Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 18(9): 3290-3301, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34365796

RESUMO

The antimicrobial protein CAP18 (approximate molecular weight: 18 000), which was first isolated from rabbit granulocytes, comprises a C-terminal fragment that has negatively charged lipopolysaccharide binding activity. In this study, we found that CAP18 (106-121)-derived (sC18)2 peptides have macropinocytosis-inducible biological functions. In addition, we found that these peptides are highly applicable for use as extracellular vesicle (exosomes, EV)-based intracellular delivery, which is expected to be a next-generation drug delivery carrier. Here, we demonstrate that dimerized (sC18)2 peptides can be easily introduced on EV membranes when modified with a hydrophobic moiety, and that they show high potential for enhanced cellular uptake of EVs. By glycosaminoglycan-dependent induction of macropinocytosis, cellular EV uptake in targeted cells was strongly increased by the peptide modification made to EVs, and intriguingly, our herein presented technique is efficiently applicable for the cytosolic delivery of the biologically cell-killing functional toxin protein, saporin, which was artificially encapsulated in the EVs by electroporation, suggesting a useful technique for EV-based intracellular delivery of biofunctional molecules.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos/métodos , Exossomos/química , Saporinas/administração & dosagem , Animais , Células CHO , Cricetulus , Composição de Medicamentos/métodos , Células HeLa , Humanos , Células MCF-7 , Catelicidinas
2.
Cells ; 10(6)2021 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204611

RESUMO

Fibroblast growth factor receptors (FGFRs) have become an attractive target in cancer research and therapy due to their implication in several cancers. Limitations of current treatment options require a need for additional, more specific and potent strategies to overcome cancers driven by FGFRs. Photochemical internalization (PCI) is a light-controlled method for cytosolic delivery of drugs that are entrapped in endosomes and lysosomes. We here evaluated the efficacy and selectivity of PCI of FGF2-saporin (FGF-SAP) in cells overexpressing FGFR1. FGF-SAP is a conjugate of FGF2 and the highly cytotoxic ribosome-inactivating protein (RIP) saporin, which is used as payload to eliminate cancer cells. Evaluation of the targeting effect of PCI of FGF-SAP was done by comparing the cytotoxic response in osteosarcoma cells with very low levels of FGFR1 (U2OS) to cells overexpressing FGFR1 (U2OS-R1). We demonstrate that PCI greatly enhances cytotoxicity of the drug showing efficient cell killing at pM concentrations of the drug in U2OS-R1 cells. However, U2OS cells were also sensitive to the toxin after PCI. Binding experiments using confocal microscopy and Western blotting techniques indicate that FGF-SAP is taken up by cells through heparan sulfate proteoglycans (HSPGs) in U2OS cells. We further show that the cytotoxicity of FGF-SAP in U2OS cells was reduced when cells were co-treated with heparin to compete out binding to HSPG, demonstrating that the cytotoxic effect was due to internalization by HSPGs. We conclude that to prevent off-target effects of FGF-based toxins, it will be necessary to circumvent binding to HSPGs, for example by mutating the binding site of FGF2 to HSPGs.


Assuntos
Portadores de Fármacos , Fator 2 de Crescimento de Fibroblastos , Terapia de Alvo Molecular/métodos , Fotoquimioterapia/métodos , Saporinas/administração & dosagem , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Humanos
3.
Exp Neurol ; 334: 113460, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32916172

RESUMO

Selective elimination of respiratory motor neurons using intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) mimics motor neuron death and respiratory deficits observed in rat models of neuromuscular diseases. This CTB-SAP model allows us to study the impact of motor neuron death on the output of surviving phrenic motor neurons. After 7(d) days of CTB-SAP, phrenic long-term facilitation (pLTF, a form of respiratory plasticity) is enhanced, but returns towards control levels at 28d. However, the mechanism responsible for this difference in magnitude of pLTF is unknown. In naïve rats, pLTF predominately requires 5-HT2 receptors, the new synthesis of BDNF, and MEK/ERK signaling; however, pLTF can alternatively be induced via A2A receptors, the new synthesis of TrkB, and PI3K/Akt signaling. Since A2A receptor-dependent pLTF is enhanced in naïve rats, we suggest that 7d CTB-SAP treated rats utilize the alternative mechanism for pLTF. Here, we tested the hypothesis that pLTF following CTB-SAP is: 1) TrkB and PI3K/Akt, not BDNF and MEK/ERK, dependent at 7d; and 2) BDNF and MEK/ERK, not TrkB and PI3K/Akt, dependent at 28d. Adult Sprague Dawley male rats were anesthetized, paralyzed, ventilated, and were exposed to acute intermittent hypoxia (AIH; 3, 5 min bouts of 10.5% O2) following bilateral, intrapleural injections at 7d and 28d of: 1) CTB-SAP (25 µg), or 2) un-conjugated CTB and SAP (control). Intrathecal C4 delivery included either: 1) small interfering RNA that targeted BDNF or TrkB mRNA; 2) UO126 (MEK/ERK inhibitor); or 3) PI828 (PI3K/Akt inhibitor). Our data suggest that pLTF in 7d CTB-SAP treated rats is elicited primarily through TrkB and PI3K/Akt-dependent mechanisms, whereas BDNF and MEK/ERK-dependent mechanisms induce pLTF in 28d CTB-SAP treated rats. This project increases our understanding of respiratory plasticity and its implications for breathing following motor neuron death.


