Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15730, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344928

RESUMO

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.


Assuntos
Resistência à Doença/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Luteoviridae/fisiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Saccharum/genética , Cromossomos de Plantas/genética , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Genótipo , Filogenia , Melhoramento Vegetal , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas , Saccharum/crescimento & desenvolvimento , Saccharum/virologia
2.
PLoS One ; 15(11): e0241493, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33166323

RESUMO

Sugarcane mosaic virus (SCMV) is the causal agent of sugarcane mosaic disease (SMD) in Brazil; it is mainly controlled by using resistant cultivars. Studies on the changes in sugarcane transcriptome provided the first insights about the molecular basis underlying the genetic resistance to SMD; nonetheless, epigenetic modifications such as cytosine methylation is also informative, considering its roles in gene expression regulation. In our previous study, differentially transcribed fragments (DTFs) were obtained using cDNA-amplified fragment length polymorphism by comparing mock- and SCMV-inoculated plants from two sugarcane cultivars with contrasting responses to SMD. In this study, the identification of unexplored DTFs was continued while the same leaf samples were used to evaluate SCMV-mediated changes in the cytosine methylation pattern by using methylation-sensitive amplification polymorphism. This analysis revealed minor changes in cytosine methylation in response to SCMV infection, but distinct changes between the cultivars with contrasting responses to SMD, with higher hypomethylation events 24 and 72 h post-inoculation in the resistant cultivar. The differentially methylated fragments (DMFs) aligned with transcripts, putative promoters, and genomic regions, with a preponderant distribution within CpG islands. The transcripts found were associated with plant immunity and other stress responses, epigenetic changes, and transposable elements. The DTFs aligned with transcripts assigned to stress responses, epigenetic changes, photosynthesis, lipid transport, and oxidoreductases, in which the transcriptional start site is located in proximity with CpG islands and tandem repeats. Real-time quantitative polymerase chain reaction results revealed significant upregulation in the resistant cultivar of aspartyl protease and VQ protein, respectively, selected from DMF and DTF alignments, suggesting their roles in genetic resistance to SMD and supporting the influence of cytosine methylation in gene expression. Thus, we identified new candidate genes for further validation and showed that the changes in cytosine methylation may regulate important mechanisms underlying the genetic resistance to SMD.


Assuntos
Citosina/metabolismo , Metilação de DNA/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyvirus/fisiologia , Saccharum/genética , Saccharum/virologia , Transcrição Gênica , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Cryo Letters ; 41(5): 267-271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33988664

RESUMO

BACKGROUND: Virus-free sugarcane is difficult to achieve due to the multiple vegetative propagation cycles employed commercially. In vitro culture using small (1 mm) meristematic shoot tips has eliminated viruses but survival is low with small explants. OBJECTIVE: Droplet-Vitrification (D-V) and V-Cryoplate protocols were investigated for the elimination of Sugarcane mosaic virus (SCMV) from large (c. 3 mm) in vitro-derived shoot tips. MATERIALS AND METHODS: Shoot tips excised from NCo376 and N19 cultivars were exposed to both cryogenic procedures. Virus indexing by RT-qPCR was performed 16 weeks after recovery. RESULTS: Explants exposed to cryo-treatments that recovered and multiplied was 30-92%, while at least 90% of control explants regenerated. No virus was detected in multiplied shoots from either cultivar after D-V and liquid nitrogen immersion. In NCo376, virus was eliminated after D-V without cooling. CONCLUSION: The preliminary findings suggest that cryotherapy and/or osmotherapy are viable options for SCMV removal from infected plants.


Assuntos
Congelamento , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Potyvirus , Saccharum , Brotos de Planta/virologia , Saccharum/virologia , Técnicas de Cultura de Tecidos
4.
BMC Res Notes ; 12(1): 149, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30885257

RESUMO

OBJECTIVE: The selection of reference genes in sugarcane under Sugarcane mosaic virus (SCMV) infection has not been reported and is indispensable to get reliable reverse transcription quantitative PCR (RT-qPCR) results for validation of transcriptome analysis. In this regard, seven potential reference genes were tested by RT-qPCR and ranked according to their stability using BestKeeper, NormFinder and GeNorm algorithms, and RefFinder WEB-based software in an experiment performed with samples from two sugarcane cultivars contrasting for SCMV resistance, when mechanically inoculated with a severe SCMV strain and using mock inoculated plant controls. RESULTS: The genes Uridylate kinase (UK) and Ubiquitin-conjugating enzyme 18 (UBC18) were the most stable according to GeNorm algorithm and the Pearson correlation coefficients with the BestKeeper index. On the other hand, ribosomal protein L35-4 (RPL1), Actin (ACT) and Ubiquitin1 (UBQ1) were the least stable genes for all algorithms tested.


