Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Genome Biol Evol ; 16(3)2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38447079

RESUMO

Selenocysteine, the 21st amino acid specified by the genetic code, is a rare selenium-containing residue found in the catalytic site of selenoprotein oxidoreductases. Selenocysteine is analogous to the common cysteine amino acid, but its selenium atom offers physical-chemical properties not provided by the corresponding sulfur atom in cysteine. Catalytic sites with selenocysteine in selenoproteins of vertebrates are under strong purifying selection, but one enzyme, glutathione peroxidase 6 (GPX6), independently exchanged selenocysteine for cysteine <100 million years ago in several mammalian lineages. We reconstructed and assayed these ancient enzymes before and after selenocysteine was lost and up to today and found them to have lost their classic ability to reduce hydroperoxides using glutathione. This loss of function, however, was accompanied by additional amino acid changes in the catalytic domain, with protein sites concertedly changing under positive selection across distant lineages abandoning selenocysteine in glutathione peroxidase 6. This demonstrates a narrow evolutionary range in maintaining fitness when sulfur in cysteine impairs the catalytic activity of this protein, with pleiotropy and epistasis likely driving the observed convergent evolution. We propose that the mutations shared across distinct lineages may trigger enzymatic properties beyond those in classic glutathione peroxidases, rather than simply recovering catalytic rate. These findings are an unusual example of adaptive convergence across mammalian selenoproteins, with the evolutionary signatures possibly representing the evolution of novel oxidoreductase functions.


Assuntos
Selênio , Selenocisteína , Animais , Selenocisteína/genética , Selenocisteína/química , Selenocisteína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Selenoproteínas/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Aminoácidos , Glutationa , Enxofre , Mamíferos/genética , Mamíferos/metabolismo
2.
Arch Biochem Biophys ; 731: 109427, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36241082

RESUMO

Selenoprotein S (selenos) is a small, intrinsically disordered membrane protein that is associated with various cellular functions, such as inflammatory processes, cellular stress response, protein quality control, and signaling pathways. It is primarily known for its contribution to the ER-associated degradation (ERAD) pathway, which governs the extraction of misfolded proteins or misassembled protein complexes from the ER to the cytosol for degradation by the proteasome. However, selenos's other cellular roles in signaling are equally vital, including the control of transcription factors and cytokine levels. Consequently, genetic polymorphisms of selenos are associated with increased risk for diabetes, dyslipidemia, and cardiovascular diseases, while high expression levels correlate with poor prognosis in several cancers. Its inhibitory role in cytokine secretion is also exploited by viruses. Since selenos binds multiple protein complexes, however, its specific contributions to various cellular pathways and diseases have been difficult to establish. Thus, the precise cellular functions of selenos and their interconnectivity have only recently begun to emerge. This review aims to summarize recent insights into the structure, interactome, and cellular roles of selenos.


Assuntos
Proteínas de Membrana , Selenoproteínas , Selenoproteínas/química , Proteínas de Membrana/metabolismo , Citocinas
3.
Arch Biochem Biophys ; 730: 109421, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183842

RESUMO

Selenocysteine (Sec), the 21st genetically encoded amino acid, is structurally similar to cysteine (Cys) but with a sulfur to selenium replacement. This small change confers Sec with related chemical properties to Cys but often with enhanced reactivity. In organisms, Sec is present in selenoproteins taking on various roles such as cellular maintenance, immune response, hormone regulation, and oxidative stress. The detailed reactions of Sec in these functions remains unclear and has been a difficult question to answer. This is related to the low natural expression of selenoproteins and their complicated biosynthesis pathway. As a result, the focus in selenoprotein research has been on the expansion of tools and techniques to promote research in this area. Over the past two decades there has been immense progress in the development of selenoprotein expression systems, Sec-detection methods, and genomic databases. In this review we have compiled these tools systematically, highlighting their strengths and clarifying the limitations, as a resource for future selenoprotein research.


