Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.972
Filtrar
2.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 97-107, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836674

RESUMO

This study employed a multifaceted approach to investigate the inhibitory potential of alpha-amyrin against TLR2, a key player in bacterial infection and sepsis. A high-resolution TLR2 model was constructed using Swiss-MODEL, exhibiting excellent quality with 100% sequence identity and coverage. Cavity detection revealed five significant cavities on TLR2. Molecular docking identifies alpha-amyrin as a potent inhibitor, displaying a strong binding affinity of -8.6 kcal/mol. Comprehensive analyses, including ADMET predictions, PASS analysis, and SwissTargetPrediction, affirm alpha-amyrin's drug-like properties and diverse biological activities. Cytotoxicity assays on HEK-293 cells confirm its safety, and fluorescence-based inhibition assays provide empirical evidence of its inhibitory potency on TLR2 enzymatic activity. Further validations in HUVECs show a significant decrease in TLR2 mRNA expression (p<0.01) and activity (p<0.05) upon alpha-amyrin treatment. In conclusion, this integrative study positions alpha-amyrin as a promising therapeutic candidate for TLR2 inhibition, emphasizing its potential in combating bacterial infections with safety and efficacy.


Assuntos
Infecções Bacterianas , Simulação de Acoplamento Molecular , Ácido Oleanólico , Sepse , Receptor 2 Toll-Like , Receptor 2 Toll-Like/metabolismo , Humanos , Sepse/tratamento farmacológico , Sepse/microbiologia , Células HEK293 , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Simulação por Computador
3.
J Med Microbiol ; 73(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842435

RESUMO

Introduction. Colistin (polymyxin E) has emerged as a last-resort treatment option for multidrug-resistant infections.Hypothesis/Gap Statement. Studies on the use, safety and efficacy of colistin in South Africa are limited.Aim. This study aims to describe the use of colistin and its clinical outcomes at a tertiary public hospital in South Africa.Methodology. We conducted a retrospective review of adult and paediatric patients who received parenteral colistin between 2015 and 2019.Results. A total of 69 patients (26 adults, 13 children and 30 neonates) were reviewed. Acinetobacter baumannii was the most common causative pathogen isolated (70.1 %). Colistin was predominately used to treat septicaemia (75.4 %). It was primarily administered as definitive therapy (71.0 %) and as monotherapy (56.5 %). It was used in 11.5 % of adults with infections susceptible to other antibiotics. Loading doses of intravenous colistin were administered in only 15 (57.7 %) adult patients. Neurotoxicity and nephrotoxicity occurred in 5.8 % and 43.5 % of patients, respectively. Clinical cure was achieved in 37 (53.6 %) patients. On multivariate logistic regression analysis, adults [adjusted odds ratio (aOR), 25.54; 95 % CI, 2.73-238.65; P < 0.01] and children (aOR, 8.56; 95 % CI, 1.06-69.10; P < 0.05) had higher odds of death than neonates.Conclusion. The study identified significant stewardship opportunities to improve colistin prescription and administration. Achieving optimal patient outcomes necessitates a multidisciplinary approach and vigilant monitoring of colistin use.


Assuntos
Antibacterianos , Gestão de Antimicrobianos , Colistina , Centros de Atenção Terciária , Humanos , Colistina/administração & dosagem , Colistina/uso terapêutico , Centros de Atenção Terciária/estatística & dados numéricos , África do Sul , Estudos Retrospectivos , Feminino , Adulto , Masculino , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Lactente , Pessoa de Meia-Idade , Recém-Nascido , Criança , Pré-Escolar , Acinetobacter baumannii/efeitos dos fármacos , Adolescente , Adulto Jovem , Idoso , Farmacorresistência Bacteriana Múltipla , Infecções por Acinetobacter/tratamento farmacológico , Sepse/tratamento farmacológico , Sepse/microbiologia
4.
BMC Infect Dis ; 24(1): 566, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844852