Assuntos
Perfilação da Expressão Gênica , Expressão Gênica , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/virologia , Potyvirus , Infecções por Vírus de RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Saccharum/genética , Saccharum/virologia , Brasil
5.
Virol J ; 14(1): 146, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28754134

RESUMO

BACKGROUND: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane germplasm using stalk cuttings facilitates the spread of sugarcane-infecting viruses. METHODS: A virion-associated nucleic acids (VANA)-based metagenomics approach was used to detect mastrevirus sequences in 717 sugarcane samples from Florida (USA), Guadeloupe (French West Indies), and Réunion (Mascarene Islands). Contig assembly was performed using CAP3 and sequence searches using BLASTn and BLASTx. Mastrevirus full genomes were enriched from total DNA by rolling circle amplification, cloned and sequenced. Nucleotide and amino acid sequence identities were determined using SDT v1.2. Phylogenetic analyses were conducted using MEGA6 and PHYML3. RESULTS: We identified a new sugarcane-infecting mastrevirus in six plants sampled from germplasm collections in Florida and Guadeloupe. Full genome sequences were determined and analyzed for three virus isolates from Florida, and three from Guadeloupe. These six genomes share >88% genome-wide pairwise identity with one another and between 89 and 97% identity with a recently identified mastrevirus (KR150789) from a sugarcane plant sampled in China. Sequences similar to these were also identified in sugarcane plants in Réunion. CONCLUSIONS: As these virus isolates share <64% genome-wide identity with all other known mastreviruses, we propose classifying them within a new mastrevirus species named Sugarcane striate virus. This is the first report of sugarcane striate virus (SCStV) in the Western Hemisphere, a virus that most likely originated in Asia. The distribution, vector, and impact of SCStV on sugarcane production remains to be determined.


Assuntos
Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Saccharum/virologia , Clonagem Molecular , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , DNA Viral/isolamento & purificação , Florida , Guadalupe , Filogenia , Reunião , Análise de Sequência de DNA , Homologia de Sequência , Sequenciamento Completo do Genoma
6.
BMC Genomics ; 17: 94, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26847652

RESUMO

BACKGROUND: A betabaculovirus (DisaGV) was isolated from Diatraea saccharalis (Lepidoptera: Crambidae), one of the most important insect pests of the sugarcane and other monocot cultures in Brazil. RESULTS: The complete genome sequence of DisaGV was determined using the 454-pyrosequencing method. The genome was 98,392 bp long, which makes it the smallest lepidopteran-infecting baculovirus sequenced to date. It had a G + C content of 29.7% encoding 125 putative open reading frames (ORF). All the 37 baculovirus core genes and a set of 19 betabaculovirus-specific genes were found. A group of 13 putative genes was not found in any other baculovirus genome sequenced so far. A phylogenetic analysis indicated that DisaGV is a member of Betabaculovirus genus and that it is a sister group to a cluster formed by ChocGV, ErelGV, PiraGV isolates, ClanGV, CaLGV, CpGV, CrleGV, AdorGV, PhopGV and EpapGV. Surprisingly, we found in the DisaGV genome a G protein-coupled receptor related to lepidopteran and other insect virus genes and a gp64 homolog, which is likely a product of horizontal gene transfer from Group 1 alphabaculoviruses. CONCLUSION: DisaGV represents a distinct lineage of the genus Betabaculovirus. It is closely related to the CpGV-related group and presents the smallest genome in size so far. Remarkably, we found a homolog of gp64, which was reported solely in group 1 alphabaculovirus genomes so far.


Assuntos
Baculoviridae/genética , Proteínas do Envelope Viral/genética , Baculoviridae/classificação , Baculoviridae/isolamento & purificação , Baculoviridae/ultraestrutura , Composição de Bases , Sequência de Bases , Brasil , Ordem dos Genes , Genoma Viral , Genômica , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Saccharum/virologia , Proteínas do Envelope Viral/química , Proteínas Virais/genética
7.
Virus Res ; 160(1-2): 414-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21741419

RESUMO

Thirty-five unique partial sugarcane bacilliform virus (SCBV) sequences extending over 529 bp were identified in sugarcane samples from Guadeloupe diagnosed by Immunocapture-PCR (IC-PCR) using specific badnavirus primers. Phylogenetic analysis of these sequences along with the two known genome sequences of Sugarcane bacilliform Mor virus (SCBMV) and Sugarcane bacilliform IM virus (SCBIMV) revealed high molecular variability in the SCBV genome. Seven phylogenetic groups, named A to G, were characterized: virus isolates from groups A-B, C and D are proposed to be members of three additional SCBV species. The two (7446 and 7444 bp) and one (7317 bp) complete sequences of SCBV isolates from groups A and D, respectively, likely represented the genome of two new species. Phylogenetic analysis of the complete genome and RT/RNase H sequences confirmed the polyphyletic structure of SCBV isolates and the absence of a clear separation between SCBV and Banana streak virus (BSV) isolates within badnavirus group 1. These results showed that reconsideration of taxonomy and classification of SCBV and BSV are necessary.


