Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
1.
J Neurochem ; 163(2): 133-148, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35892177

RESUMO

Depression is a global health problem, and there is a pressing need for a better understanding of its pathogenesis. Semaphorin 3B (Sema 3B) is an important axon guidance molecule that is primarily expressed in neurons and contributes to synaptic plasticity. Our previous studies using a high-throughput microarray assay suggested that Sema 3B expression was tremendously decreased during the development of depression, but the specific role and mechanisms of Sema 3B in depression are still unknown. Herein, we report that levels of Sema 3B protein are decreased in the hippocampus and serum of chronic mild stress (CMS)-treated mice. Increasing the levels of Sema 3B, either by injecting AAV-Sema 3B into the hippocampus or by injecting recombinant Sema 3B protein into the lateral ventricles, alleviated CMS-induced depression-like behaviours and enhanced the resistance to acute stress by increasing dendritic spine density in hippocampal neurons. In contrast, interfering with the function of Sema 3B by injecting anti-Sema 3B antibody into the lateral ventricles decreased the resistance to acute stress. In vitro, corticosterone (CORT) treatment decreased the survival rate and protein levels of Sema 3B and synapse-associated proteins in HT22 cells. Overexpression of Sema 3B improved the decreased survival rate caused by CORT by inhibiting apoptosis and increasing levels of synaptic-associated proteins, and knockdown of Sema 3B reduces the cellular resistance to CORT and the levels of synapse-associated proteins. These findings represent the first evidence for the neuroprotective mechanism of Sema 3B against stresses, suggesting that Sema 3B could be a promising novel target for the prevention and treatment of depression.


Assuntos
Depressão , Semaforinas , Animais , Camundongos , Apoptose , Corticosterona , Depressão/tratamento farmacológico , Hipocampo , Plasticidade Neuronal/fisiologia , Proteínas , Semaforinas/fisiologia , Comportamento Animal
2.
Pediatr Neurol ; 126: 65-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740135

RESUMO

BACKGROUND: Semaphorins and plexins are ligands and cell surface receptors that regulate multiple neurodevelopmental processes such as axonal growth and guidance. PLXNA3 is a plexin gene located on the X chromosome that encodes the most widely expressed plexin receptor in fetal brain, plexin-A3. Plexin-A3 knockout mice demonstrate its role in semaphorin signaling in vivo. The clinical manifestations of semaphorin/plexin neurodevelopmental disorders have been less widely explored. This study describes the neurological and neurodevelopmental phenotypes of boys with maternally inherited hemizygous PLXNA3 variants. METHODS: Data-sharing through GeneDx and GeneMatcher allowed identification of individuals with autism or intellectual disabilities (autism/ID) and hemizygous PLXNA3 variants in collaboration with their physicians and genetic counselors, who completed questionnaires about their patients. In silico analyses predicted pathogenicity for each PLXNA3 variant. RESULTS: We assessed 14 boys (mean age, 10.7 [range 2 to 25] years) with maternally inherited hemizygous PLXNA3 variants and autism/ID ranging from mild to severe. Other findings included fine motor dyspraxia (92%), attention-deficit/hyperactivity traits, and aggressive behaviors (63%). Six patients (43%) had seizures. Thirteen boys (93%) with PLXNA3 variants showed novel or very low allele frequencies and probable damaging/disease-causing pathogenicity in one or more predictors. We found a genotype-phenotype correlation between PLXNA3 cytoplasmic domain variants (exons 22 to 32) and more severe neurodevelopmental disorder phenotypes (P < 0.05). CONCLUSIONS: We report 14 boys with maternally inherited, hemizygous PLXNA3 variants and a range of neurodevelopmental disorders suggesting a novel X-linked intellectual disability syndrome. Greater understanding of PLXNA3 variant pathogenicity in humans will require additional clinical, computational, and experimental validation.


Assuntos
Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular/fisiologia , Deficiência Intelectual/genética , Proteínas do Tecido Nervoso/fisiologia , Receptores de Superfície Celular/genética , Semaforinas/fisiologia , Adolescente , Adulto , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Estudos de Associação Genética , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Transdução de Sinais/fisiologia , Adulto Jovem
3.
PLoS One ; 16(6): e0252868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185781