RESUMO

BACKGROUND: Early and appropriate antibiotic treatment improves the clinical outcome of patients with sepsis. There is an urgent need for rapid identification (ID) and antimicrobial susceptibility testing (AST) of bacteria that cause bloodstream infection (BSI). Rapid ID and AST can be achieved by short-term incubation on solid medium of positive blood cultures using MALDI-TOF mass spectrometry (MS) and the BD M50 system. The purpose of this study is to evaluate the performance of rapid method compared to traditional method. METHODS: A total of 124 mono-microbial samples were collected. Positive blood culture samples were short-term incubated on blood agar plates and chocolate agar plates for 5 ∼ 7 h, and the rapid ID and AST were achieved through Zybio EXS2000 MS and BD M50 System, respectively. RESULTS: Compared with the traditional 24 h culture for ID, this rapid method can shorten the cultivation time to 5 ∼ 7 h. Accurate organism ID was achieved in 90.6% of Gram-positive bacteria (GP), 98.5% of Gram-negative bacteria (GN), and 100% of fungi. The AST resulted in the 98.5% essential agreement (EA) and 97.1% category agreements (CA) in NMIC-413, 99.4% EA and 98.9% CA in PMIC-92, 100% both EA and CA in SMIC-2. Besides, this method can be used for 67.2% (264/393) of culture bottles during routine work. The mean turn-around time (TAT) for obtaining final results by conventional method is approximately 72.6 ± 10.5 h, which is nearly 24 h longer than the rapid method. CONCLUSIONS: The newly described method is expected to provide faster and reliable ID and AST results, making it an important tool for rapid management of blood cultures (BCs). In addition, this rapid method can be used to process most positive blood cultures, enabling patients to receive rapid and effective treatment.


Assuntos
Bactérias , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Antibacterianos/farmacologia , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Hemocultura/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Fatores de Tempo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Sepse/microbiologia , Sepse/tratamento farmacológico , Sepse/diagnóstico
5.
Hepatol Commun ; 8(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38836842

RESUMO

BACKGROUND: Patients with pediatric cirrhosis-sepsis (PC-S) attain early mortality. Plasma bacterial composition, the cognate metabolites, and their contribution to the deterioration of patients with PC-S to early mortality are unknown. We aimed to delineate the plasma metaproteome-metabolome landscape and identify molecular indicators capable of segregating patients with PC-S predisposed to early mortality in plasma, and we further validated the selected metabolite panel in paired 1-drop blood samples using untargeted metaproteomics-metabolomics by UHPLC-HRMS followed by validation using machine-learning algorithms. METHODS: We enrolled 160 patients with liver diseases (cirrhosis-sepsis/nonsepsis [n=110] and noncirrhosis [n=50]) and performed untargeted metaproteomics-metabolomics on a training cohort of 110 patients (Cirrhosis-Sepsis/Nonsepsis, n=70 and noncirrhosis, n=40). The candidate predictors were validated on 2 test cohorts-T1 (plasma test cohort) and T2 (1-drop blood test cohort). Both T1 and T2 had 120 patients each, of which 70 were from the training cohort. RESULTS: Increased levels of tryptophan metabolites and Salmonella enterica and Escherichia coli-associated peptides segregated patients with cirrhosis. Increased levels of deoxyribose-1-phosphate, N5-citryl-d-ornithine, and Herbinix hemicellulolytic and Leifsonia xyli segregated patients with PC-S. MMCN-based integration analysis of WMCNA-WMpCNA identified key microbial-metabolic modules linked to PC-S nonsurvivors. Increased Indican, Staphylobillin, glucose-6-phosphate, 2-octenoylcarnitine, palmitic acid, and guanidoacetic acid along with L. xyli, Mycoplasma genitalium, and Hungateiclostridium thermocellum segregated PC-S nonsurvivors and superseded the liver disease severity indices with high accuracy, sensitivity, and specificity for mortality prediction using random forest machine-learning algorithm. CONCLUSIONS: Our study reveals a novel metabolite signature panel capable of segregating patients with PC-S predisposed to early mortality using as low as 1-drop blood.


Assuntos
Cirrose Hepática , Metabolômica , Sepse , Humanos , Masculino , Feminino , Cirrose Hepática/sangue , Cirrose Hepática/mortalidade , Criança , Adolescente , Sepse/sangue , Sepse/mortalidade , Sepse/microbiologia , Biomarcadores/sangue , Pré-Escolar , Aprendizado de Máquina , Metaboloma , Proteínas de Bactérias/sangue
6.
Sci Rep ; 14(1): 12973, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839818