Assuntos
Selênio , Selenocisteína , Selenocisteína/genética , Selenocisteína/metabolismo , Cisteína , Aminoácidos , Selenoproteínas/química , Enxofre , Hormônios
4.
Anal Chem ; 94(32): 11175-11184, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35930618

RESUMO

With the rapid acceleration in the design and development of new biotherapeutics, ensuring consistent quality and understanding degradation pathways remain paramount, requiring an array of analytical methods including mass spectrometry. The incorporation of non-canonical amino acids, such as for synthetic selenoproteins, creates additional challenges. A comprehensive strategy to characterize selenoproteins should serve dual purposes of providing sequence confirmation and mapping of selenocysteine bridge locations and the identification of unanticipated side products. In the present study, a combined approach exploiting the benefits of both top-down and bottom-up mass spectrometry was developed. Both electron-transfer/higher-energy collision dissociation and 213 nm ultraviolet photodissociation were utilized to provide complementary information, allowing high quality characterization, localization of diselenide bridges for complex proteins, and the identification of previously unreported selenoprotein dimers.


Assuntos
Selenocisteína , Selenoproteínas , Espectrometria de Massas/métodos , Selenocisteína/análise , Selenoproteínas/química , Selenoproteínas/metabolismo
5.
Free Radic Biol Med ; 190: 320-338, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35987423

RESUMO

Human thioredoxin reductase (TrxR) is a selenoprotein with a central role in cellular redox homeostasis, utilizing a highly reactive and solvent-exposed selenocysteine (Sec) residue in its active site. Pharmacological modulation of TrxR can be obtained with several classes of small compounds showing different mechanisms of action, but most often dependent upon interactions with its Sec residue. The clinical implications of TrxR modulation as mediated by small compounds have been studied in diverse diseases, from rheumatoid arthritis and ischemia to cancer and parasitic infections. The possible involvement of TrxR in these diseases was in some cases serendipitously discovered, by finding that existing clinically used drugs are also TrxR inhibitors. Inhibiting isoforms of human TrxR is, however, not the only strategy for human disease treatment, as some pathogenic parasites also depend upon Sec-containing TrxR variants, including S. mansoni, B. malayi or O. volvulus. Inhibiting parasite TrxR has been shown to selectively kill parasites and can thus become a promising treatment strategy, especially in the context of quickly emerging resistance towards other drugs. Here we have summarized the basis for the targeting of selenoprotein TrxR variants with small molecules for therapeutic purposes in different human disease contexts. We discuss how Sec engagement appears to be an indispensable part of treatment efficacy and how some therapeutically promising compounds have been evaluated in preclinical or clinical studies. Several research questions remain before a wider application of selenoprotein TrxR inhibition as a first-line treatment strategy might be developed. These include further mechanistic studies of downstream effects that may mediate treatment efficacy, identification of isoform-specific enzyme inhibition patterns for some given therapeutic compounds, and the further elucidation of cell-specific effects in disease contexts such as in the tumor microenvironment or in host-parasite interactions, and which of these effects may be dependent upon the specific targeting of Sec in distinct TrxR isoforms.


Assuntos
Neoplasias , Tiorredoxina Dissulfeto Redutase , Humanos , Neoplasias/tratamento farmacológico , Selenocisteína/química , Selenoproteínas/química , Microambiente Tumoral
6.
Food Res Int ; 158: 111558, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35840250

RESUMO

Selenium (Se) is critical for human health, but human intake of Se is often inadequate. Organic forms of dietary Se are considered safe and more bioavailable than inorganic forms. Along with a generally high nutritional value, sprouts are sensitive to Se treatment. This study used selenomethionine and methylselenocysteine solutions to cultivate Se-enriched sprouts under an optimized hydroponic condition. Content change and transformations of the selenoamino acids were analyzed by a developed HPLC-ESI-MS/MS method. Uptake of both selenomethionine and methylselenocysteine was dose-dependent and involved active transport and passive diffusion, as demonstrated by the respiratory and aquaporin inhibition assays. Passive diffusion played a dominant role. Free methylselenocysteine was the predominant form in samples. Selenomethionine and methylselenocysteine were capable of mutual transformation. Moreover, the selenoprotein generation was associated with the increasing Se concentration of the culture solutions. The results provided scientific references for the efficient utilization of organic Se in sprouts.


