Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 15(1)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36668877

RESUMO

Cetuximab is a monoclonal antibody blocking the epidermal growth factor receptor (EGFR) in metastatic colorectal cancer (mCRC). However, cetuximab treatment has no clinical benefits in patients affected by mCRC with KRAS mutation or in the presence of constitutive activation of signalling pathways acting downstream of the EGFR. The aim of this study was to improve cetuximab's therapeutic action by conjugating cetuximab with the type 1 ribosome inactivating protein (RIP) quinoin isolated from quinoa seeds. A chemical conjugation strategy based on the use of heterobifunctional reagent succinimidyl 3-(2-pyridyldithio)propionate (SPDP) was applied to obtain the antibody-type 1 RIP chimeric immunoconjugate. The immunotoxin was then purified by chromatographic technique, and its enzymatic action was evaluated compared to quinoin alone. Functional assays were performed to test the cytotoxic action of the quinoin cetuximab immunoconjugate against the cetuximab-resistant GEO-CR cells. The novel quinoin cetuximab immunoconjugate showed a significant dose-dependent cytotoxicity towards GEO-CR cells, achieving IC50 values of 27.7 nM (~5.0 µg/mL) at 72 h compared to cetuximab (IC50 = 176.7 nM) or quinoin (IC50 = 149.3 nM) alone assayed in equimolar amounts. These results support the therapeutic potential of quinoin cetuximab immunoconjugate for the EGFR targeted therapy, providing a promising candidate for further development towards clinical use in the treatment of cetuximab-resistant metastatic colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Imunotoxinas , Humanos , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cetuximab/farmacologia , Cetuximab/genética , Cetuximab/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Receptores ErbB/metabolismo , Imunotoxinas/uso terapêutico , Mutação , Saporinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
2.
Toxins (Basel) ; 12(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854372

RESUMO

Saporin, which is extracted from Saponaria officinalis, is a protein toxin that inactivates ribosomes. Saporin itself is non-selective toxin but acquires high specificity after conjugation with different ligands such as signaling peptides or antibodies to some surface proteins expressed in a chosen cell subpopulation. The saporin-based conjugated toxins were widely adopted in neuroscience as a convenient tool to induce highly selective degeneration of desired cell subpopulation. Induction of selective cell death is one of approaches used to model neurodegenerative diseases, study functions of certain cell subpopulations in the brain, and therapy. Here, we review studies where saporin-based conjugates were used to analyze cell mechanisms of sleep, general anesthesia, epilepsy, pain, and development of Parkinson's and Alzheimer's diseases. Limitations and future perspectives of use of saporin-based toxins in neuroscience are discussed.


Assuntos
Pesquisa Biomédica/métodos , Doenças do Sistema Nervoso/tratamento farmacológico , Saponaria , Saporinas/isolamento & purificação , Saporinas/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/metabolismo , Saporinas/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia
3.
Toxins (Basel) ; 10(2)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438358

RESUMO

Plant Ribosome-inactivating proteins (RIPs) including the type I RIP Saporin have been used for the construction of Immunotoxins (ITxs) obtained via chemical conjugation of the toxic domain to whole antibodies or by generating genetic fusions to antibody fragments/targeting domains able to direct the chimeric toxin against a desired sub-population of cancer cells. The high enzymatic activity, stability and resistance to conjugation procedures and especially the possibility to express recombinant fusions in yeast, make Saporin a well-suited tool for anti-cancer therapy approaches. Previous clinical work on RIPs-based Immunotoxins (including Saporin) has shown that several critical issues must be taken into deeper consideration to fully exploit their therapeutic potential. This review focuses on possible combinatorial strategies (chemical and genetic) to augment Saporin-targeted toxin efficacy. Combinatorial approaches may facilitate RIP escape into the cytosolic compartment (where target ribosomes are), while genetic manipulations may minimize potential adverse effects such as vascular-leak syndrome or may identify T/B cell epitopes in order to decrease the immunogenicity following similar strategies as those used in the case of bacterial toxins such as Pseudomonas Exotoxin A or as for Type I RIP Bouganin. This review will further focus on strategies to improve recombinant production of Saporin-based chimeric toxins.


Assuntos
Imunotoxinas , Saporinas , Animais , Terapia Genética , Humanos , Imunotoxinas/química , Imunotoxinas/genética , Imunotoxinas/uso terapêutico , Fototerapia , Pinocitose , Saporinas/química , Saporinas/genética , Saporinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...