RESUMO

This study addresses the challenge of accurately diagnosing sepsis subtypes in elderly patients, particularly distinguishing between Escherichia coli (E. coli) and non-E. coli infections. Utilizing machine learning, we conducted a retrospective analysis of 119 elderly sepsis patients, employing a random forest model to evaluate clinical biomarkers and infection sites. The model demonstrated high diagnostic accuracy, with an overall accuracy of 87.5%, and impressive precision and recall rates of 93.3% and 87.5%, respectively. It identified infection sites, platelet distribution width, reduced platelet count, and procalcitonin levels as key predictors. The model achieved an F1 Score of 90.3% and an area under the receiver operating characteristic curve of 88.0%, effectively differentiating between sepsis subtypes. Similarly, logistic regression and least absolute shrinkage and selection operator analysis underscored the significance of infectious sites. This methodology shows promise for enhancing elderly sepsis diagnosis and contributing to the advancement of precision medicine in the field of infectious diseases.


Assuntos
Biomarcadores , Infecções por Escherichia coli , Escherichia coli , Aprendizado de Máquina , Sepse , Humanos , Idoso , Sepse/diagnóstico , Sepse/microbiologia , Sepse/sangue , Biomarcadores/sangue , Masculino , Feminino , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/sangue , Idoso de 80 Anos ou mais , Escherichia coli/isolamento & purificação , Estudos Retrospectivos , Curva ROC , Pró-Calcitonina/sangue , Algoritmo Florestas Aleatórias
7.
PeerJ ; 12: e17427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827289

RESUMO

Background: Survivors of sepsis may encounter cognitive impairment following their recovery from critical condition. At present, there is no standardized treatment for addressing sepsis-associated encephalopathy. Lactobacillus rhamnosus GG (LGG) is a prevalent bacterium found in the gut microbiota and is an active component of probiotic supplements. LGG has demonstrated to be associated with cognitive improvement. This study explored whether LGG administration prior to and following induced sepsis could ameliorate cognitive deficits, and explored potential mechanisms. Methods: Female C57BL/6 mice were randomly divided into three groups: sham surgery, cecal ligation and puncture (CLP), and CLP+LGG. Cognitive behavior was assessed longitudinally at 7-9d, 14-16d, and 21-23d after surgery using an open field test and novel object recognition test. The impact of LGG treatment on pathological changes, the expression level of brain-derived neurotrophic factor (BDNF), and the phosphorylation level of the TrkB receptor (p-TrkB) in the hippocampus of mice at two weeks post-CLP (16d) were evaluated using histological, immunofluorescence, immunohistochemistry, and western blot analyses. Results: The CLP surgery induced and sustained cognitive impairment in mice with sepsis for a minimum of three weeks following the surgery. Compared to mice subjected to CLP alone, the administration of LGG improved the survival of mice with sepsis and notably enhanced their cognitive functioning. Moreover, LGG supplementation significantly alleviated the decrease in hippocampal BDNF expression and p-TrkB phosphorylation levels caused by sepsis, preserving neuronal survival and mitigating the pathological changes within the hippocampus of mice with sepsis. LGG supplementation mitigates sepsis-related cognitive impairment in mice and preserves BDNF expression and p-TrkB levels in the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Hipocampo , Lacticaseibacillus rhamnosus , Camundongos Endogâmicos C57BL , Probióticos , Sepse , Animais , Sepse/complicações , Sepse/terapia , Sepse/microbiologia , Sepse/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Camundongos , Hipocampo/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Modelos Animais de Doenças , Receptor trkB/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/dietoterapia , Fosforilação
8.
J Vis Exp ; (207)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856199

RESUMO

Gram-negative (GN) sepsis is a medical emergency where management in resource-limited settings relies on conventional microbiological culture techniques providing results in 3-4 days. Recognizing this delay in turnaround time (TAT), both EUCAST and CLSI have developed protocols for determining AST results directly from positively flagged automated blood culture bottles (+aBCs). EUCAST rapid AST (RAST) protocol was first introduced in 2018, where zone diameter breakpoints for four common etiological agents of GN sepsis, i.e., Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii complex can be reported. However, those clinical laboratories that have implemented this method in their routine workflow rely on mass spectrometry-based microbial identification, which is not easily available, thus precluding its implementation in resource-limited settings. To circumvent it, we evaluated a direct inoculum protocol (DIP) using a commercial automated microbial identification and antimicrobial susceptibility testing system (aMIAST) to enable early microbial identification within 8 h of positive flagging of aBC. We evaluated this protocol from January to October 2023 to identify the four RAST reportable GN (RR-GN) in the positively flagged aBC. The microbial identification results in DIP were compared with the standard inoculum preparation protocol (SIP) in aMIAST. Of 204 +aBCs with monomorphic GN (+naBC), one of the 4 RR-GN was identified in 105 +naBCs by SIP (E. coli: 50, K. pneumoniae: 20, P. aeruginosa: 9 and A. baumannii complex: 26). Of these, 94% (98/105) were correctly identified by DIP whereas major error and very major error rates were 6% (7/105) and 1.7% (4/240), respectively. When DIP for microbial identification is done using the EUCAST RAST method, provisional clinical reports can be provided within 24 h of receiving the sample. This approach has the potential to significantly reduce the TAT, enabling early institution of appropriate antimicrobial therapy.


