Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.198
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 540, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997743

RESUMO

BACKGROUND: Extracellular matrix (ECM) remodeling in skeletal muscle is a significant factor in the development of sarcopenia. This study aims to evaluate changes in ECM remodeling in the lumbar paravertebral muscles of sarcopenic rats using diffusion-tensor magnetic resonance imaging (DT-MRI) and compare them with histology. METHODS: Twenty 6-month-old female Sprague Dawley rats were randomly divided into the dexamethasone (DEX) group and the control (CON) group. Both groups underwent 3.0T MRI scanning, including Mensa, T2WI, and DT-MRI sequences. The changes in muscle fibers and extracellular matrix (ECM) of the erector spinal muscle were observed using hematoxylineosin and sirius red staining. The expressions of collagen I, III, and fibronectin in the erector spinae were detected by western blot. Pearson correlation analysis was employed to assess the correlation between MRI quantitative parameters and corresponding histopathology markers. RESULTS: The cross-sectional area and fractional anisotropy values of the erector spinae in the DEX group rats were significantly lower than those in the CON group (p < 0.05). Hematoxylin eosin staining revealed muscle fiber atrophy and disordered arrangement in the DEX group, while sirius red staining showed a significant increase in collagen volume fraction in the DEX group. The western blot results indicate a significant increase in the expression of collagen I, collagen III, and fibronectin in the DEX group (p < 0.001 for all). Correlation coefficients between fractional anisotropy values and collagen volume fraction, collagen I, collagen III, and fibronectin were - 0.71, -0.94, -0.85, and - 0.88, respectively (p < 0.05 for all). CONCLUSIONS: The fractional anisotropy value is strongly correlated with the pathological collagen volume fraction, collagen I, collagen III, and fibronectin. This indicates that DT-MRI can non-invasively evaluate the changes in extracellular matrix remodeling in the erector spinal muscle of sarcopenia. It provides a potential imaging biomarker for the diagnosis of sarcopenia.


Assuntos
Matriz Extracelular , Ratos Sprague-Dawley , Sarcopenia , Animais , Feminino , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Ratos , Sarcopenia/diagnóstico por imagem , Sarcopenia/metabolismo , Sarcopenia/patologia , Imagem de Tensor de Difusão/métodos , Músculos Paraespinais/diagnóstico por imagem , Músculos Paraespinais/patologia , Músculos Paraespinais/metabolismo , Fibronectinas/metabolismo , Modelos Animais de Doenças , Dexametasona
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000167

RESUMO

Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.


Assuntos
Envelhecimento , Dano ao DNA , DNA Mitocondrial , Proteína HMGB1 , Músculo Esquelético , Estresse Oxidativo , Sarcopenia , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Envelhecimento/metabolismo , Envelhecimento/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Caquexia/metabolismo , Caquexia/patologia , Caquexia/genética , Caquexia/etiologia , Fosforilação Oxidativa , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Masculino , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000606

RESUMO

Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.


Assuntos
Dexametasona , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Músculo Esquelético , Atrofia Muscular , Animais , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Atrofia Muscular/induzido quimicamente , Camundongos , Dexametasona/farmacologia , Dexametasona/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Ligases SKP Culina F-Box/genética , Probióticos/administração & dosagem , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Sarcopenia/tratamento farmacológico , Sarcopenia/metabolismo , Sarcopenia/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular , Lactobacillus plantarum
4.
Alzheimers Dement ; 20(7): 4868-4878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38889242

RESUMO

INTRODUCTION: Despite prior research on the association between sarcopenia and cognitive impairment in the elderly, a comprehensive model that integrates various brain pathologies is still lacking. METHODS: We used data from 528 non-demented older adults with or without sarcopenia in the Catholic Aging Brain Imaging (CABI) database, containing magnetic resonance imaging scans, positron emission tomography scans, and clinical data. We also measured three key components of sarcopenia: skeletal muscle index (SMI), hand grip strength (HGS), and the five times sit-to-stand test (5STS). RESULTS: All components of sarcopenia were significantly correlated with global cognitive function, but cortical thickness and amyloid-beta (Aß) retention had distinctive relationships with each measure. In the path model, brain atrophy resulting in cognitive impairment was mediated by Aß retention for SMI and periventricular white matter hyperintensity for HGS, but directly affected by the 5STS. DISCUSSION: Treatments targeting each sub-domain of sarcopenia should be considered to prevent cognitive decline. HIGHLIGHTS: We identified distinct impacts of three sarcopenia measures on brain structure and Aß. Muscle mass is mainly associated with Aß and has an influence on the brain atrophy. Muscle strength linked with periventricular WMH and brain atrophy. Muscle function associated with cortical thinning in specific brain regions. Interventions on sarcopenia may be important to ease cognitive decline in the elderly.


