Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Genes (Basel) ; 15(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38927628

RESUMO

Hereditary sensory and autonomic neuropathy type 1 is an autosomal dominant neuropathy caused by the SPTLC1 or SPTLC2 variants. These variants modify the preferred substrate of serine palmitoyl transferase, responsible for the first step of de novo sphingolipids synthesis, leading to accumulation of cytotoxic deoxysphingolipids. Diagnosis of HSAN1 is based on clinical symptoms, mainly progressive loss of distal sensory keep, and genetic analysis. Aim: Identifying new SPTLC1 or SPTLC2 "gain-of-function" variants raises the question as to their pathogenicity. This work focused on characterizing six new SPTLC1 variants using in silico prediction tools, new meta-scores, 3D modeling, and functional testing to establish their pathogenicity. Methods: Variants from six patients with HSAN1 were studied. In silico, CADD and REVEL scores and the 3D modeling software MITZLI were used to characterize the pathogenic effect of the variants. Functional tests based on plasma sphingolipids quantification (total deoxysphinganine, ceramides, and dihydroceramides) were performed by tandem mass spectrometry. Results: In silico predictors did not provide very contrasting results when functional tests discriminated the different variants according to their impact on deoxysphinganine level or canonical sphingolipids synthesis. Two SPTLC1 variants were newly described as pathogenic: SPTLC1 NM_006415.4:c.998A>G and NM_006415.4:c.1015G>A. Discussion: The combination of the different tools provides arguments to establish the pathogenicity of these new variants. When available, functional testing remains the best option to establish the in vivo impact of a variant. Moreover, the comprehension of metabolic dysregulation offers opportunities to develop new therapeutic strategies for these genetic disorders.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Mutação de Sentido Incorreto , Serina C-Palmitoiltransferase , Esfingolipídeos , Humanos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Masculino , Feminino , Esfingolipídeos/metabolismo , Adulto , Pessoa de Meia-Idade
2.
J Lipid Res ; 65(6): 100556, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719150

RESUMO

Niemann-Pick type C1 (NPC1) disease is a rare neurodegenerative cholesterol and sphingolipid storage disorder primarily due to mutations in the cholesterol-trafficking protein NPC1. In addition to catabolic-derived sphingolipids, NPC1 dysfunction also leads to an increase in de novo sphingolipid biosynthesis, yet little is known about the cellular mechanism involved. Although deletion of NPC1 or inhibition of the NPC1 sterol binding domain enhanced de novo sphingolipid biosynthesis, surprisingly levels of the ORMDLs, the regulatory subunits of serine palmitoyltransferase (SPT), the rate-limiting step in sphingolipid biosynthesis, were also greatly increased. Nevertheless, less ORMDL was bound in the SPT-ORMDL complex despite elevated ceramide levels. Instead, ORMDL colocalized with p62, the selective autophagy receptor, and accumulated in stalled autophagosomes due to defective autophagy in NPC1 disease cells. Restoration of autophagic flux with N-acetyl-L-leucine in NPC1 deleted cells decreased ORMDL accumulation in autophagosomes and reduced de novo sphingolipid biosynthesis and their accumulation. This study revealed a previously unknown link between de novo sphingolipid biosynthesis, ORMDL, and autophagic defects present in NCP1 disease. In addition, we provide further evidence and mechanistic insight for the beneficial role of N-acetyl-L-leucine treatment for NPC1 disease which is presently awaiting approval from the Food and Drug Administration and the European Medicines Agency.


Assuntos
Autofagia , Doença de Niemann-Pick Tipo C , Esfingolipídeos , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Proteína C1 de Niemann-Pick , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/antagonistas & inibidores
3.
J Neuromuscul Dis ; 11(4): 735-747, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38788085

RESUMO

Motor neuron diseases and peripheral neuropathies are heterogeneous groups of neurodegenerative disorders that manifest with distinct symptoms due to progressive dysfunction or loss of specific neuronal subpopulations during different stages of development. A few monogenic, neurodegenerative diseases associated with primary metabolic disruptions of sphingolipid biosynthesis have been recently discovered. Sphingolipids are a subclass of lipids that form critical building blocks of all cellular and subcellular organelle membranes including the membrane components of the nervous system cells. They are especially abundant within the lipid portion of myelin. In this review, we will focus on our current understanding of disease phenotypes in three monogenic, neuromuscular diseases associated with pathogenic variants in components of serine palmitoyltransferase, the first step in sphingolipid biosynthesis. These include hereditary sensory and autonomic neuropathy type 1 (HSAN1), a sensory predominant peripheral neuropathy, and two neurodegenerative disorders: juvenile amyotrophic lateral sclerosis affecting the upper and lower motor neurons with sparing of sensory neurons, and a complicated form of hereditary spastic paraplegia with selective involvement of the upper motor neurons and more broad CNS neurodegeneration. We will also review our current understanding of disease pathomechanisms, therapeutic approaches, and the unanswered questions to explore in future studies.