Assuntos
Testes de Sensibilidade Microbiana , Humanos , Testes de Sensibilidade Microbiana/métodos , Sepse/microbiologia , Sepse/diagnóstico , Técnicas Bacteriológicas/métodos
9.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794014

RESUMO

Early diagnosis and treatment of late-onset sepsis (LOS) is crucial for survival, but challenging. Intestinal microbiota and metabolome alterations precede the clinical onset of LOS, and the preterm gut is considered an important source of bacterial pathogens. Fecal volatile organic compounds (VOCs), formed by physiologic and pathophysiologic metabolic processes in the preterm gut, reflect a complex interplay between the human host, the environment, and microbiota. Disease-associated fecal VOCs can be detected with an array of devices with various potential for the development of a point-of-care test (POCT) for preclinical LOS detection. While characteristic VOCs for common LOS pathogens have been described, their VOC profiles often overlap with other pathogens due to similarities in metabolic pathways, hampering the construction of species-specific profiles. Clinical studies have, however, successfully discriminated LOS patients from healthy individuals using fecal VOC analysis with the highest predictive value for Gram-negative pathogens. This review discusses the current advancements in the development of a non-invasive fecal VOC-based POCT for early diagnosis of LOS, which may potentially provide opportunities for early intervention and targeted treatment and could improve clinical neonatal outcomes. Identification of confounding variables impacting VOC synthesis, selection of an optimal detection device, and development of standardized sampling protocols will allow for the development of a novel POCT in the near future.


Assuntos
Diagnóstico Precoce , Fezes , Recém-Nascido Prematuro , Sepse , Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Fezes/microbiologia , Fezes/química , Sepse/diagnóstico , Sepse/microbiologia , Recém-Nascido , Microbioma Gastrointestinal/fisiologia
10.
mBio ; 15(6): e0052124, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38700314

RESUMO

Despite its high mortality, specific and effective drugs for sepsis are lacking. Decoy receptor 3 (DcR3) is a potential biomarker for the progression of inflammatory diseases. The recombinant human DcR3-Fc chimera protein (DcR3.Fc) suppresses inflammatory responses in mice with sepsis, which is critical for improving survival. The Fc region can exert detrimental effects on the patient, and endogenous peptides are highly conducive to clinical application. However, the mechanisms underlying the effects of DcR3 on sepsis are unknown. Herein, we aimed to demonstrate that DcR3 may be beneficial in treating sepsis and investigated its mechanism of action. Recombinant DcR3 was obtained in vitro. Postoperative DcR3 treatment was performed in mouse models of lipopolysaccharide- and cecal ligation and puncture (CLP)-induced sepsis, and their underlying molecular mechanisms were explored. DcR3 inhibited sustained excessive inflammation in vitro, increased the survival rate, reduced the proinflammatory cytokine levels, changed the circulating immune cell composition, regulated the gut microbiota, and induced short-chain fatty acid synthesis in vivo. Thus, DcR3 protects against CLP-induced sepsis by inhibiting the inflammatory response and apoptosis. Our study provides valuable insights into the molecular mechanisms associated with the protective effects of DcR3 against sepsis, paving the way for future clinical studies. IMPORTANCE: Sepsis affects millions of hospitalized patients worldwide each year, but there are no sepsis-specific drugs, which makes sepsis therapies urgently needed. Suppression of excessive inflammatory responses is important for improving the survival of patients with sepsis. Our results demonstrate that DcR3 ameliorates sepsis in mice by attenuating systematic inflammation and modulating gut microbiota, and unveil the molecular mechanism underlying its anti-inflammatory effect.