Assuntos
Encéfalo , Disfunção Cognitiva , Força da Mão , Imageamento por Ressonância Magnética , Neuroimagem , Sarcopenia , Humanos , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Disfunção Cognitiva/diagnóstico por imagem , Masculino , Idoso , Feminino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Força da Mão/fisiologia , Tomografia por Emissão de Pósitrons , Idoso de 80 Anos ou mais , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Peptídeos beta-Amiloides/metabolismo , Imagem Multimodal , Envelhecimento/patologia
5.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892069

RESUMO

Aging comes with the loss of muscle and bone mass, leading to a condition known as osteosarcopenia. Circulating, cellular, and tissue biomarkers research for osteosarcopenia is relatively scarce and, currently, no established biomarkers exist. Here we find that osteosarcopenic patients exhibited elevated basophils and TNFα levels, along with decreased aPPT, PT/INR, IL15, alpha-Klotho, DHEA-S, and FGF-2 expression and distinctive bone and muscle tissue micro-architecture and biomarker expressions. They also displayed an increase in osteoclast precursors with a concomitant imbalance towards spontaneous osteoclastogenesis. Similarities were noted with osteopenic and sarcopenic patients, including a lower neutrophil percentage and altered cytokine expression. A linear discriminant analysis (LDA) on models based on selected biomarkers showed a classification accuracy in the range of 61-78%. Collectively, our data provide compelling evidence for novel biomarkers for osteosarcopenia that may hold potential as diagnostic tools to promote healthy aging.


Assuntos
Biomarcadores , Sarcopenia , Humanos , Biomarcadores/sangue , Sarcopenia/metabolismo , Sarcopenia/sangue , Sarcopenia/patologia , Projetos Piloto , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Citocinas/metabolismo , Citocinas/sangue , Osteoclastos/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/patologia
6.
Aging Clin Exp Res ; 36(1): 130, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862865

RESUMO

BACKGROUND: Both osteoporosis and sarcopenia are associated with aging, increasing the likelihood of falls in older adults and consequently raising the risk of hip fractures (HF). AIMS: To explore the relationship between the size and density of muscle and subcutaneous adipose tissue (SAT) and the bone mineral density (BMD) of the proximal femur in elderly women with HF. METHODS: Quantitative computed tomography (QCT) was conducted on the hips of 661 female participants who experienced low-energy acute HFs to measure both areal BMD (aBMD) and volume BMD (vBMD). Measurements were taken for the cross-sectional area (CSA) and density of the muscle around the hip and adjacent SAT. Multivariable linear regression models were applied to assess the relationship between these parameters. RESULTS: Most increases in the density of the gluteus medius and minimus muscle (G.Med/MinM) were correlated with higher BMD in the femoral neck fracture (FNF) group with osteoporosis. In the FNF group, gluteus maximus muscle (G.MaxM) density was negatively associated with the BMD parameters of the proximal femur in individuals with osteoporosis, while they were positively associated with nonosteoporosis. In the intertrochanteric fracture (ITF) group without osteoporosis, both FN aBMD and FN vBMD showed significant correlations with G.Med/MinM density. DISCUSSION: In women with HFs, bone and muscle are closely related. CONCLUSIONS: In older women with HFs, density but not CSA of the G.Med/MinM were associated with BMD parameters of the proximal femur. Osteoporosis may influence the relationship between G.MaxM density and proximal femur BMD in elderly women with FNF.


Assuntos
Densidade Óssea , Fêmur , Fraturas do Quadril , Músculo Esquelético , Gordura Subcutânea , Humanos , Feminino , Densidade Óssea/fisiologia , Idoso , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/fisiopatologia , Fêmur/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiopatologia , Idoso de 80 Anos ou mais , Gordura Subcutânea/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Osteoporose/diagnóstico por imagem , Osteoporose/fisiopatologia , Sarcopenia/diagnóstico por imagem , Sarcopenia/fisiopatologia , Sarcopenia/patologia
7.
Front Endocrinol (Lausanne) ; 15: 1375610, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854688

RESUMO

Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.