Assuntos
Toxina da Cólera/toxicidade , Potenciação de Longa Duração/fisiologia , Neurônios Motores/fisiologia , Nervo Frênico/fisiologia , Cavidade Pleural/fisiologia , Saporinas/toxicidade , Animais , Toxina da Cólera/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Nervo Frênico/efeitos dos fármacos , Nervo Frênico/patologia , Cavidade Pleural/efeitos dos fármacos , Cavidade Pleural/inervação , Ratos , Ratos Sprague-Dawley , Saporinas/administração & dosagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-32109507

RESUMO

Epidemiologic studies have shown that sleep disorders are associated with the development of hypertension. The present study investigated dynamic changes in sleep patterns during the development of hypertension across the lifespan in spontaneously hypertensive rats (SHRs) and the neural mechanism that underlies these comorbidities, with a focus on the orexinergic system. Blood pressure in rats was measured using a noninvasive blood pressure tail cuff. Sleep was monitored by electroencephalographic and electromyographic recordings. Immunohistochemistry was used to detect the density and activity of orexinergic neurons in the perifornical nucleus. Hcrt2-SAP (400 or 800 ng) was microinjected in the lateral hypothalamus to lesion orexinergic neurons. Compared with Wistar-Kyoto rats, SHRs exhibited various patterns of sleep disturbances. In SHRs, dynamic changes in hypersomnia in the rats' active phase was not synchronized with the development of hypertension, but hyperarousal in the inactive phase and difficulties in falling asleep were observed concurrently with the development of hypertension. Furthermore, the density and activity of orexinergic neurons in the perifornical nucleus were significantly higher in SHRs than in age-matched Wistar-Kyoto rats. The reduction of orexinergic neurons in the lateral hypothalamus partially ameliorated the development of hypertension and prevented difficulties in falling asleep in SHRs. These results indicate that although the correlation between sleep disturbances and hypertension is very complex, common mechanisms may underlie these comorbidities in SHRs. Overactivity of the orexin system may be one such common mechanism.


Assuntos
Hipertensão/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Transtornos do Sono-Vigília/metabolismo , Animais , Hipertensão/fisiopatologia , Masculino , Microinjeções , Neurônios/efeitos dos fármacos , Neuropeptídeos/administração & dosagem , Neuropeptídeos/toxicidade , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Saporinas/administração & dosagem , Saporinas/toxicidade , Transtornos do Sono-Vigília/fisiopatologia , Toxinas Biológicas/administração & dosagem , Toxinas Biológicas/toxicidade
5.
Anticancer Res ; 39(12): 6701-6709, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31810935

RESUMO

BACKGROUND/AIM: Extracellular vesicles (exosomes, EVs) (30-200 nm in diameter) are secreted by various cells in the body. Owing to the pharmaceutical advantages of EVs, an EV-based drug delivery system (DDS) for cancer therapy is expected to be the next-generation therapeutic system. However, preservation methods for functional and therapeutic EVs should be developed. Here, we developed the method of lyophilization of arginine-rich cell penetrating peptide (CPP)-modified EVs and investigated the effects of lyophilization on the characteristics of EVs. MATERIALS AND METHODS: Particle size, structure, zeta-potential, and cellular uptake efficacy of the arginine-rich CPP-modified EVs were analyzed. The model protein saporin (SAP), having anti-cancer effects, was encapsulated inside the EVs to assess the cytosolic release of EV content after cellular uptake. RESULTS: Lyophilization of the EVs did not affect their particle size, structure, zeta-potential, and cellular uptake efficacy; however, the biological activity of the encapsulated SAP was inhibited by lyophilization. CONCLUSION: Lyophilization of EVs may affect SAP structures and/or reduce the cytosolic release efficacy of EV's content after cellular uptake and needs attention in EV-based DDSs.