Assuntos
Ceco , Modelos Animais de Doenças , Membro 6b de Receptores do Fator de Necrose Tumoral , Sepse , Animais , Sepse/tratamento farmacológico , Sepse/microbiologia , Camundongos , Membro 6b de Receptores do Fator de Necrose Tumoral/genética , Membro 6b de Receptores do Fator de Necrose Tumoral/metabolismo , Ceco/cirurgia , Humanos , Ligadura , Punções , Masculino , Camundongos Endogâmicos C57BL , Microbioma Gastrointestinal , Citocinas/metabolismo , Lipopolissacarídeos , Apoptose/efeitos dos fármacos , Inflamação
11.
Cell Death Dis ; 15(5): 360, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789414

RESUMO

Disseminated intravascular coagulation (DIC) is considered to be the most common and lethal complication of sepsis. NLR-family pyrin domain-containing-3 (NLRP3) inflammasome plays an important role in host defense against microbial pathogens, and its deregulation may cause coagulation cascade and should be strictly managed. Here, we identified the deubiquitinase YOD1, which played a vital role in regulating coagulation in a NLRP3 inflammasome-dependent manner in sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA). YOD1 interacted with NLRP3 to remove K33-linked ubiquitination of NLRP3 based on its deubiquitinating enzyme activity and specifically inhibited expression of NLRP3 as well as activation of NLRP3 inflammasome. Deficiency of YOD1 expression enhanced NLRP3 inflammasome activation and coagulation both in vitro and in vivo. In addition, pharmacological inhibition of the NLRP3 effectively improved coagulation and alleviated organ injury in Yod1-/- mice infected with MRSA. Thus, our study reported that YOD1 is a key regulator of coagulation during MRSA infection, and provided YOD1 as a potential therapeutic target for the treatment of NLRP3 inflammasome-related diseases, especially MRSA sepsis-induced DIC.


Assuntos
Coagulação Intravascular Disseminada , Inflamassomos , Staphylococcus aureus Resistente à Meticilina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sepse , Ubiquitinação , Animais , Humanos , Masculino , Camundongos , Coagulação Intravascular Disseminada/metabolismo , Coagulação Intravascular Disseminada/patologia , Coagulação Intravascular Disseminada/microbiologia , Células HEK293 , Inflamassomos/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/microbiologia , Sepse/complicações , Sepse/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/metabolismo
12.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791501

RESUMO

Sepsis is a life-threatening syndrome triggered by infection and accompanied by high mortality, with antimicrobial resistances (AMRs) further escalating clinical challenges. The rapid and reliable detection of causative pathogens and AMRs are key factors for fast and appropriate treatment, in order to improve outcomes in septic patients. However, current sepsis diagnostics based on blood culture is limited by low sensitivity and specificity while current molecular approaches fail to enter clinical routine. Therefore, we developed a suppression PCR-based selective enrichment sequencing approach (SUPSETS), providing a molecular method combining multiplex suppression PCR with Nanopore sequencing to identify most common sepsis-causative pathogens and AMRs using plasma cell-free DNA. Applying only 1 mL of plasma, we targeted eight pathogens across three kingdoms and ten AMRs in a proof-of-concept study. SUPSETS was successfully tested in an experimental research study on the first ten clinical samples and revealed comparable results to clinical metagenomics while clearly outperforming blood culture. Several clinically relevant AMRs could be additionally detected. Furthermore, SUPSETS provided first pathogen and AMR-specific sequencing reads within minutes of starting sequencing, thereby potentially decreasing time-to-results to 11-13 h and suggesting diagnostic potential in sepsis.


Assuntos
Ácidos Nucleicos Livres , Sepse , Humanos , Sepse/diagnóstico , Sepse/microbiologia , Sepse/sangue , Ácidos Nucleicos Livres/sangue , Farmacorresistência Bacteriana/genética , Hemocultura/métodos , DNA Bacteriano/genética , Reação em Cadeia da Polimerase Multiplex/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Bactérias/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Sequenciamento por Nanoporos/métodos
13.
J Trace Elem Med Biol ; 84: 127456, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692229

RESUMO

Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.