Assuntos
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Sarcopenia/patologia , Sarcopenia/etiologia , Sarcopenia/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/epidemiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Atrofia Muscular/etiologia , Transtornos Musculares Atróficos/patologia , Transtornos Musculares Atróficos/complicações , Envelhecimento/patologia
8.
Endocrinol Metab (Seoul) ; 39(3): 521-530, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858821

RESUMO

BACKGRUOUND: Aging leads to sarcopenia, which is characterized by reduced muscle mass and strength. Many factors, including altered muscle protein turnover, diminished neuromuscular function, hormonal changes, systemic inflammation, and the structure and composition of muscle fibers, play a crucial role in age-related muscle decline. This study explored differences in muscle fiber types contributing to overall muscle function decline in aging, focusing on individuals with hip fractures from falls. METHODS: A pilot study at Chungnam National University Hospital collected muscle biopsies from hip fracture patients aged 20 to 80 undergoing surgical treatment. Muscle biopsies from the vastus lateralis and gluteus maximus were obtained during hip arthroplasty or internal fixation. Handgrip strength, calf and thigh circumference, and bone mineral density were evaluated in individuals with hip fractures from falls. We analyzed the relationships between each clinical characteristic and muscle fiber type. RESULTS: In total, 26 participants (mean age 67.9 years, 69.2% male) were included in this study. The prevalence of sarcopenia was 53.8%, and that of femoral and lumbar osteoporosis was 19.2% and 11.5%, respectively. Vastus lateralis analysis revealed an age-related decrease in type IIx fibers, a higher proportion of type IIa fibers in women, and an association between handgrip strength and type IIx fibers in men. The gluteus maximus showed no significant correlations with clinical parameters. CONCLUSION: This study identified complex associations between age, sex, handgrip strength, and muscle fiber composition in hip fracture patients, offering insights crucial for targeted interventions combating age-related muscle decline and improving musculoskeletal health.


Assuntos
Fraturas do Quadril , Músculo Quadríceps , Sarcopenia , Humanos , Masculino , Feminino , Idoso , Fraturas do Quadril/patologia , Sarcopenia/patologia , Músculo Quadríceps/patologia , Pessoa de Meia-Idade , Projetos Piloto , Idoso de 80 Anos ou mais , Força da Mão , Adulto , Densidade Óssea , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/metabolismo , Adulto Jovem , Envelhecimento/fisiologia , Envelhecimento/patologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/metabolismo
9.
BMC Cancer ; 24(1): 741, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890682

RESUMO

BACKGROUND: Sarcopenia is characterized by reduced skeletal muscle volume and is a condition that is prevalent among elderly patients and associated with poor prognosis as a comorbidity in malignancies. Given the aging population over 80 years old in Japan, an understanding of malignancies, including colorectal cancer (CRC), complicated by sarcopenia is increasingly important. Therefore, the focus of this study is on a novel and practical diagnostic approach of assessment of psoas major muscle volume (PV) using 3-dimensional computed tomography (3D-CT) in diagnosis of sarcopenia in patients with CRC. METHODS: The subjects were 150 patients aged ≥ 80 years with CRC who underwent primary tumor resection at Juntendo University Hospital between 2004 and 2017. 3D-CT measurement of PV and conventional CT measurement of the psoas major muscle cross-sectional area (PA) were used to identify sarcopenia (group S) and non-sarcopenia (group nS) cases. Clinicopathological characteristics, operative results, postoperative complications, and prognosis were compared between these groups. RESULTS: The S:nS ratios were 15:135 for the PV method and 52:98 for the PA method. There was a strong positive correlation (r = 0.66, p < 0.01) between PVI (psoas major muscle volume index) and PAI (psoas major muscle cross-sectional area index), which were calculated by dividing PV or PA by the square of height. Surgical results and postoperative complications did not differ significantly in the S and nS groups defined using each method. Overall survival was worse in group S compared to group nS identified by PV (p < 0.01), but not significantly different in groups S and nS identified by PA (p = 0.77). A Cox proportional hazards model for OS identified group S by PV as an independent predictor of a poor prognosis (p < 0.05), whereas group S by PA was not a predictor of prognosis (p = 0.60). CONCLUSIONS: The PV method for identifying sarcopenia in elderly patients with CRC is more practical and sensitive for prediction of a poor prognosis compared to the conventional method.