Assuntos
Compostos Organosselênicos , Raphanus , Antiácidos , Compostos Organosselênicos/química , Raphanus/química , Selenometionina/química , Selenoproteínas/química , Espectrometria de Massas em Tandem , Vitaminas/análise
7.
Anal Chem ; 94(27): 9636-9647, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35763570

RESUMO

Selenium, as an essential trace element of life, is closely related to human health and is required to produce selenoproteins, a family of important functional proteins in many living organisms. All selenoproteins contain a special amino acid, selenocysteine, which often serves as their active-site residue, and the expression and activity of selenoproteins are fine-tuned. However, the turnover dynamics of selenoproteome has never been systematically investigated, especially in a site-specific manner for selenocysteines. In the current work, we developed a chemical proteomic strategy named "SElenoprotein Turnover Rate by Isotope Perturbation (SETRIP)" to quantitatively monitor the turnover dynamics of selenoproteins at the proteomic level. The kinetic rates and half-lives of nine selenoproteins were accurately measured by combining Na274SeO3 metabolic labeling with pulse-chase chemoproteomics. The half-lives of selenoproteins were measured to range from 6 to 32 h with the housekeeping selenoprotein glutathione peroxidases (GPX4) showing a faster turnover rate, implying that the hierarchy regulation also exists in the turnover of selenoproteins in addition to expression and activity. Our study generated a global portrait of dynamic changes in the selenoproteome and provided important clues to study the roles of selenium in biology.


Assuntos
Selênio , Glutationa Peroxidase , Humanos , Proteômica , Selenocisteína , Selenoproteínas/química , Selenoproteínas/metabolismo
8.
Chemistry ; 28(16): e202200279, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112407

RESUMO

Human SELENOF is an endoplasmic reticulum (ER) selenoprotein that contains the redox active motif CXU (C is cysteine and U is selenocysteine), resembling the redox motif of thiol-disulfide oxidoreductases (CXXC). Like other selenoproteins, the challenge in accessing SELENOF has somewhat limited its full biological characterization thus far. Here we present the one-pot chemical synthesis of the thioredoxin-like domain of SELENOF, highlighted by the use of Fmoc-protected selenazolidine, native chemical ligations and deselenization reactions. The redox potential of the CXU motif, together with insulin turbidimetric assay suggested that SELENOF may catalyze the reduction of disulfides in misfolded proteins. Furthermore, we demonstrate that SELENOF is not a protein disulfide isomerase (PDI)-like enzyme, as it did not enhance the folding of the two protein models; bovine pancreatic trypsin inhibitor and hirudin. These studies suggest that SELENOF may be responsible for reducing the non-native disulfide bonds of misfolded glycoproteins as part of the quality control system in the ER.


Assuntos
Selenoproteínas , Dissulfetos/química , Humanos , Oxirredução , Biossíntese de Proteínas , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/metabolismo
9.
Methods Enzymol ; 662: 143-158, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101208

RESUMO

Selenoproteins, which contain the 21st amino acid selenocysteine, play roles in maintaining cellular redox homeostasis. Many open questions remain in the field of selenoprotein biology, including the functions of a number of uncharacterized human selenoproteins, and the properties of selenocysteine compared to its analogous amino acid cysteine. The mechanism of selenocysteine incorporation involves an intricate machinery that deviates from the mechanism of incorporation for the canonical 20 amino acids. As a result, recombinant expression of selenoproteins has been historically challenging, and has hindered a deeper evaluation of selenoprotein biology. Genetic code expansion methods, which incorporate protected analogs of selenocysteine, allow the endogenous selenocysteine incorporation mechanism to be bypassed entirely to facilitate selenoprotein expression. Here we present a method for incorporating a photocaged selenocysteine amino acid (DMNB-Sec) into human selenoproteins directly in mammalian cells. This approach offers the opportunity to study human selenoproteins in their native cellular environment and should advance our understanding of selenoprotein biology.