Assuntos
Cobre , Inflamação , Sepse , Sepse/tratamento farmacológico , Sepse/imunologia , Sepse/microbiologia , Humanos , Inflamação/tratamento farmacológico , Animais , Bactérias/efeitos dos fármacos , Antibacterianos/farmacologia
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 456-460, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38802904

RESUMO

OBJECTIVES: To explore the value of metagenomic next-generation sequencing (mNGS) technology in the etiological diagnosis of sepsis in preterm infants following antibiotic use. METHODS: A retrospective analysis of medical records for 45 preterm infants with sepsis who were treated at Henan Provincial People's Hospital. All patients received antibiotic treatment for ≥3 days and underwent both blood culture and mNGS testing. The detection rates of pathogens by blood culture and mNGS testing were compared. RESULTS: The positive detection rate of pathogens by blood mNGS was higher than that by blood culture (44% vs 4%; P<0.001). Blood mNGS detected 28 strains of pathogens, including 23 bacteria, 4 fungi, and 1 Ureaplasma parvum. Blood culture identified one case each of Rhodotorula mucilaginosa and Klebsiella pneumoniae. In the group treated with antibiotics for >10 days, the positive rate of blood mNGS testing was higher than that of blood culture (40% vs 3%; P<0.001); similarly, in the group treated with antibiotics for ≤10 days, the positive rate of blood mNGS testing was also higher than that of blood culture (53% vs 7%; P=0.020). Treatment plans were adjusted based on blood mNGS results for 13 patients, with an effectiveness rate of 85% (11/13). CONCLUSIONS: In preterm infants with sepsis following antibiotic use, the positive rate of pathogen detection by blood mNGS is higher than that by blood culture and is unaffected by the duration of antibiotic use. Therefore, mNGS testing can be considered for confirming pathogens when clinical suspicion of infection is high but blood culture fails to detect the pathogen.


Assuntos
Antibacterianos , Sequenciamento de Nucleotídeos em Larga Escala , Recém-Nascido Prematuro , Metagenômica , Sepse , Humanos , Recém-Nascido , Antibacterianos/uso terapêutico , Sepse/microbiologia , Sepse/tratamento farmacológico , Masculino , Feminino , Estudos Retrospectivos , Metagenômica/métodos
15.
Microbiol Res ; 285: 127769, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797112

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) has emerged as a global threat due to its high mortality in clinical patients. However, the specific mechanisms underlying this increased mortality remain unclear. The objective of this study is to investigate how the development of a resistance phenotype contributes to the significantly higher mortality associated with this pathogen. To achieve this, a collection of isogeneic strains was generated. The clinical carbapenem-susceptible K. pneumoniae (CSKP) strain HKU3 served as the control isolate, while HKU3-KPC was created through conjugation with a blaKPC-2-bearing plasmid and served as clinical CRKP strain. Using a sepsis model, it was demonstrated that both HKU3 and HKU3-KPC exhibited similar levels of virulence. Flow cytometry, RNA-seq, and ELISA analysis were employed to assess immune cell response, M1 macrophage polarization, and cytokine storm induction, revealing that both strains elicited comparable types and levels of these immune responses. Subsequently, meropenem was utilized to treat K. pneumoniae infection, and it was found that meropenem effectively reduced bacterial load, inhibited M1 macrophage polarization, and suppressed serum cytokine production during HKU3 (CSKP) infection. However, these effects were not observed in the case of HKU3-KPC (CRKP) infection. These findings provide evidence that the high mortality associated with CRKP is attributed to its enhanced survival within the host during antibiotic treatment, resulting in a cytokine storm and subsequent host death. The development of an effective therapy for CRKP infections could significantly reduce the mortality caused by this pathogen.


Assuntos
Antibacterianos , Enterobacteriáceas Resistentes a Carbapenêmicos , Carbapenêmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Meropeném , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/tratamento farmacológico , Virulência , Antibacterianos/farmacologia , Meropeném/farmacologia , Carbapenêmicos/farmacologia , Animais , Camundongos , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Sepse/microbiologia , Sepse/mortalidade , Sepse/tratamento farmacológico , Citocinas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Modelos Animais de Doenças , Carga Bacteriana
16.
Nature ; 630(8016): 429-436, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811738

RESUMO

Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.