Assuntos
Neoplasias Colorretais , Imageamento Tridimensional , Músculos Psoas , Sarcopenia , Tomografia Computadorizada por Raios X , Humanos , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Músculos Psoas/diagnóstico por imagem , Músculos Psoas/patologia , Masculino , Feminino , Neoplasias Colorretais/patologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/diagnóstico por imagem , Idoso de 80 Anos ou mais , Tomografia Computadorizada por Raios X/métodos , Imageamento Tridimensional/métodos , Prognóstico , Tamanho do Órgão , Japão/epidemiologia , Estudos Retrospectivos
10.
Int J Mol Sci ; 25(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38892357

RESUMO

Currently, there is an increase in the aging of the population, which represents a risk factor for many diseases, including sarcopenia. Sarcopenia involves progressive loss of mass, strength, and function of the skeletal muscle. Some mechanisms include alterations in muscle structure, reduced regenerative capacity, oxidative stress, mitochondrial dysfunction, and inflammation. The zebrafish has emerged as a new model for studying skeletal muscle aging because of its numerous advantages, including histological and molecular similarity to human skeletal muscle. In this study, we used fish of 2, 10, 30, and 60 months of age. The older fish showed a higher frailty index with a value of 0.250 ± 0.000 because of reduced locomotor activity and alterations in biometric measurements. We observed changes in muscle structure with a decreased number of myocytes (0.031 myocytes/µm2 ± 0.004 at 60 months) and an increase in collagen with aging up to 15% ± 1.639 in the 60-month group, corresponding to alterations in the synthesis, degradation, and differentiation pathways. These changes were accompanied by mitochondrial alterations, such as a nearly 50% reduction in the number of intermyofibrillar mitochondria, 100% mitochondrial damage, and reduced mitochondrial dynamics. Overall, we demonstrated a similarity in the aging processes of muscle aging between zebrafish and mammals.


Assuntos
Envelhecimento , Fragilidade , Músculo Esquelético , Sarcopenia , Peixe-Zebra , Sarcopenia/metabolismo , Sarcopenia/patologia , Animais , Humanos , Envelhecimento/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Fragilidade/metabolismo , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Mitocôndrias/patologia
11.
J Clin Invest ; 134(11)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702076

RESUMO

Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.


Assuntos
Envelhecimento , Glucocorticoides , Músculo Esquelético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosfatidato Fosfatase , Sarcopenia , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sarcopenia/metabolismo , Sarcopenia/tratamento farmacológico , Sarcopenia/patologia , Sarcopenia/genética , Camundongos , Envelhecimento/metabolismo , Fosfatidato Fosfatase/genética , Fosfatidato Fosfatase/metabolismo , Glucocorticoides/farmacologia , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Masculino , Modelos Animais de Doenças , Feminino
12.
Exp Gerontol ; 193: 112468, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801840

RESUMO

BACKGROUND: Aged sarcopenia is characterized by loss of skeletal muscle mass and strength, and mitochondrial dysregulation in skeletal myocyte is considered as a major factor. Here, we aimed to analyze the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on mitochondrial reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) in aged skeletal muscles. METHODS: C2C12 cells were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of cellular ROS, mitochondrial ROS, and expression of PGC-1α and Nrf2. Different PGC-1α expression in cells was established by transfection with small interfering RNA (siRNA) or plasmids overexpressing PGC-1α (pEX-3-PGC-1α). The effects of different PGC-1α expression on cellular ROS, mitochondrial ROS and Nrf2 expression were measured in cells. Wild type (WT) mice and PGC-1α conditional knockout (CKO) mice were used to analyze the effects of PGC-1α on aged sarcopenia and expression of Nrf2 and CD38 in gastrocnemius muscles. Diethylmaleate, a Nrf2 activator, was used to analyze the connection between PGC-1α and Nrf2 in cells and in mice. RESULTS: In C2C12 cells, the expressions of PGC-1α and Nrf2 were declined by the 7ß-OHC treatment or PGC-1α silence. Moreover, PGC-1α silence increased the harmful ROS and decreased the Nrf2 protein expression in the 7ß-OHC-treated cells. PGC-1α overexpression decreased the harmful ROS and increased the Nrf2 protein expression in the 7ß-OHC-treated cells. Diethylmaleate treatment decreased the harmful ROS in the 7ß-OHC-treated or PGC-1α siRNA-transfected cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia, decreased Nrf2 expression and increased CD38 expression in gastrocnemius muscles compared with the WT mice. Diethylmaleate treatment improved the muscle function and decreased the CD38 expression in the old two genotypes. CONCLUSIONS: Our study demonstrated that PGC-1α modulated mitochondrial oxidative stress in aged sarcopenia through regulating Nrf2.