RESUMO

Regulation of dendritic cell functions is a complex process in which several mediators play diverse roles as a network in a context-dependent manner. The precise mechanisms underlying dendritic cell functions have remained to be addressed. Semaphorins play crucial roles in regulation of various cell functions. We previously revealed that Semaphorin 3E (Sema3E) contributes to regulation of allergen-induced airway pathology partly mediated by controlling recruitment of conventional dendritic cell subsets in vivo, though the underlying mechanism remained elusive. In this study, we investigate the potential regulatory role of Sema3E in dendritic cells. We demonstrated that bone marrow-derived dendritic cells differentiated from Sema3e-/- progenitors have an enhanced migration capacity both at the baseline and in response to CCL21. The enhanced migration ability of Sema3E dendritic cells was associated with an overexpression of the chemokine receptor (CCR7), elevated Rac1 GTPase activity and F-actin polymerization. Using a mouse model of allergic airway sensitization, we observed that genetic deletion of Sema3E leads to a time dependent upregulation of CCR7 on CD11b+ conventional dendritic cells in the lungs and mediastinal lymph nodes. Furthermore, aeroallergen sensitization of Sema3e-/- mice lead to an enhanced expression of PD-L2 and IRF-4 as well as enhanced allergen uptake in pulmonary CD11b+ DC, compared to wild type littermates. Collectively, these data suggest that Sema3E implicates in regulation of dendritic cell functions which could be considered a basis for novel immunotherapeutic strategies for the diseases associated with defective dendritic cells in the future.


Assuntos
Alérgenos/imunologia , Células da Medula Óssea/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Pneumonia/imunologia , Semaforinas/fisiologia , Actinas/metabolismo , Animais , Movimento Celular , Quimiocina CCL21/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeos/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Receptores CCR7/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
4.
Neuroendocrinology ; 111(5): 421-441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32365351

RESUMO

INTRODUCTION: Gonadotropin-releasing hormone (GnRH) deficiency causes hypogonadotropic hypogonadism (HH), a rare genetic disorder that impairs sexual reproduction. HH can be due to defective GnRH-secreting neuron development or function and may be associated with other clinical signs in overlapping genetic syndromes. With most of the cases being idiopathic, genetics underlying HH is still largely unknown. OBJECTIVE: To assess the contribution of mutated Semaphorin 3G (SEMA3G) in the onset of a syndromic form of HH, characterized by intellectual disability and facial dysmorphic features. METHOD: By combining homozygosity mapping with exome sequencing, we identified a novel variant in the SEMA3G gene. We then applied mouse as a model organism to examine SEMA3Gexpression and its functional requirement in vivo. Further, we applied homology modelling in silico and cell culture assays in vitro to validate the pathogenicity of the identified gene variant. RESULTS: We found that (i) SEMA3G is expressed along the migratory route of GnRH neurons and in the developing pituitary, (ii) SEMA3G affects GnRH neuron development, but is redundant in the adult hypothalamic-pituitary-gonadal axis, and (iii) mutated SEMA3G alters binding properties in silico and in vitro to its PlexinA receptors and attenuates its effect on the migration of immortalized GnRH neurons. CONCLUSION: In silico, in vitro, and in vivo models revealed that SEMA3G regulates GnRH neuron migration and that its mutation affecting receptor selectivity may be responsible for the HH-related defects.


Assuntos
Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Sistema Hipotálamo-Hipofisário/metabolismo , Semaforinas/fisiologia , Animais , Células Cultivadas , Consanguinidade , Anormalidades Craniofaciais/etiologia , Deficiências do Desenvolvimento/etiologia , Homozigoto , Humanos , Hipogonadismo/complicações , Deficiência Intelectual/etiologia , Masculino , Camundongos , Linhagem , Irmãos , Síndrome
5.
Biochem Soc Trans ; 48(6): 2875-2890, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33258873

RESUMO

In vertebrates, the semaphorin family of proteins is composed of 21 members that are divided into five subfamilies, i.e. classes 3 to 7. Semaphorins play crucial roles in regulating multiple biological processes, such as neural remodeling, tissue regeneration, cancer progression, and, especially, in immunological regulation. Semaphorin 4D (SEMA4D), also known as CD100, is an important member of the semaphorin family and was first characterized as a lymphocyte-specific marker. SEMA4D has diverse effects on immunologic processes, including immune cell proliferation, differentiation, activation, and migration, through binding to its specific membrane receptors CD72, PLXNB1, and PLXNB2. Furthermore, SEMA4D and its underlying signaling have been increasingly linked with several immunological diseases. This review focuses on the significant immunoregulatory role of SEMA4D and the associated underlying mechanisms, as well as the potential application of SEMA4D as a diagnostic marker and therapeutic target for the treatment of immunological diseases.