Assuntos
Antibacterianos , Clostridioides difficile , Modelos Animais de Doenças , Microbioma Gastrointestinal , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Bactérias Gram-Negativas/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Feminino , Masculino , Humanos , Sepse/microbiologia , Sepse/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Desenho de Fármacos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Clostridium/microbiologia , Infecções por Clostridium/tratamento farmacológico
17.
ACS Appl Bio Mater ; 7(5): 3346-3357, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38695543

RESUMO

Septicemia, a severe bacterial infection, poses significant risks to human health. Early detection of septicemia by tracking specific biomarkers is crucial for a timely intervention. Herein, we developed a molecularly imprinted (MI) TiO2-Fe-CeO2 nanozyme array derived from Ce[Fe(CN)6] Prussian blue analogues (PBA), specifically targeting valine, leucine, and isoleucine, as potential indicators of septicemia. The synthesized nanozyme arrays were thoroughly characterized using various analytical techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscope, and energy-dispersive X-ray. The results confirmed their desirable physical and chemical properties, indicating their suitability for the oxidation of 3,3',5,5'-tetramethylbenzidine serving as a colorimetric probe in the presence of a persulfate oxidizing agent, further highlighting the potential of these arrays for sensitive and accurate detection applications. The MITiO2 shell selectively captures valine, leucine, and isoleucine, partially blocking the cavities for substrate access and thereby hindering the catalyzed TMB chromogenic reaction. The nanozyme array demonstrated excellent performance with linear detection ranges of 5 µM to 1 mM, 10-450 µM, and 10-450 µM for valine, leucine, and isoleucine, respectively. Notably, the corresponding limit of detection values were 0.69, 1.46, and 2.76 µM, respectively. The colorimetric assay exhibited outstanding selectivity, reproducibility, and performance in the detection of analytes in blood samples, including C-reactive protein at a concentration of 61 mg/L, procalcitonin at 870 ng/dL, and the presence of Pseudomonas aeruginosa bacteria. The utilization of Ce[Fe(CN)6]-derived MITiO2-Fe-CeO2 nanozyme arrays holds considerable potential in the field of septicemia detection. This approach offers a sensitive and specific method for early diagnosis and intervention, thereby contributing to improved patient outcomes.


Assuntos
Ferrocianetos , Sepse , Ferrocianetos/química , Sepse/diagnóstico , Sepse/microbiologia , Sepse/sangue , Humanos , Teste de Materiais , Tamanho da Partícula , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Impressão Molecular , Titânio/química , Cério/química , Colorimetria
18.
Microb Genom ; 10(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739115

RESUMO

Aeromonas spp. are commonly found in the aquatic environment and have been responsible for motile Aeromonas septicemia (MAS) in striped catfish, resulting in significant economic loss. These organisms also cause a range of opportunistic infections in humans with compromised immune systems. Here, we conducted a genomic investigation of 87 Aeromonas isolates derived from diseased catfish, healthy catfish and environmental water in catfish farms affected by MAS outbreaks in eight provinces in Mekong Delta (years: 2012-2022), together with 25 isolates from humans with bloodstream infections (years: 2010-2020). Genomics-based typing method precisely delineated Aeromonas species while traditional methods such as aerA PCR and MALDI-TOF were unable identify A. dhakensis. A. dhakensis was found to be more prevalent than A. hydrophila in both diseased catfish and human infections. A. dhakensis sequence type (ST) 656 followed by A. hydrophila ST251 were the predominant virulent species-lineages in diseased catfish (43.7 and 20.7 %, respectively), while diverse STs were found in humans with bloodstream infections. There was evidence of widespread transmission of ST656 and ST251 on striped catfish in the Mekong Delta region. ST656 and ST251 isolates carried a significantly higher number of acquired antimicrobial resistance (AMR) genes and virulence factors in comparison to other STs. They, however, exhibited several distinctions in key virulence factors (i.e. lack of type IV pili and enterotoxin ast in A. dhakensis), AMR genes (i.e. presence of imiH carbapenemase in A. dhakensis), and accessory gene content. To uncover potential conserved proteins of Aeromonas spp. for vaccine development, pangenome analysis has unveiled 2202 core genes between ST656 and ST251, of which 78 proteins were in either outer membrane or extracellular proteins. Our study represents one of the first genomic investigations of the species distribution, genetic landscape, and epidemiology of Aeromonas in diseased catfish and human infections in Vietnam. The emergence of antimicrobial resistant and virulent A. dhakensis strains underscores the needs of enhanced genomic surveillance and strengthening vaccine research and development in preventing Aeromonas diseases in catfish and humans, and the search for potential vaccine candidates could focus on Aeromonas core genes encoded for membrane and secreted proteins.