Assuntos
Camundongos Knockout , Músculo Esquelético , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio , Sarcopenia , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Sarcopenia/metabolismo , Sarcopenia/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Envelhecimento/metabolismo , Camundongos Endogâmicos C57BL , Linhagem Celular , Mitocôndrias Musculares/metabolismo , Mitocôndrias/metabolismo
13.
Genes (Basel) ; 15(5)2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790190

RESUMO

Sarcopenia, defined as the age-associated loss of muscle mass and increased fragility with age, is increasing worldwide. The condition often precedes the development of Alzheimer's disease, thereby decreasing the levels of mobility and physical activity in those affected. Indeed, the loss of muscle mass has, in some studies, been associated with an increased risk of Alzheimer's disease and other dementias. However, a detailed understanding of the interplay between both conditions is not available and needs to be thoroughly addressed. In the following review, we focus on several genes, specifically APOE, BDNF, ACE, FTO, and FNDC5, that have been associated with both conditions. We also discuss the epigenetic regulation of each of these genes along with non-coding RNAs (ncRNAs) that may have a role in the development of both the sarcopenic and Alzheimer's disease phenotypes. Finally, we assert that the application of systems biology will unravel the relationship between sarcopenia and Alzheimer's disease and believe that the prevention of muscle loss in older age will reduce the incidence of debilitating cognitive decline.


Assuntos
Doença de Alzheimer , Epigênese Genética , Sarcopenia , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sarcopenia/genética , Sarcopenia/patologia , Fatores de Risco , Apolipoproteínas E/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Fibronectinas/genética , Fibronectinas/metabolismo , RNA não Traduzido/genética
14.
Acta Oncol ; 63: 330-338, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745483

RESUMO

BACKGROUND: Low computed tomography (CT)-determined muscle mass, commonly determined with height-adjusted muscle indexes (MIs), predicts worse survival in several cancers and has been suggested as a prognostic assessment tool. Although several MIs measured at the level of the 3rd lumbar vertebra (L3) are commonly used, it remains unestablished how different L3-determined MIs perform in survival prognostication compared to each other. The objective of this study was to investigate the performance of different MIs for survival prognostication in renal cell carcinoma (RCC). METHODS: We retrospectively enrolled 214 consecutive patients with RCC. We determined three L3-MIs (psoas muscle index (PMI), psoas muscle index and erector spinae index (PMI+ESI), and whole skeletal muscle index (SMI)) from preoperative CT scans. Categorization of those with low and normal muscle mass was based on the Youden Index sex-specific MI cut-offs. We determined sensitivity, specificity, and accuracy metrics for predicting 1-year, 5-year, and overall survival (OS) using Cox regression models. RESULTS: Low PMI, PMI+ESI, and SMI significantly predicted decreased 1-year, 5-year, and OS in uni- and multivariate models. PMI+ESI and SMI were more accurate than PMI in males, and PMI and PMI+ESI were more accurate than SMI in females in the prediction of 1-year survival. However, there were no differences in accuracies between MIs in 5-year and OS prediction. INTERPRETATION: PMI+ESI performed well overall in short-term prognostication, but there were no differences between the MIs in long-term prognostication. We recommend the use of PMI+ESI for muscle evaluation, particularly when SMI cannot be evaluated.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Vértebras Lombares , Músculos Psoas , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Pessoa de Meia-Idade , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/patologia , Neoplasias Renais/mortalidade , Neoplasias Renais/patologia , Estudos Retrospectivos , Idoso , Prognóstico , Músculos Psoas/diagnóstico por imagem , Músculos Psoas/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/patologia , Adulto , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Sarcopenia/mortalidade , Idoso de 80 Anos ou mais
15.
Int J Mol Sci ; 25(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791164

RESUMO

Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.