Assuntos
Badnavirus/classificação , Badnavirus/isolamento & purificação , Variação Genética , Saccharum/virologia , Badnavirus/genética , Análise por Conglomerados , Genótipo , Guadalupe , Imunoensaio , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
8.
Virol J ; 8: 15, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21232133

RESUMO

BACKGROUND: In order to obtain an initial and preliminary understanding of host and nonhost resistance in the initial step of potyvirus replication, both positive and negative Sugarcane mosaic virus (SCMV) strands where traced in inoculated and systemic leaves in host and nonhost resistant maize and sugarcane for one Mexican potyviral isolate (SCMV-VER1). Intermediary replication forms, such as the negative viral strand, seem to only move a short distance as surveyed by RT-PCR analysis and ELISA in different leaves. Virus purification was also done in leaves and stems. RESULTS: Susceptible maize plants allowed for viral SCMV replication, cell-to-cell, and long distance movement, as indicated by the presence of the coat protein along the plant. In the host resistant maize plants for the SCMV-VER1 isolate, the virus was able to establish the disease though the initial steps of virus replication, as detected by the presence of negative strands, in the basal area of the inoculated leaves at six and twelve days post inoculation. The nonhost sugarcane for SCMV-VER1 and the host sugarcane for SCMV-CAM6 also allowed the initial steps of viral replication for the VER1 isolate in the local inoculated leaf. SCMV-VER1 virions could be extracted from stems of susceptible maize with higher titers than leaves. CONCLUSION: Nonhost and host resistance allow the initial steps of potyvirus SCMV replication, as shown by the negative strands' presence. Furthermore, both hosts allow the negative viral strands' local movement, but not their systemic spread through the stem. The presence of larger amounts of extractable virions from the stem (as compared to the leaves) in susceptible maize lines suggests their long distance movement as assembled particles. This will be the first report suggesting the long distance movement of a monocot potyvirus as a virion.


Assuntos
Doenças das Plantas/virologia , Potyvirus/patogenicidade , RNA Viral/metabolismo , Saccharum/virologia , Replicação Viral , Zea mays/virologia , Proteínas do Capsídeo/genética , México , Dados de Sequência Molecular , Folhas de Planta/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , RNA Viral/genética , Análise de Sequência de DNA
9.
J Virol Methods ; 157(2): 188-94, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19152809

RESUMO

Sugarcane mosaic virus (SCMV) and sorghum mosaic virus (SrMV) diversity studies are important to characterize virus populations in sugarcane producing areas, enabling (i) identification of shifts in predominant strains, (ii) detecting associations of strains with specific varieties, and (iii) possibly exposing the appearance of new strains which may affect the performance of varieties in a region. Recent studies have shown significant sequence variability within SCMV populations around the world, indicating that isolate identification would be best achieved by direct analysis of sequence data. Because virus sequence-based studies that require the characterization of large numbers of isolates may be impractical using standard sample preparation and processing methodology, a simple protocol that yields quality sequence information, requiring neither viral RNA purification nor cloning of RT-PCR products was developed. Rapid virus release extracts are obtained by submerging a portion of leaf tissue into an extraction buffer, followed by a brief incubation at 95 degrees C. An aliquot of the extract is pipetted into an RT-PCR amplification mix for the detection of SCMV and the SrMV coat protein gene fragments. RT-PCR fragments are sequenced directly using oligonucleotide primers similar to the RT-PCR primers, yielding sequence information of an adequate quality. This rapid, cost effective protocol is practical for large scale virus diversity and evolutionary studies.


Assuntos
Doenças das Plantas/virologia , Potyvirus/classificação , Potyvirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Saccharum/virologia , Análise de Sequência de DNA/métodos , Proteínas do Capsídeo/genética , Primers do DNA/genética , RNA Viral/genética , Sensibilidade e Especificidade
10.
Phytopathology ; 99(1): 38-49, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19055433

RESUMO

Sugarcane leaves with mosaic symptoms were collected in 2006--07 in Tucumán (Argentina) and analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) and sequencing of a fragment of the Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) coat protein (CP) genes. SCMV was detected in 96.6% of samples, with 41% showing the RFLP profile consistent with strain E. The remaining samples produced eight different profiles that did not match other known strains. SCMV distribution seemed to be more related to sugarcane genotype than to geographical origin, and sequence analyses of CP genes showed a greater genetic diversity compared with other studies. SrMV was detected in 63.2% of samples and most of these were also infected by SCMV, indicating that, unlike other countries and other Argentinean provinces, where high levels of co-infection are infrequent, co-existence is common in Tucumán. RFLP analysis showed the presence of SrMV strains M (68%) and I (14%), while co-infection between M and H strains was present in 18% of samples. Other SCMV subgroup members and the Sugarcane streak mosaic virus (SCSMV) were not detected. Our results also showed that sequencing is currently the only reliable method to assess SCMV and SrMV genetic diversity, because RT-PCR-RFLP may not be sufficiently discriminating.


Assuntos
Variação Genética , Vírus do Mosaico/genética , Doenças das Plantas/virologia , Saccharum/virologia , Argentina , Sequência de Bases , Clonagem Molecular , Genes Virais , Genótipo , Filogenia , Folhas de Planta/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA