotypes, matching key features of the human subphenotypes, we provide an imaging characterization using computer tomography (CT). Nine animals were randomized into (a) OA (oleic acid, hypoinflammatory; n = 5) and (b) OA-LPS (oleic acid and lipopolysaccharides, hyperinflammatory; n = 4). 48 h after ARDS induction and anti-inflammatory treatment, CT scans were performed at high (H) and then low (L) airway pressure. After CT, the animals were euthanized and lung tissue was collected. OA-LPS showed a higher air fraction and OA a higher tissue fraction, resulting in more normally aerated lungs in OA-LPS in contrast to more non-aerated lung in OA. The change in lung and air volume between H and L was more accentuated in OA-LPS, indicating a higher recruitment potential. Strain was higher in OA, indicating a higher level of lung damage, while the amount of lung edema and histological lung injury were largely comparable. Anti-inflammatory treatment might be beneficial in terms of overall ventilated lung portion and recruitment potential, especially in the OA-LPS group.


Assuntos
Lipopolissacarídeos , Síndrome do Desconforto Respiratório , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Pulmão/patologia , Ácido Oleico/farmacologia , Fenótipo , Síndrome do Desconforto Respiratório/patologia , Ovinos , Carneiro Doméstico , Tomografia
19.
Int J Environ Health Res ; 34(2): 755-766, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36624973

RESUMO

This study investigates the protective role of Hispidulin on acute respiratory distress syndrome (ARDS) in rats. Rats were divided into three groups: control, ARDS, ARDS+ Hispidulin. The ARDS models were established by injecting rats with oleic acid. Hispidulin (100 mg/kg) was injected i.p. an hour before ARDS. Myeloperoxidase (MPO), Interleukin-8 (IL-8), Mitogen-activated protein kinases (MAPK), Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Glutathione (GSH), and Angiotensin-converting enzyme (ACE) were determined by ELISA. Tumor necrosis factor-alpha (TNF-α) expression was described by RT-qPCR. Caspase-3 immunostaining was performed to evaluate apoptosis. Compared with the model group, a significant decrease was observed in the MPO, IL-8, MAPK, ACE, LPO levels, and TNF-α expression in the ARDS+ Hispidulin group. Moreover, reduced caspase-3 immunoreactivity and activity of ACE were detected in the Hispidulin+ARDS group. The protective effect of Hispidulin treatment may act through inhibition of the ACE activity and then regulation of inflammatory cytokine level and alteration of apoptosis.


Assuntos
Flavonas , Pulmão , Síndrome do Desconforto Respiratório , Ratos , Animais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Ácido Oleico/toxicidade , Caspase 3 , Interleucina-8 , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Síndrome do Desconforto Respiratório/patologia
20.
J Adv Res ; 56: 157-165, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37037373

RESUMO

INTRODUCTION: Acute respiratory distress syndrome (ARDS) is a leading cause of respiratory failure, with substantial attributable morbidity and mortality. The small animal models that are currently used for ARDS do not fully manifest all of the pathological hallmarks of human patients, which hampers both the studies of disease mechanism and drug development. OBJECTIVES: To examine whether the phenotypic changes of primate-like tree shrews in response to a one-hit lipopolysaccharides (LPS) injury resemble human ARDS features. METHODS: LPS was administered to tree shrews through intratracheal instillation; then, the animals underwent CT or PET/CT imaging to examine the changes in the structure and function of the whole lung. The lung histology was analyzed by H&E staining and immunohistochemical staining of inflammatory cells. RESULTS: Results demonstrated that tree shrews exhibited an average survival time of 3-5 days after LPS insult, as well as an obvious symptom of dyspnea before death. The ratios of PaO2 to FiO2 (P/F ratio) were close to those of moderate ARDS in humans. CT imaging showed that the scope of the lung injury in tree shrews after LPS treatment were extensive. PET/CT imaging with 18F-FDG displayed an obvious inflammatory infiltration. Histological analysis detected the formation of a hyaline membrane, which is usually present in human ARDS. CONCLUSION: This study established a lung injury model with a primate-like small animal model and confirmed that they have similar features to human ARDS, which might provide a valuable tool for translational research.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Lipopolissacarídeos/toxicidade , Tupaia , Tupaiidae , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Musaranhos , Modelos Animais de Doenças , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/patologia , Primatas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...