Assuntos
Arginina , Peptídeos Penetradores de Células/farmacocinética , Vesículas Extracelulares/metabolismo , Veículos Farmacêuticos , Saporinas/farmacocinética , Animais , Células CHO , Sobrevivência Celular , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Cricetulus , Liofilização , Humanos , Tamanho da Partícula , Pinocitose , Preservação Biológica/métodos , Saporinas/administração & dosagem , Tetraspanina 30/metabolismo
6.
Mol Pharm ; 16(4): 1633-1647, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30817164

RESUMO

In cancer treatment, polymeric nanoparticles (NPs) can serve as a vehicle for the delivery of cytotoxic proteins that have intracellular targets but that lack well-defined mechanisms for cellular internalization, such as saporin. In this work, we have prepared PEGylated poly(lactic acid- co-glycolic acid- co-hydroxymethyl glycolic acid) (PLGHMGA) NPs for the selective delivery of saporin in the cytosol of HER2 positive cancer cells. This selective uptake was achieved by decorating the surface of the NPs with the 11A4 nanobody that is specific for the HER2 receptor. Confocal microscopy observations showed rapid and extensive uptake of the targeted NPs (11A4-NPs) by HER2 positive cells (SkBr3) but not by HER2 negative cells (MDA-MB-231). This selective uptake was blocked upon preincubation of the cells with an excess of nanobody. Nontargeted NPs (Cys-NPs) were not taken up by either type of cells. Importantly, a dose-dependent cytotoxic effect was only observed on SkBr3 cells when these were treated with saporin-loaded 11A4-NPs in combination with photochemical internalization (PCI), a technique that uses a photosensitizer and local light exposure to facilitate endosomal escape of entrapped nanocarriers and biomolecules. The combined use of saporin-loaded 11A4-NPs and PCI strongly inhibited cell proliferation and decreased cell viability through induction of apoptosis. Also the cytotoxic effect could be reduced by an excess of nanobody, reinforcing the selectivity of this system. These results suggest that the combination of the targeting nanobody on the NPs with PCI are effective means to achieve selective uptake and cytotoxicity of saporin-loaded NPs.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/administração & dosagem , Polímeros/química , Receptor ErbB-2/metabolismo , Saporinas/administração & dosagem , Anticorpos de Domínio Único/administração & dosagem , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Poliésteres/química , Saporinas/química , Anticorpos de Domínio Único/imunologia , Células Tumorais Cultivadas
7.
Int J Pharm ; 560: 57-64, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30699364

RESUMO

Metastasis poses a long-standing treatment challenge for many cancers including breast cancer. Once spreading out, cell-selective delivery of drug appears especially critical. Here, we report on epidermal growth factor receptor and CD44 dual-targeted hyaluronic acid nanogels (EGFR/CD44-NGs) that afford enhanced targetability and protein therapy for metastatic 4T1 breast cancer in vivo. Flow cytometry in CD44 and EGFR-positive 4T1 metastatic breast cancer cells showed over 6-fold higher cellular uptake of EGFR/CD44-NGs than mono-targeting CD44-NGs. MTT and scratch assays displayed that saporin-loaded EGFR/CD44-NGs (Sap-EGFR/CD44-NGs) was highly potent in inhibiting growth as well as migration of 4T1 cells in vitro, with an IC50 of 5.36 nM, which was 1.7-fold lower than that for Sap-CD44-NGs. In 4T1-luc metastatic breast cancer model in mice, Sap-EGFR/CD44-NGs exhibited significant inhibition of tumor metastasis to lung at a small dose of 3.33 nmol Sap equiv./kg. Increasing the dosage to 13.3 nmol Sap equiv./kg resulted in further reduced lung metastasis without causing notable adverse effects. These dual-targeted nanogels with improved cancer cell selectivity provide a novel platform for combating breast cancer metastasis.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas , Saporinas/administração & dosagem , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Portadores de Fármacos/química , Receptores ErbB/metabolismo , Feminino , Citometria de Fluxo , Géis , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Concentração Inibidora 50 , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Saporinas/farmacologia
8.
Neuroscience ; 390: 303-316, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30179644