Assuntos
Músculo Esquelético , Insuficiência Renal Crônica , Sarcopenia , Humanos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/etiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Animais , Sarcopenia/metabolismo , Sarcopenia/patologia , Sarcopenia/etiologia
16.
Sci Rep ; 14(1): 12193, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806535

RESUMO

Determination of body composition (the relative distribution of fat, muscle, and bone) has been used effectively to assess the risk of progression and overall clinical outcomes in different malignancies. Sarcopenia (loss of muscle mass) is especially associated with poor clinical outcomes in cancer. However, estimation of muscle mass through CT scan has been a cumbersome, manually intensive process requiring accurate contouring through dedicated personnel hours. Recently, fully automated technologies that can determine body composition in minutes have been developed and shown to be highly accurate in determining muscle, bone, and fat mass. We employed a fully automated technology, and analyzed images from a publicly available cancer imaging archive dataset (TCIA) and a tertiary academic center. The results show that adrenocortical carcinomas (ACC) have relatively sarcopenia compared to benign adrenal lesions. In addition, functional ACCs have accelerated sarcopenia compared to non-functional ACCs. Further longitudinal research might shed further light on the relationship between body component distribution and ACC prognosis, which will help us incorporate more nutritional strategies in cancer therapy.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Composição Corporal , Sarcopenia , Tomografia Computadorizada por Raios X , Humanos , Sarcopenia/diagnóstico por imagem , Sarcopenia/patologia , Carcinoma Adrenocortical/diagnóstico por imagem , Carcinoma Adrenocortical/patologia , Masculino , Feminino , Neoplasias do Córtex Suprarrenal/diagnóstico por imagem , Neoplasias do Córtex Suprarrenal/complicações , Neoplasias do Córtex Suprarrenal/patologia , Tomografia Computadorizada por Raios X/métodos , Pessoa de Meia-Idade , Adulto , Idoso
17.
Sci Rep ; 14(1): 10088, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698153

RESUMO

Stroke triggers a systemic inflammatory response over the ensuing days after the cerebral insult. The age and comorbidities of the stroke population make them a vulnerable population for low muscle mass and sarcopenia, the latter being another clinical condition that is closely associated with inflammation, as shown by increased levels of pro-inflammatory biomarkers, including neutrophil-to-lymphocyte ratio (NLR). In this study, we evaluated the relationship between post-stroke NLR changes and muscle mass in a prospective cohort of acute ischemic stroke patients (n = 102) enrolled in the Muscle Assessment in Stroke Study Turkey (MASS-TR). Admission lumbar computed tomography images were used to determine the cross-sectional muscle area of skeletal muscles at L3 vertebra level and calculate the skeletal muscle index (SMI). The median (IQR) SMI was 44.7 (39.1-52.5) cm2/m2, and the NLR at admission and follow-up were 4.2 (3.0-10.5) and 9.4 (5.7-16.2), respectively. While there was no relationship between SMI and admission NLR, a significant inverse correlation was observed between SMI and follow-up NLR (r = - 0.26; P = 0.007). Lower SMI remained significantly associated (P = 0.036) with higher follow-up NLR levels in multivariate analysis. Our findings highlight the importance of muscle mass as a novel factor related to the level of post-stroke stress response.


Assuntos
AVC Isquêmico , Músculo Esquelético , Neutrófilos , Humanos , Masculino , Feminino , Idoso , AVC Isquêmico/patologia , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Estudos Prospectivos , Linfócitos/metabolismo , Sarcopenia/patologia , Sarcopenia/etiologia , Biomarcadores/sangue , Estresse Fisiológico , Tomografia Computadorizada por Raios X
18.
Mol Med Rep ; 30(1)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757344

RESUMO

Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine muscle­strengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR­206 precursor in cell­free (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy. Additionally, a decline in the levels of the miR­6516 precursor was observed in mice with muscle atrophy. The administration of mimic­miR­6516 to mice immobilized due to injury inhibited muscle atrophy by targeting and inhibiting cyclin­dependent kinase inhibitor 1b (Cdkn1b). Based on these results, the miR­206 precursor appears to be a potential biomarker of muscle atrophy, whereas miR­6516 shows promise as a therapeutic target to alleviate muscle deterioration in patients with muscle disuse and atrophy.