Assuntos
Aeromonas , Peixes-Gato , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Sepse , Animais , Peixes-Gato/microbiologia , Vietnã/epidemiologia , Aeromonas/genética , Aeromonas/isolamento & purificação , Aeromonas/classificação , Aeromonas/patogenicidade , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/epidemiologia , Humanos , Sepse/microbiologia , Sepse/veterinária , Sepse/epidemiologia , Doenças dos Peixes/microbiologia , Filogenia , Genômica , Genoma Bacteriano , Fatores de Virulência/genética , Antibacterianos/farmacologia
19.
Front Immunol ; 15: 1248907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720893

RESUMO

Introduction: Sepsis remains a major cause of death in Intensive Care Units. Sepsis is a life-threatening multi-organ dysfunction caused by a dysregulated systemic inflammatory response. Pattern recognition receptors, such as TLRs and NLRs contribute to innate immune responses. Upon activation, some NLRs form multimeric protein complexes in the cytoplasm termed "inflammasomes" which induce gasdermin d-mediated pyroptotic cell death and the release of mature forms of IL-1ß and IL-18. The NLRP6 inflammasome is documented to be both a positive and a negative regulator of host defense in distinct infectious diseases. However, the role of NLRP6 in polymicrobial sepsis remains elusive. Methods: We have used NLRP6 KO mice and human septic spleen samples to examine the role of NLRP6 in host defense in sepsis. Results: NLRP6 KO mice display enhanced survival, reduced bacterial burden in the organs, and reduced cytokine/chemokine production. Co-housed WT and KO mice following sepsis show decreased bacterial burden in the KO mice as observed in singly housed groups. NLRP6 is upregulated in CD3, CD4, and CD8 cells of septic patients and septic mice. The KO mice showed a higher number of CD3, CD4, and CD8 positive T cell subsets and reduced T cell death in the spleen following sepsis. Furthermore, administration of recombinant IL-18, but not IL-1ß, elicited excessive inflammation and reversed the survival advantages observed in NLRP6 KO mice. Conclusion: These results unveil NLRP6 as a negative regulator of host defense during sepsis and offer novel insights for the development of new treatment strategies for sepsis.


Assuntos
Imunidade Inata , Peptídeos e Proteínas de Sinalização Intracelular , Sepse , Animais , Feminino , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata/genética , Inflamassomos/metabolismo , Inflamassomos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular , Sepse/imunologia , Sepse/microbiologia , Baço/imunologia
20.
Clin Chim Acta ; 559: 119716, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710402

RESUMO

OBJECTIVE: To integrate an enhanced molecular diagnostic technique to develop and validate a machine-learning model for diagnosing sepsis. METHODS: We prospectively enrolled patients suspected of sepsis from August 2021 to August 2023. Various feature selection algorithms and machine learning models were used to develop the model. The best classifier was selected using 5-fold cross validation set and then was applied to assess the performance of the model in the testing set. Additionally, we employed the Shapley Additive exPlanations (SHAP) method to illustrate the effects of the features. RESULTS: We established an optimized mNGS assay and proposed using the copies of microbe-specific cell-free DNA per milliliter of plasma (CPM) as the detection signal to evaluate the real burden, with strong precision and high accuracy. In total, 237 patients were eligible for participation, which were randomly assigned to either the training set (70 %, n = 165) or the testing set (30 %, n = 72). The random forest classifier achieved accuracy, AUC and F1 scores of 0.830, 0.918 and 0.856, respectively, outperforming other machine learning models in the training set. Our model demonstrated clinical interpretability and achieved good prediction performance in differentiating between bacterial sepsis and non-sepsis, with an AUC value of 0.85 and an average precision of 0.91 in the testing set. Based on the SHAP value, the top nine features of the model were PCT, CPM, CRP, ALB, SBPmin, RRmax, CREA, PLT and HRmax. CONCLUSION: We demonstrated the potential of machine-learning approaches for predicting bacterial sepsis based on optimized mcfDNA sequencing assay accurately.


Assuntos
Ácidos Nucleicos Livres , Aprendizado de Máquina , Sepse , Humanos , Sepse/diagnóstico , Sepse/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Ácidos Nucleicos Livres/sangue , Idoso , Análise de Sequência de DNA , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...