Assuntos
Antígenos CD/fisiologia , Doenças do Sistema Imunitário/metabolismo , Linfócitos/metabolismo , Regeneração , Semaforinas/fisiologia , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação de Linfócitos B/biossíntese , Artrite Reumatoide/metabolismo , Linfócitos B/imunologia , Diferenciação Celular , Movimento Celular , Proliferação de Células , Dermatite Alérgica de Contato/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Sistema Imunitário , Ligantes , Linfócitos/citologia , Glicoproteínas de Membrana/química , Esclerose Múltipla/metabolismo , Neoplasias/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Ligação Proteica , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/metabolismo , Semaforinas/imunologia , Transdução de Sinais/imunologia
6.
Sci Rep ; 10(1): 16075, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999322

RESUMO

Intra-retinal axon guidance involves a coordinated expression of transcription factors, axon guidance genes, and secretory molecules within the retina. Pax6, the master regulator gene, has a spatio-temporal expression typically restricted till neurogenesis and fate-specification. However, our observation of persistent expression of Pax6 in mature RGCs led us to hypothesize that Pax6 could play a major role in axon guidance after fate specification. Here, we found significant alteration in intra-retinal axon guidance and fasciculation upon knocking out of Pax6 in E15.5 retina. Through unbiased transcriptome profiling between Pax6fl/fl and Pax6-/- retinas, we revealed the mechanistic insight of its role in axon guidance. Our results showed a significant increase in the expression of extracellular matrix molecules and decreased expression of retinal fate specification and neuron projection guidance molecules. Additionally, we found that EphB1 and Sema5B are directly regulated by Pax6 owing to the guidance defects and improper fasciculation of axons. We conclude that Pax6 expression post fate specification of RGCs is necessary for regulating the expression of axon guidance genes and most importantly for maintaining a conducive ECM through which the nascent axons get guided and fasciculate to reach the optic disc.


Assuntos
Fasciculação Axônica/fisiologia , Orientação de Axônios/fisiologia , Fator de Transcrição PAX6/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Fasciculação Axônica/genética , Orientação de Axônios/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Matriz Extracelular/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurogênese/genética , Neurogênese/fisiologia , Fator de Transcrição PAX6/deficiência , Fator de Transcrição PAX6/genética , Gravidez , RNA-Seq , Receptor EphB1/genética , Receptor EphB1/fisiologia , Retina/embriologia , Retina/crescimento & desenvolvimento , Retina/fisiologia , Células Ganglionares da Retina/citologia , Semaforinas/genética , Semaforinas/fisiologia
7.
Pharmacol Res ; 160: 105044, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32590102

RESUMO

Small vessel diseases, such as ischemic retinopathy and cerebral small vessel disease (CSVD), are increasingly recognized in patients with diabetes, dementia and cerebrovascular disease. The mechanisms of small vessel diseases are poorly understood, but the latest studies suggest a role for semaphorins. Initially identified as axon guidance cues, semaphorins are mainly studied in neuronal morphogenesis, neural circuit assembly, and synapse assembly and refinement. In recent years, semaphorins have been found to play important roles in regulating vascular growth and development and in many pathophysiological processes, including atherosclerosis, angiogenesis after stroke and retinopathy. Growing evidence indicates that semaphorins affect the occurrence, perfusion and regression of both the macrovasculature and microvasculature by regulating the proliferation, apoptosis, migration, barrier function and inflammatory response of endothelial cells, vascular smooth muscle cells (VSMCs) and pericytes. In this review, we concentrate on the regulatory effects of semaphorins on the cell components of the vessel wall and their potential roles in microvascular diseases, especially in the retina and cerebral small vessel. Finally, we discuss potential molecular approaches in targeting semaphorins as therapies for microvascular disorders in the eye and brain.


Assuntos
Vasos Sanguíneos/fisiologia , Circulação Cerebrovascular/fisiologia , Olho/irrigação sanguínea , Semaforinas/fisiologia , Animais , Vasos Sanguíneos/fisiopatologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Humanos , Neovascularização Patológica , Vasos Retinianos/fisiologia
8.
Dev Dyn ; 249(10): 1285-1295, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32406957

RESUMO

BACKGROUND: Semaphorin6A (Sema6A) and its PlexinA2 (PlxnA2) receptor canonically function as repulsive axon guidance cues. To understand downstream signaling mechanisms, we performed a microarray screen and identified the "clutch molecule" shootin-1 (shtn-1) as a transcriptionally repressed target. Shtn-1 is a key proponent of cell migration and neuronal polarization and must be regulated during nervous system development. The mechanisms of Shtn-1 regulation and the phenotypic consequences of loss of repression are poorly understood. RESULTS: We demonstrate shtn-1 overexpression results in impaired migration of the optic vesicles, lack of retinal pigmented epithelium, and pathfinding errors of retinotectal projections. We also observed patterning defects in the peripheral nervous system. Importantly, these phenotypes were rescued by overexpressing PlxnA2. CONCLUSIONS: We demonstrate a functional role for repression of shtn-1 by PlxnA2 in development of the eyes and peripheral nervous system in zebrafish. These results demonstrate that careful regulation of shtn-1 is critical for development of the nervous system.