Assuntos
MicroRNAs , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Humanos , Masculino , Feminino , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Modelos Animais de Doenças , Pessoa de Meia-Idade , Idoso , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo , Transtornos Musculares Atróficos/patologia , Transtornos Musculares Atróficos/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Biomarcadores , Sarcopenia/metabolismo , Sarcopenia/genética , Sarcopenia/patologia , Sarcopenia/terapia , Adulto
19.
Biomolecules ; 14(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38672432

RESUMO

Sarcopenia has a complex pathophysiology that encompasses metabolic dysregulation and muscle ultrastructural changes. Among the drivers of intracellular and ultrastructural changes of muscle fibers in sarcopenia, mitochondria and their quality control pathways play relevant roles. Mononucleated muscle stem cells/satellite cells (MSCs) have been attributed a critical role in muscle repair after an injury. The involvement of mitochondria in supporting MSC-directed muscle repair is unclear. There is evidence that a reduction in mitochondrial biogenesis blunts muscle repair, thus indicating that the delivery of functional mitochondria to injured muscles can be harnessed to limit muscle fibrosis and enhance restoration of muscle function. Injection of autologous respiration-competent mitochondria from uninjured sites to damaged tissue has been shown to reduce infarct size and enhance cell survival in preclinical models of ischemia-reperfusion. Furthermore, the incorporation of donor mitochondria into MSCs enhances lung and cardiac tissue repair. This strategy has also been tested for regeneration purposes in traumatic muscle injuries. Indeed, the systemic delivery of mitochondria promotes muscle regeneration and restores muscle mass and function while reducing fibrosis during recovery after an injury. In this review, we discuss the contribution of altered MSC function to sarcopenia and illustrate the prospect of harnessing mitochondrial delivery and restoration of MSCs as a therapeutic strategy against age-related sarcopenia.


Assuntos
Sarcopenia , Células Satélites de Músculo Esquelético , Transdução de Sinais , Sarcopenia/metabolismo , Sarcopenia/terapia , Sarcopenia/patologia , Humanos , Células Satélites de Músculo Esquelético/metabolismo , Animais , Mitocôndrias/metabolismo , Envelhecimento/metabolismo , Regeneração , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
20.
Sci Rep ; 14(1): 7718, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565556

RESUMO

We aimed to examine the relationship between abdominal computed tomography (CT)-based body composition data and both renal function decline and all-cause mortality in patients with non-dialysis chronic kidney disease (CKD). This retrospective study comprised non-dialysis CKD patients who underwent consecutive unenhanced abdominal CT between January 2010 and December 2011. CT-based body composition was measured using semiautomated method that included visceral fat, subcutaneous fat, skeletal muscle area and density, and abdominal aortic calcium score (AAS). Sarcopenia and myosteatosis were defined by decreased skeletal muscle index (SMI) and decreased skeletal muscle density, respectively, each with specific cutoffs. Risk factors for CKD progression and survival were identified using logistic regression and Cox proportional hazard regression models. Survival between groups based on myosteatosis and AAS was compared using the Kaplan-Meier curve. 149 patients (median age: 70 years) were included; 79 (53.0%) patients had sarcopenia and 112 (75.2%) had myosteatosis. The median AAS was 560.9 (interquartile range: 55.7-1478.3)/m2. The prognostic factors for CKD progression were myosteatosis [odds ratio (OR) = 4.31, p = 0.013] and high AAS (OR = 1.03, p = 0.001). Skeletal muscle density [hazard ratio (HR) = 0.93, p = 0.004] or myosteatosis (HR = 4.87, p = 0.032) and high AAS (HR = 1.02, p = 0.001) were independent factors for poor survival outcomes. The presence of myosteatosis and the high burden of aortic calcium were significant factors for CKD progression and survival in patients with non-dialysis CKD.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Humanos , Idoso , Sarcopenia/diagnóstico por imagem , Sarcopenia/etiologia , Sarcopenia/patologia , Cálcio , Prognóstico , Estudos Retrospectivos , Músculo Esquelético/patologia , Tomografia Computadorizada por Raios X , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...