Assuntos
Selenocisteína , Selenoproteínas , Animais , Cisteína/metabolismo , Código Genético , Humanos , Mamíferos/genética , Biossíntese de Proteínas , Selenocisteína/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
10.
Methods Enzymol ; 662: 119-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101207

RESUMO

Cysteine thiyl radicals are implicated as cofactors in a variety of enzymatic transformations, as well as transient byproducts of oxidative stress, yet their reactivity has undermined their detailed study. Selenocysteine exhibits a lower corresponding selenyl radical reduction potential, thus taming this radical reactivity without significant steric perturbation, potentially affording a glimpse into otherwise fleeting events in thiyl radical catalysis. In this chapter, we describe a suite of fusion protein constructs for general and efficient production of site-specifically incorporated selenoproteins by a recently developed nonsense suppression technology. As a proof of concept, we produced NikJ, a member of the radical S-adenosyl methionine enzyme family involved in the biosynthesis of peptidyl nucleoside antibiotics. We place emphasis throughout the plasmid assembly, protein expression, and selenium quantitation on accommodating the structural and functional diversity of thiyl radical enzymes. The protocol produces NikJ with near quantitative selenocysteine insertion, 50% nonsense read-through, and facile protein purification.


Assuntos
Selenocisteína , Selenoproteínas , Cisteína/metabolismo , Proteômica , S-Adenosilmetionina/metabolismo , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
11.
Methods Enzymol ; 662: 227-240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101211

RESUMO

Selenocysteine (Sec, U) is the 21st amino acid, and proteins with selenocysteine are defined as selenoproteins. The currently known selenoproteins are all featured by the presence of selenocysteine insertion sequence (SECIS) on their mRNA, and SECIS plays an essential role in the selenocysteine insertion mechanism. However, due to the extremely low occurrences of selenoproteins in a whole proteome (e.g., only 25 selenoproteins in the human proteome) and the low sequence conservation of SECIS, analysis of selenoproteins and discovery of new selenoproteins exclusively on SECIS are intrinsically challenging. To this end, the selenocysteine-specific mass spectrometry (SecMS) and SECIS-independent selenoprotein (SIS) database are developed, showing abilities to profile whole selenoproteomes sensitively and to discover potential new selenoproteins. Here, we detail the SecMS strategy and propose it will advance the exploration for new selenoproteins and functional studies of selenoproteins.


Assuntos
Elementos de DNA Transponíveis , Selenocisteína , Humanos , Espectrometria de Massas , Proteoma/química , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
12.
Methods Enzymol ; 662: 187-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101210

RESUMO

Selenoproteins comprise a small group of selenocysteine (Sec) containing proteins, often involved in redox homeostasis. While Sec is functionally similar to cysteine (Cys), with both acting as protein-centered nucleophiles, chemoproteomic strategies employing electrophilic probes have often failed to rigorously identify Sec residues, due to their relatively low abundance with respect to Cys across a proteome. To improve the enrichment and detection of selenoproteins, herein we describe a chemoproteomic strategy that relies on the unique properties of Sec as compared to Cys, such as reduced pKa and the unique isotopic distribution of selenium. Low pH electrophilic probe labeling of mouse proteomes reduces Cys reactivity, resulting in increased identification of most soluble selenoproteins. This quantitative chemoproteomic platform provides a method to reliably measure changes in selenoprotein abundance across growth conditions as well as quantify inhibition by selenoprotein specific inhibitors, such as Auranofin.


Assuntos
Selênio , Selenocisteína , Animais , Cisteína/química , Concentração de Íons de Hidrogênio , Camundongos , Proteoma , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/metabolismo
13.
Methods Enzymol ; 662: 275-296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101215

RESUMO

Selenoprotein O is one of 25 human selenoproteins that incorporate the 21st amino acid selenocysteine. Recent studies have revealed a previously undocumented mechanism of redox regulation by which SelO protects cells from oxidative damage. SelO catalyzes the covalent addition of AMP from ATP to the hydroxyl side chain of protein substrates in a post translational modification known as AMPylation. Although AMPylation was discovered over 50 years ago, methods to detect and enrich substrates are limited. Here, we describe protocols to clone, purify, and identify the substrates of bacterial SelO using a biotinylated ATP analog. Identification of SelO substrates and the functional consequences of AMPylation will illuminate the significance of this evolutionarily conserved selenoprotein.