Assuntos
Proteínas do Citoesqueleto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/fisiologia , Sistema Nervoso/embriologia , Receptores de Superfície Celular/fisiologia , Semaforinas/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Axônios/fisiologia , Padronização Corporal , Movimento Celular , Proteínas do Citoesqueleto/genética , Humanos , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Sistema Nervoso Periférico/fisiologia , Fenótipo , Receptores de Superfície Celular/genética , Epitélio Pigmentado da Retina/fisiologia , Semaforinas/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
9.
Front Immunol ; 11: 346, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210960

RESUMO

The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.


Assuntos
Doenças Autoimunes/etiologia , Neovascularização Fisiológica/fisiologia , Semaforinas/fisiologia , Animais , Doenças Autoimunes/tratamento farmacológico , Moléculas de Adesão Celular/fisiologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas do Tecido Nervoso/fisiologia , Neuropilinas/fisiologia , Semaforinas/antagonistas & inibidores , Semaforinas/química
10.
J Neurosci ; 39(34): 6656-6667, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31300520

RESUMO

The growth of axons corresponding to different neuronal subtypes is governed by unique expression profiles of molecules on the growth cone. These molecules respond to extracellular cues either locally though cell adhesion interactions or over long distances through diffusible gradients. Here, we report that that the cell adhesion molecule ALCAM (CD166) can act as an extracellular substrate to selectively promote the growth of murine midbrain dopamine (mDA) neuron axons through a trans-heterophilic interaction with mDA-bound adhesion molecules. In mixed-sex primary midbrain cultures, the growth-promoting effect of ALCAM was abolished by neutralizing antibodies for components of the Semaphorin receptor complex Nrp1, Chl1, or L1cam. The ALCAM substrate was also found to modulate the response of mDA neurites to soluble semaphorins in a context-specific manner by abolishing the growth-promoting effect of Sema3A but inducing a branching response in the presence of Sema3C. These findings identify a previously unrecognized guidance mechanism whereby cell adhesion molecules act in trans to modulate the response of axonal growth cones to soluble gradients to selectively orchestrate the growth and guidance of mDA neurons.SIGNIFICANCE STATEMENT The mechanisms governing the axonal connectivity of midbrain dopamine (mDA) neurons during neural development have remained rather poorly understood relative to other model systems for axonal growth and guidance. Here, we report a series of novel interactions between proteins previously not identified in the context of mDA neuronal growth. Significantly, the results suggest a previously unrecognized mechanism involving the convergence in signaling between local, adhesion and long-distance, soluble cues. A better understanding of the molecules and mechanisms involved in establishment of the mDA system is important as a part of ongoing efforts to understand the consequence of conditions that may result from aberrant connectivity and also for cell replacement strategies for Parkinson's disease.


Assuntos
Molécula de Adesão de Leucócito Ativado/fisiologia , Axônios/fisiologia , Moléculas de Adesão Celular/fisiologia , Neurônios Dopaminérgicos/fisiologia , Mesencéfalo/citologia , Mesencéfalo/crescimento & desenvolvimento , Molécula L1 de Adesão de Célula Nervosa/fisiologia , Semaforinas/fisiologia , Animais , Anticorpos Bloqueadores/farmacologia , Feminino , Cones de Crescimento , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
11.
J Neurosci ; 39(32): 6233-6250, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31182634

RESUMO

Dendritic spines in the developing mammalian neocortex are initially overproduced and then eliminated during adolescence to achieve appropriate levels of excitation in mature networks. We show here that the L1 family cell adhesion molecule Close Homolog of L1 (CHL1) and secreted repellent ligand Semaphorin 3B (Sema3B) function together to induce dendritic spine pruning in developing cortical pyramidal neurons. Loss of CHL1 in null mutant mice in both genders resulted in increased spine density and a greater proportion of immature spines on apical dendrites in the prefrontal and visual cortex. Electron microscopy showed that excitatory spine synapses with postsynaptic densities were increased in the CHL1-null cortex, and electrophysiological recording in prefrontal slices from mutant mice revealed deficiencies in excitatory synaptic transmission. Mechanistically, Sema3B protein induced elimination of spines on apical dendrites of cortical neurons cultured from wild-type but not CHL1-null embryos. Sema3B was secreted by the cortical neuron cultures, and its levels increased when cells were treated with the GABA antagonist gabazine. In vivo CHL1 was coexpressed with Sema3B in pyramidal neuron subpopulations and formed a complex with Sema3B receptor subunits Neuropilin-2 and PlexinA4. CHL1 and NrCAM, a closely related L1 adhesion molecule, localized primarily to distinct spines and promoted spine elimination to Sema3B or Sema3F, respectively. These results support a new concept in which selective spine elimination is achieved through different secreted semaphorins and L1 family adhesion molecules to sculpt functional neural circuits during postnatal maturation.SIGNIFICANCE STATEMENT Dendritic spines in the mammalian neocortex are initially overproduced and then pruned in adolescent life through unclear mechanisms to sculpt maturing cortical circuits. Here, we show that spine and excitatory synapse density of pyramidal neurons in the developing neocortex is regulated by the L1 adhesion molecule, Close Homolog of L1 (CHL1). CHL1 mediated spine pruning in response to the secreted repellent ligand Semaphorin 3B and associated with receptor subunits Neuropilin-2 and PlexinA4. CHL1 and related L1 adhesion molecule NrCAM localized to distinct spines, and promoted spine elimination to Semaphorin 3B and -3F, respectively. These results support a new concept in which selective elimination of individual spines and nascent synapses can be achieved through the action of distinct secreted semaphorins and L1 adhesion molecules.