Assuntos
Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Neurodegenerativas , Transtornos do Neurodesenvolvimento , Serina C-Palmitoiltransferase , Humanos , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Doenças Neurodegenerativas/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/fisiopatologia , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esfingolipídeos/metabolismo
4.
J Biol Chem ; 300(5): 107276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588805

RESUMO

Sphingolipids are produced by nearly all eukaryotes where they play significant roles in cellular processes such as cell growth, division, programmed cell death, angiogenesis, and inflammation. While it was previously believed that sphingolipids were quite rare among bacteria, bioinformatic analysis of the recently identified bacterial sphingolipid synthesis genes suggests that these lipids are likely to be produced by a wide range of microbial species. The sphingolipid synthesis pathway consists of three critical enzymes. Serine palmitoyltransferase catalyzes the condensation of serine with palmitoyl-CoA (or palmitoyl-acyl carrier protein), ceramide synthase adds the second acyl chain, and a reductase reduces the ketone present on the long-chain base. While there is general agreement regarding the identity of these bacterial enzymes, the precise mechanism and order of chemical reactions for microbial sphingolipid synthesis is more ambiguous. Two mechanisms have been proposed. First, the synthesis pathway may follow the well characterized eukaryotic pathway in which the long-chain base is reduced prior to the addition of the second acyl chain. Alternatively, our previous work suggests that addition of the second acyl chain precedes the reduction of the long-chain base. To distinguish between these two models, we investigated the subcellular localization of these three key enzymes. We found that serine palmitoyltransferase and ceramide synthase are localized to the cytoplasm, whereas the ceramide reductase is in the periplasmic space. This is consistent with our previously proposed model wherein the second acyl chain is added in the cytoplasm prior to export to the periplasm where the lipid molecule is reduced.


Assuntos
Proteínas de Bactérias , Serina C-Palmitoiltransferase , Esfingolipídeos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Esfingolipídeos/biossíntese , Oxirredutases/metabolismo , Transporte Proteico , Citoplasma/enzimologia , Caulobacter crescentus/enzimologia , Escherichia coli/enzimologia
5.
Sci Adv ; 10(17): eadk1045, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657065

RESUMO

T helper 17 (TH17) cells are implicated in autoimmune diseases, and several metabolic processes are shown to be important for their development and function. In this study, we report an essential role for sphingolipids synthesized through the de novo pathway in TH17 cell development. Deficiency of SPTLC1, a major subunit of serine palmitoyl transferase enzyme complex that catalyzes the first and rate-limiting step of de novo sphingolipid synthesis, impaired glycolysis in differentiating TH17 cells by increasing intracellular reactive oxygen species (ROS) through enhancement of nicotinamide adenine dinucleotide phosphate oxidase 2 activity. Increased ROS leads to impaired activation of mammalian target of rapamycin C1 and reduced expression of hypoxia-inducible factor 1-alpha and c-Myc-induced glycolytic genes. SPTLCI deficiency protected mice from developing experimental autoimmune encephalomyelitis and experimental T cell transfer colitis. Our results thus show a critical role for de novo sphingolipid biosynthetic pathway in shaping adaptive immune responses with implications in autoimmune diseases.


Assuntos
Diferenciação Celular , Encefalomielite Autoimune Experimental , Serina C-Palmitoiltransferase , Esfingolipídeos , Células Th17 , Animais , Esfingolipídeos/metabolismo , Esfingolipídeos/biossíntese , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/citologia , Camundongos , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/imunologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/genética , Espécies Reativas de Oxigênio/metabolismo , Glicólise , Camundongos Knockout , Colite/metabolismo , Colite/patologia , Camundongos Endogâmicos C57BL
6.
Exp Eye Res ; 242: 109852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460719