Assuntos
Processamento de Proteína Pós-Traducional , Selenoproteínas , Trifosfato de Adenosina/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Selenoproteínas/química , Selenoproteínas/genética , Selenoproteínas/metabolismo
14.
Methods Enzymol ; 662: 297-329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101216

RESUMO

Selenocysteine (Sec) is the 21st proteogenic amino acid and it is now widely accepted that Sec is involved in redox biochemistry when incorporated in proteins. However, many of the chemical mechanisms for Sec bioactivity remain unknown. Herein, we describe a derivative of Sec, alpha-methyl Sec ((αMe)Sec), that is a useful chemical tool to study selenoenzyme mechanisms. (αMe)Sec is identical to Sec except the Cα-H is replaced with a Cα-methyl group, which prevents this derivative from undergoing oxygen-mediated ß-syn elimination to dehydroalanine, which is a common problem with Sec-containing peptides and proteins. Thus, since (αMe)Sec-containing peptides and proteins cannot lose the side-chain selenium atom when oxidized, mechanistic studies can be performed that are not always possible with Sec. In this chapter, we provide detailed methods for the incorporation of (αMe)Sec into peptides using solid phase peptide synthesis and subsequent incorporation into mammalian thioredoxin reductase using protein semisynthesis. We then provide two examples of how (αMe)Sec has been used as a chemical tool to study selenoenzyme mechanism. Finally, we discuss future applications where we envision (αMe)Sec will be useful.


Assuntos
Selênio , Selenocisteína , Animais , Mamíferos/metabolismo , Oxirredução , Selenocisteína/análogos & derivados , Selenocisteína/química , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/metabolismo , Técnicas de Síntese em Fase Sólida
15.
J Mol Biol ; 434(8): 167199, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-34411545

RESUMO

The presence of selenocysteine in a protein confers many unique properties that make the production of recombinant selenoproteins desirable. Targeted incorporation of Sec into a protein of choice is possible by exploiting elongation factor Tu-dependent reassignment of UAG codons, a strategy that has been continuously improved by a variety of means. Improving selenoprotein yield by directed evolution requires selection and screening markers that are titratable, have a high dynamic range, enable high-throughput screening, and can discriminate against nonspecific UAG decoding. Current screening techniques are limited to a handful of reporters where a cysteine (Cys) or Sec residue normally affords activity. Unfortunately, these existing Cys/Sec-dependent reporters lack the dynamic range of more ubiquitous reporters or suffer from other limitations. Here we present a versatile strategy to adapt established reporters for specific Sec incorporation. Inteins are intervening polypeptides that splice themselves from the precursor protein in an autocatalytic splicing reaction. Using an intein that relies exclusively on Sec for splicing, we show that this intein cassette can be placed in-frame within selection and screening markers, affording reporter activity only upon successful intein splicing. Furthermore, because functional splicing can only occur when a catalytic Sec is present, the amount of synthesized reporter directly measures UAG-directed Sec incorporation. Importantly, we show that results obtained with intein-containing reporters are comparable to the Sec incorporation levels determined by mass spectrometry of isolated recombinant selenoproteins. This result validates the use of these intein-containing reporters to screen for evolved components of a translation system yielding increased selenoprotein amounts.


Assuntos
Genes Reporter , Inteínas , Mutagênese Sítio-Dirigida , Proteínas Recombinantes , Selenocisteína , Selenoproteínas , Códon de Terminação/genética , Códon de Terminação/metabolismo , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Inteínas/genética , Mutagênese Sítio-Dirigida/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/química , Selenoproteínas/genética
16.
J Cell Biochem ; 123(3): 532-542, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935169

RESUMO

Selenium (Se) is incorporated into the body via the selenocysteine (Sec) biosynthesis pathway, which is critical in the synthesis of selenoproteins, such as glutathione peroxidases and thioredoxin reductases. Selenoproteins, which play a key role in several biological processes, including ferroptosis, drug resistance, endoplasmic reticulum stress, and epigenetic processes, are guided by Se uptake. In this review, we critically analyze the molecular mechanisms of Se metabolism and its potential as a therapeutic target for cancer. Sec insertion sequence binding protein 2 (SECISBP2), which is a positive regulator for the expression of selenoproteins, would be a novel prognostic predictor and an alternate target for cancer. We highlight strategies that attempt to develop a novel Se metabolism-based approach to uncover a new metabolic drug target for cancer therapy. Moreover, we expect extensive clinical use of SECISBP2 as a specific biomarker in cancer therapy in the near future. Of note, scientists face additional challenges in conducting successful research, including investigations on anticancer peptides to target SECISBP2 intracellular protein.