Assuntos
Moléculas de Adesão Celular/fisiologia , Espinhas Dendríticas/fisiologia , Córtex Pré-Frontal/fisiologia , Semaforinas/fisiologia , Córtex Visual/fisiologia , Envelhecimento/fisiologia , Animais , Moléculas de Adesão Celular/deficiência , Células Cultivadas , Feminino , Agonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Neuropilina-2/fisiologia , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Mapeamento de Interação de Proteínas , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Piridazinas/farmacologia , Receptores de Superfície Celular/fisiologia , Transmissão Sináptica , Córtex Visual/citologia , Córtex Visual/crescimento & desenvolvimento
12.
Anal Biochem ; 574: 15-22, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30879960

RESUMO

Human semaphorin 4D (SEMA4D), a type I integral membrane glycoprotein, regulates key cellular functions (e.g. cell-cell communication, platelet activation). Its 120 kDa extracellular region can be shed from the membrane to release soluble SEMA4D (sSEMA4D). Studies on circulating sSEMA4D levels are mostly performed with poorly characterized assays and use serum and plasma as matrix. We developed and validated a sandwich ELISA utilizing two monoclonal antibodies with resolved epitopes and determined affinities. Human serum and plasma samples were analyzed, and the influence of protease activity on sSEMA4D concentration was tested by collecting samples in the presence of the protease inhibitor TAPI-1. Both antibodies recognize conformational epitopes in the sema domain. Validation for plasma (EDTA, citrate, heparin) showed valid specificity, precision, accuracy, dilution linearity, and robustness. The assay shows a calibration range from 62.5 to 2000 pmol/L with a quantification limit of 31 pmol/L. sSEMA4D was significantly higher in serum than in plasma, whereas serum and plasma levels from samples collected in the presence of TAPI-1 showed no statistical difference. This ELISA provides a reliable tool for the quantification of sSEMA4D in human plasma. Serum is not recommended as matrix due to the accumulation of shed SEMA4D during blood coagulation altering serum sSEMA4D levels.


Assuntos
Antígenos CD/fisiologia , Ensaio de Imunoadsorção Enzimática/métodos , Semaforinas/fisiologia , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Epitopos/imunologia , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Semaforinas/imunologia
13.
Inflammation ; 42(4): 1252-1264, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30877507