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to degeneration of motor neurons and skeletal muscles, including those required for swallowing. Tongue weakness is one of the earliest signs of bulbar dysfunction in ALS, which is attributed to degeneration of motor neurons in the hypoglossal nucleus in the brainstem, the axons of which directly innervate the tongue. Despite its fundamental importance, dysphagia (difficulty swallowing) and strategies to preserve swallowing function have seldom been studied in ALS models. It is difficult to study dysphagia in ALS models since the amount and rate at which hypoglossal motor neuron death occurs cannot be controlled, and degeneration is not limited to the hypoglossal nucleus. Here, we report a novel experimental model using intralingual injections of cholera toxin B conjugated to saporin (CTB-SAP) to study the impact of only hypoglossal motor neuron death without the many complications that are present in ALS models. Hypoglossal motor neuron survival, swallowing function, and hypoglossal motor output were assessed in Sprague-Dawley rats after intralingual injection of either CTB-SAP (25 g) or unconjugated CTB and SAP (controls) into the genioglossus muscle. CTB-SAP treated rats exhibited significant (p ≤ 0.05) deficits vs. controls in: (1) lick rate (6.0 ±â€¯0.1 vs. 6.6 ±â€¯0.1 Hz; (2) hypoglossal motor output (0.3 ±â€¯0.05 vs. 0.6 ±â€¯0.10 mV); and (3) hypoglossal motor neuron survival (398 ±â€¯34 vs. 1018 ±â€¯41 neurons). Thus, this novel, inducible model of hypoglossal motor neuron death mimics the dysphagia phenotype that is observed in ALS rodent models, and will allow us to study strategies to preserve swallowing function.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Toxina da Cólera/administração & dosagem , Transtornos de Deglutição/patologia , Modelos Animais de Doenças , Nervo Hipoglosso/patologia , Neurônios Motores/patologia , Saporinas/administração & dosagem , Animais , Morte Celular , Transtornos de Deglutição/induzido quimicamente , Nervo Hipoglosso/efeitos dos fármacos , Nervo Hipoglosso/fisiopatologia , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Ratos Sprague-Dawley , Língua/efeitos dos fármacos , Língua/inervação
9.
Exp Physiol ; 103(9): 1221-1229, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928790

RESUMO

NEW FINDINGS: What is the central question of this study? Can targeted ablation of cardiac sympathetic neurons suppress myocardial infarction-induced adverse cardiac remodelling and left ventricular dysfunction? What is the main finding and its importance? Targeted ablation of cardiac sympathetic neurons significantly alleviated sympathetic remodelling and neuroendocrine activation, attenuated cardiac hypertrophy and fibrosis and improved left ventricular function. Thus, targeted ablation of cardiac sympathetic neurons might have a beneficial effect on adverse postinfarction remodelling and left ventricular dysfunction. ABSTRACT: Sympathetic overactivation is crucial in the development and progression of adverse cardiac remodelling and dysfunction. Targeted ablation of cardiac sympathetic neurons (TACSN) is an effective approach to inhibit overactivation of the sympathetic nervous system. The aim of this study was to investigate whether TACSN could suppress myocardial infarction (MI)-induced adverse cardiac remodelling and dysfunction, thereby producing protective effects. Thirty-eight dogs were randomly assigned into the sham-operated, MI or MI-TACSN group. The TACSN was induced by injecting cholera toxin B subunit-saporin compound into the stellate ganglia 1 week after MI. Five weeks after MI surgery, echocardiographic and haemodynamic parameters of cardiac function were significantly improved in the TACSN group compared with the MI group. In addition, TACSN attenuated the extent of cardiac hypertrophy and fibrosis and suppressed the increase in the plasma concentrations of noradrenaline, nerve growth factor, atrial natriuretic peptide, brain natriuretic peptide, angiotensin II and aldosterone. Furthermore, TACSN alleviated the growth associated protein-43-positive and tyrosine hydroxylase-positive nerve densities in the infarcted border zone and restored protein expression of the ß1 -adrenergic receptor in the left ventricular myocardium. These findings indicate that TACSN might have a beneficial effect on adverse postinfarction remodelling and left ventricular dysfunction, which might be attributable, at least in part, to the attenuation of both sympathetic remodelling and the cardiac neuroendocrine system.


Assuntos
Técnicas de Ablação/métodos , Coração/inervação , Infarto do Miocárdio/terapia , Neurônios , Sistema Nervoso Simpático , Disfunção Ventricular Esquerda/terapia , Remodelação Ventricular , Animais , Toxina da Cólera/administração & dosagem , Toxina da Cólera/farmacologia , Cães , Ecocardiografia , Expressão Gênica , Injeções , Masculino , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/patologia , Sistemas Neurossecretores , Saporinas/administração & dosagem , Saporinas/farmacologia , Gânglio Estrelado , Disfunção Ventricular Esquerda/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...