Assuntos
Neoplasias , Selênio , Proteínas de Transporte/metabolismo , Humanos , Redes e Vias Metabólicas , Neoplasias/tratamento farmacológico , Selênio/metabolismo , Selênio/uso terapêutico , Selenoproteínas/química , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
17.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885702

RESUMO

Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure-activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.


Assuntos
Conformação de Ácido Nucleico , Selênio/química , Selenocisteína/genética , Selenoproteínas/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Selenocisteína/biossíntese , Selenocisteína/química , Selenoproteínas/biossíntese , Selenoproteínas/química , Selenoproteínas/ultraestrutura , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34639150

RESUMO

This review presents the latest data on the importance of selenium nanoparticles in human health, their use in medicine, and the main known methods of their production by various methods. In recent years, a multifaceted study of nanoscale complexes in medicine, including selenium nanoparticles, has become very important in view of a number of positive features that make it possible to create new drugs based on them or significantly improve the properties of existing drugs. It is known that selenium is an essential trace element that is part of key antioxidant enzymes. In mammals, there are 25 selenoproteins, in which selenium is a key component of the active site. The important role of selenium in human health has been repeatedly proven by several hundred works in the past few decades; in recent years, the study of selenium nanocomplexes has become the focus of researchers. A large amount of accumulated data requires generalization and systematization in order to improve understanding of the key mechanisms and prospects for the use of selenium nanoparticles in medicine, which is the purpose of this review.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antineoplásicos/administração & dosagem , Antioxidantes/administração & dosagem , Nanomedicina , Nanopartículas/administração & dosagem , Selênio/administração & dosagem , Selenoproteínas/metabolismo , Animais , Humanos , Nanopartículas/química , Selênio/química , Selenoproteínas/química
19.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34681834

RESUMO

The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches.


Assuntos
Etanolamina/metabolismo , Etanolaminofosfotransferase/fisiologia , Ativação Linfocitária , Fosfolipídeos/metabolismo , Selenoproteínas/fisiologia , Linfócitos T/fisiologia , Reprogramação Celular , Humanos , Fosfatidiletanolaminas/metabolismo , Selênio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/química , Regulação para Cima
20.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681630

RESUMO

Many organisms reductively assimilate selenite to synthesize selenoprotein. Although the thioredoxin system, consisting of thioredoxin 1 (TrxA) and thioredoxin reductase with NADPH, can reduce selenite and is considered to facilitate selenite assimilation, the detailed mechanism remains obscure. Here, we show that selenite was reduced by the thioredoxin system from Pseudomonas stutzeri only in the presence of the TrxA (PsTrxA), and this system was specific to selenite among the oxyanions examined. Mutational analysis revealed that Cys33 and Cys36 residues in PsTrxA are important for selenite reduction. Free thiol-labeling assays suggested that Cys33 is more reactive than Cys36. Mass spectrometry analysis suggested that PsTrxA reduces selenite via PsTrxA-SeO intermediate formation. Furthermore, an in vivo formate dehydrogenase activity assay in Escherichia coli with a gene disruption suggested that TrxA is important for selenoprotein biosynthesis. The introduction of PsTrxA complemented the effects of TrxA disruption in E. coli cells, only when PsTrxA contained Cys33 and Cys36. Based on these results, we proposed the early steps of the link between selenite and selenoprotein biosynthesis via the formation of TrxA-selenium complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Pseudomonas stutzeri/metabolismo , Ácido Selenioso/metabolismo , Selenoproteínas/biossíntese , Tiorredoxinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Formiato Desidrogenases/metabolismo , Oxirredução , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Ácido Selenioso/química , Selenoproteínas/química , Tiorredoxinas/química , Tiorredoxinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...