RESUMO

Leukocyte transmigration through the blood vessel wall is a fundamental step of the inflammatory response and requires expression of adhesion molecule PECAM-1. Accumulating evidence implicates that semaphorin (Sema) 3F and its receptor neuropilin (NRP) 2 are central regulators in vascular biology. Herein, we assess the role of Sema3F in leukocyte migration in vitro and in vivo. To determine the impact of Sema3F on leukocyte recruitment in vivo, we used the thioglycollate-induced peritonitis model. After the induction of peritonitis, C57BL/6 mice were intraperitoneally (i.p.) injected daily with recombinant Sema3F or solvent for 3 days. Compared with solvent-treated controls, leukocyte count was increased in the peritoneal lavage of Sema3F-treated mice indicating that Sema3F promotes leukocyte extravasation into the peritoneal cavity. In line with this observation, stimulation of human endothelial cells with Sema3F enhanced the passage of peripheral blood mononuclear cells (PBMCs) through the endothelial monolayer in the transwell migration assays. Conversely, silencing of endothelial Sema3F by siRNA transfection dampened diapedesis of PBMCs through the endothelium in vitro. xMechanistically, Sema3F induced upregulation of adhesion molecule PECAM-1 in endothelial cells and in murine heart tissue shown by immunofluorescence and western blotting. The inhibition of PECAM-1 by blocking antibody HEC7 blunted Sema3F-induced leukocyte migration in transwell assays. SiRNA-based NRP2 knockdown reduced PECAM-1 expression and migration of PBMCs in Sema3F-treated endothelial cells, indicating that PECAM-1 expression and leukocyte migration in response to Sema3F depend on endothelial NRP2. To assess the regulation of Sema3F in human inflammatory disease, we collected serum samples of patients from day 0 to day 7 after survived out-of-hospital cardiac arrest (OHCA, n = 41). First, we demonstrated enhanced migration of PBMCs through endothelial cells exposed to the serum of patients after OHCA in comparison to the serum of patients with stable coronary artery disease or healthy volunteers. Remarkably, serum samples of OHCA patients contained significantly higher Sema3F protein levels compared with CAD patients (CAD, n = 37) and healthy volunteers (n = 11), suggesting a role of Sema3F in the pathophysiology of the inflammatory response after OHCA. Subgroup analysis revealed that elevated serum Sema3F levels after ROSC are associated with decreased survival, myocardial dysfunction, and prolonged vasopressor therapy, clinical findings that determine the outcome of post-resuscitation period after OHCA. The present study provides novel evidence that endothelial Sema3F controls leukocyte recruitment through a NRP2/PECAM-1-dependent mechanism. Sema3F serum concentrations are elevated following successful resuscitation suggesting that Sema3F might be involved in the inflammatory response after survived OHCA. Targeting the Sema3F/NRP2/PECAM-1 pathway could provide a novel approach to abolish overwhelming inflammation after resuscitation.


Assuntos
Parada Cardíaca/patologia , Inflamação/etiologia , Leucócitos Mononucleares/citologia , Semaforinas/fisiologia , Migração Transendotelial e Transepitelial , Animais , Estudos de Casos e Controles , Movimento Celular , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Camundongos , Neuropilina-2/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ressuscitação , Migração Transcelular de Célula
14.
Brain Res ; 1710: 209-219, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30599138

RESUMO

The corticospinal tract (CST) has a complex and long trajectory that originates in the cerebral cortex and ends in the spinal cord. Semaphorin 6A (Sema6A), a member of the semaphorin family, is an important regulator of CST axon guidance. Previous studies have shown that postnatal Sema6A mutant mice have CST defects at the midbrain-hindbrain boundary and medulla. However, the routes the aberrant fibers take throughout the Sema6A mutant brain remain unknown. In this study, we performed 3D reconstruction of immunostained CST fibers to reevaluate the details of the abnormal CST trajectories in the brains of adult Sema6A mutant mice. Our results showed that the axon guidance defects reported in early postnatal mutants were consistently observed in adulthood. Those abnormal trajectories revealed by 3D analysis of brain sections were, however, more complex and variable than previously thought. In addition, 3D analysis allowed us to identify a few new patterns of aberrant projections. First, a subset of fibers that separated from and descended in parallel to the main bundle projected laterally at the caudal pons, subsequently changed direction by turning caudally, and extended to the medulla. Second, some abnormal fibers returned to the correct trajectory after deviating substantially from the original tract. Third, some fibers reached the pyramidal decussation normally but did not enter the dorsal funiculus. Section immunostaining combined with 3D reconstruction is a powerful method to track long projection fibers and to examine the entire nerve tracts of both normal and abnormal animals.


Assuntos
Encéfalo/crescimento & desenvolvimento , Tratos Piramidais/crescimento & desenvolvimento , Semaforinas/fisiologia , Animais , Encéfalo/citologia , Camundongos Knockout , Técnicas de Rastreamento Neuroanatômico , Tratos Piramidais/citologia , Semaforinas/genética
15.
Pharmacol Res ; 137: 1-10, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30240825

RESUMO

Netrins and semaphorins are known as neuronal guidance molecules that are important to the facilitate patterning of the nervous system in embryonic development. In recent years, their function has been broadened to guide development in other systems, including the vascular system, where netrins and semaphorins critically contribute to the development of the vascular system. Evidence is accumulating that these guidance cues are also of critical importance in the biology of the mature endothelium by regulating the maintenance of endothelial quiescence. Here we review our current insights into the roles of netrins and semaphorins in endothelial cell survival, self-renewing, barrier function, response to wall shear stress, and control of the vascular tone. We also provide suggestions for future research into the functions of netrins and semaphorins in mature endothelial cell biology.


Assuntos
Células Endoteliais/fisiologia , Netrinas/fisiologia , Semaforinas/fisiologia , Animais , Vasos Sanguíneos/fisiologia , Humanos , Estresse Mecânico
16.
Nat Commun ; 9(1): 742, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467366

RESUMO

Semaphorin-4A (Sema4A) has been implicated in the co-stimulation of T cells and drives Th1 immune responses by binding to the receptor T-cell immunoglobulin and mucin domain protein 2 (Tim-2) in mice. Here we show that human, but not murine, Sema4A is preferentially expressed on antigen-presenting cells, and co-stimulates CD4+ T-cell proliferation and drives Th2 responses. By employing two independent cloning strategies, we demonstrate that Immunoglobulin-like transcript 4 (ILT-4) is a receptor for human SEMA4A (hSEMA4A) on activated CD4+ T cells. We also find hSEMA4A to be highly expressed in human asthmatic lung tissue, implying its potential function in disease pathogenesis. Our study defines a different biological function of hSEMA4A from its murine homolog through its binding to the receptor of ILT-4 to co-stimulate CD4+T cells and regulate Th2 cells differentiation.


Assuntos
Receptores Imunológicos/fisiologia , Semaforinas/fisiologia , Células Th2/citologia , Animais , Células Apresentadoras de Antígenos/citologia , Asma/metabolismo , Linfócitos T CD4-Positivos/citologia , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células HEK293 , Humanos , Pulmão/metabolismo , Ativação Linfocitária , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Antígenos de Linfócitos T/metabolismo
17.
Cell Mol Biol Lett ; 23: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29308068

RESUMO

BACKGROUND: Anti-angiogenesis therapy that targets VEGF is one of the important treatment strategies in advanced ovarian cancer. However, depending on the pharmaceutical agent, treatment can have undesirable side effects. SEMA4D has recently gained interest for its role in promoting angiogenesis. Here, we try to further understand the mechanism by which SEMA4D promotes angiogenesis in ovarian cancer. METHODS: Correlation and western blot assaya were used to detect the relationship between VEGF and SEMA4D in clinical tissues and cells. Vasculogenic mimicry and transwell migration analyses were used to detect the roles of VEGF, SEMA4D and plexin-B1 on vasculogenic mimicry and migration. Vascular density and SEMA4D expression was determined using immunofluorescence staining in clinical tissues of EOC. Western blot was used to detect the expressions of CD31, MMP2 and VE-cadherin. We also analyzed the relationship between VEGF-SEMA4D and malignant tumor prognosis. RESULTS: We found that knockdown of VEGF could suppress SEMA4D expression and that the expressions of VEGF and SEMA4D have a positive correlation in EOC cancer tissues. Vasculogenic mimicry and transwell migration analyses showed that SEMA4D and VEGF have a synergistic effect on the promotion of angiogenesis in A2780 and HUVEC cells. Soluble SEMA4D (sSEMA4D) could promote VM and migration in A2780 and HUVEC cells via the SEMA4D/plexin-B1 pathway, but the effect was not noted in stably transfected shR-plexin-B1 cells. In clinical tissues of EOC, the vascular density and SEMA4D/plexin-B1 expression were higher. When VEGF, SEMA4D and plexin-B1 was knocked down, the expression of CD31, MMP2 and VE-cadherin, which are the markers and initiators of angiogenesis and the epithelial-mesenchymal transition (EMT) process were reduced. VEGF and SEMA4D had a positive correlation with the malignant degree of ovarian cancer, and SEMA4D can serve as an independent prognostic factor. CONCLUSIONS: VEGF and SEMA4D have synergistic effects on the promotion of angiogenesis in epithelial ovarian cancer. Targeting VEGF and the SEMA4D signaling pathway could be important for the therapy for EOC.


Assuntos
Antígenos CD/metabolismo , Neoplasias Epiteliais e Glandulares/irrigação sanguínea , Neovascularização Patológica , Neoplasias Ovarianas/irrigação sanguínea , Semaforinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD/genética , Antígenos CD/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Pessoa de Meia-Idade , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/mortalidade , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Semaforinas/genética , Semaforinas/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia
18.
Clin Immunol ; 191: 88-93, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28917721

RESUMO

INTRODUCTION: Semaphorin-4D (CD100), generated by CD4/CD8 T-cells and its receptor on B cells - CD72, play a role in immune regulation. Both have soluble forms - sCD100/sCD72. METHODS: sCD100 and sCD72 levels were determined by ELISA (MyBioSource, USA). RESULTS: 28 chronic HIV patients and 50 matched healthy volunteers participated in our study. Before treatment, CD4 T-cells counts were 267 ±â€¯216 cells/mcl and viral load (VL) was 586,675 ±â€¯1897,431 copies/ml. Two years following HAART, CD4 T-cells counts rose to 475 ±â€¯264 cells/mcl and VL dropped to 2050 ±â€¯10,539 copies/ml. CD8 T-cells counts were stable. sCD72 levels prior (4.13 ±â€¯2.03 ng/ml) and following HAART (3.53 ±â€¯2.01 ng/ml) were similar to control levels (4.51 ±â€¯2.66 ng/ml). sCD100 levels before (40.47 ±â€¯31.4 ng/ml) and following HAART (37.68 ±â€¯29.44 ng/ml) were significantly lower compared to controls (99.67 ±â€¯36.72 ng/ml) despite the significant increase in CD4 T-cells counts. CONCLUSIONS: The permanent low levels of the immunoregulator sCD100 suggest a role for CD100 in the immune dysfunction and T cells exhaustion of HIV.


Assuntos
Antígenos CD/sangue , Infecções por HIV/imunologia , Semaforinas/sangue , Adolescente , Adulto , Antígenos CD/fisiologia , Antígenos de Diferenciação de Linfócitos B/sangue , Terapia Antirretroviral de Alta Atividade , Contagem de Linfócito CD4 , Linfócitos T CD8-Positivos/imunologia , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Semaforinas/fisiologia , Carga Viral , Adulto Jovem
19.
J Invest Dermatol ; 138(3): 588-597, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29054606

RESUMO

Autoreactive B-cell activation and antibody production are critical events for the development of bullous pemphigoid (BP). However, the mechanism that is involved in the modulation of B-cell activation and autoantibody generation has not been fully understood. Semaphorin 4D (Sema4D, or CD100) plays important roles in immune regulation related to B cells, but its implications in BP remain obscure. The aim of our study was to characterize Sema4D and the underlying mechanism contributing to the autoimmune features of BP. We found that soluble Sema4D (sSema4D) levels were elevated and correlated with disease severity and activity in serum and blister fluids from patients with BP. Additionally, Sema4D-expressing cells accumulated in subepidermal blisters of BP lesions. In patient-derived peripheral blood mononuclear cells, by promoting the differentiation of B cells into plasmablasts, sSema4D boosted anti-BP180/anti-BP230 antibody production in a time- and dose-dependent manner, which may be attributed to CD72-mediated activation of Akt/NF-κB phosphorylated (p-)65/ERK cascades in B cells. We determined that a disintegrin and metalloproteinase 10 is a proteolytic enzyme for the cleavage of sSema4D from CD15+ granulocytes instead of T cells, which is probably responsible for the high concentration of sSema4D in BP blister fluid and serum. These findings suggest that Sema4D is a crucial participant in BP pathogenesis.


Assuntos
Proteína ADAM10/fisiologia , Antígenos CD/fisiologia , Autoantígenos/imunologia , Fucosiltransferases/análise , Antígenos CD15/análise , Colágenos não Fibrilares/imunologia , Penfigoide Bolhoso/imunologia , Semaforinas/fisiologia , Formação de Anticorpos , Antígenos CD/análise , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Granulócitos/imunologia , Humanos , NF-kappa B/fisiologia , Semaforinas/análise , Colágeno Tipo XVII
20.
Toxicol Pathol ; 45(7): 894-903, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29113558

RESUMO

Although the brain is well established as a master regulator of homeostasis in peripheral tissues, central regulation of bone mass represents a novel and rapidly expanding field of study. This review examines the current understanding of central regulation of the skeleton, exploring several of the key pathways connecting brain to bone and their implications both in mice and the clinical setting. Our understanding of central bone regulation has largely progressed through examination of skeletal responses downstream of nutrient regulatory pathways in the hypothalamus. Mutations and modulation of these pathways, in cases such as leptin deficiency, induce marked bone phenotypes, which have provided vital insights into central bone regulation. These studies have identified several central neuropeptide pathways that stimulate well-defined changes in bone cell activity in response to changes in energy homeostasis. In addition, this work has highlighted the endocrine nature of the skeleton, revealing a complex cross talk that directly regulates other organ systems. Our laboratory has studied bone-active neuropeptide pathways and defined osteoblast-based actions that recapitulate central pathways linking bone, fat, and glucose homeostasis. Studies of neural control of bone have produced paradigm-shifting changes in our understanding of the skeleton and its relationship with the wider array of organ systems.


Assuntos
Remodelação Óssea , Neurônios/fisiologia , Animais , Osso e Ossos/fisiologia , Homeostase , Humanos , Hipotálamo/fisiologia , Leptina/fisiologia , Músculo Esquelético/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuropeptídeo Y/fisiologia , Polipeptídeo Pancreático/fisiologia , Peptídeo YY/fisiologia , Pró-Opiomelanocortina/fisiologia , Receptores de Canabinoides/fisiologia , Semaforinas/fisiologia , Sistema Nervoso Simpático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...