RESUMO

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Assuntos
Apoptose , Ceramidas , Ciclosserina , Estresse Oxidativo , Esfingolipídeos , Estresse Oxidativo/efeitos dos fármacos , Ciclosserina/farmacologia , Animais , Ceramidas/metabolismo , Ceramidas/farmacologia , Camundongos , Esfingolipídeos/metabolismo , Apoptose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico , Western Blotting , Inibidores Enzimáticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
7.
J Biol Chem ; 300(3): 105728, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325740

RESUMO

Serine palmitoyltransferase (SPT) catalyzes the pyridoxal-5'-phosphate (PLP)-dependent decarboxylative condensation of l-serine and palmitoyl-CoA to form 3-ketodihydrosphingosine (KDS). Although SPT was shown to synthesize corresponding products from amino acids other than l-serine, it is still arguable whether SPT catalyzes the reaction with d-serine, which is a question of biological importance. Using high substrate and enzyme concentrations, KDS was detected after the incubation of SPT from Sphingobacterium multivorum with d-serine and palmitoyl-CoA. Furthermore, the KDS comprised equal amounts of 2S and 2R isomers. 1H-NMR study showed a slow hydrogen-deuterium exchange at Cα of serine mediated by SPT. We further confirmed that SPT catalyzed the racemization of serine. The rate of the KDS formation from d-serine was comparable to those for the α-hydrogen exchange and the racemization reaction. The structure of the d-serine-soaked crystal (1.65 Å resolution) showed a distinct electron density of the PLP-l-serine aldimine, interpreted as the racemized product trapped in the active site. The structure of the α-methyl-d-serine-soaked crystal (1.70 Å resolution) showed the PLP-α-methyl-d-serine aldimine, mimicking the d-serine-SPT complex prior to racemization. Based on these enzymological and structural analyses, the synthesis of KDS from d-serine was explained as the result of the slow racemization to l-serine, followed by the reaction with palmitoyl-CoA, and SPT would not catalyze the direct condensation between d-serine and palmitoyl-CoA. It was also shown that the S. multivorum SPT catalyzed the racemization of the product KDS, which would explain the presence of (2R)-KDS in the reaction products.


Assuntos
Serina C-Palmitoiltransferase , Serina , Sphingobacterium , Domínio Catalítico , Cristalização , Medição da Troca de Deutério , Elétrons , Hidrogênio/metabolismo , Palmitoil Coenzima A/metabolismo , Serina/análogos & derivados , Serina/metabolismo , Serina C-Palmitoiltransferase/química , Serina C-Palmitoiltransferase/metabolismo , Sphingobacterium/enzimologia , Sphingobacterium/metabolismo , Esfingosina/análogos & derivados , Esfingosina/biossíntese , Esfingosina/metabolismo , Estereoisomerismo , Especificidade por Substrato
8.
Ann Clin Transl Neurol ; 11(4): 946-957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316966

RESUMO

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a devastating, incurable neurodegenerative disease. A subset of ALS patients manifests with early-onset and complex clinical phenotypes. We aimed to elucidate the genetic basis of these cases to enhance our understanding of disease etiology and facilitate the development of targeted therapies. METHODS: Our research commenced with an in-depth genetic and biochemical investigation of two specific families, each with a member diagnosed with early-onset ALS (onset age of <40 years). This involved whole-exome sequencing, trio analysis, protein structure analysis, and sphingolipid measurements. Subsequently, we expanded our analysis to 62 probands with early-onset ALS and further included 440 patients with adult-onset ALS and 1163 healthy controls to assess the prevalence of identified genetic variants. RESULTS: We identified heterozygous variants in the serine palmitoyltransferase long chain base subunit 2 (SPTLC2) gene in patients with early-onset ALS. These variants, located in a region closely adjacent to ORMDL3, bear similarities to SPTLC1 variants previously implicated in early-onset ALS. Patients with ALS carrying these SPTLC2 variants displayed elevated plasma ceramide levels, indicative of increased serine palmitoyltransferase (SPT) activity leading to sphingolipid overproduction. INTERPRETATION: Our study revealed novel SPTLC2 variants in patients with early-onset ALS exhibiting frontotemporal dementia. The combination of genetic evidence and the observed elevation in plasma ceramide levels establishes a crucial link between dysregulated sphingolipid metabolism and ALS pathogenesis. These findings expand our understanding of ALS's genetic diversity and highlight the distinct roles of gene defects within SPT subunits in its development.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Doenças Neurodegenerativas , Adulto , Humanos , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/genética , Serina C-Palmitoiltransferase/genética , Esfingolipídeos , Ceramidas
9.
Cell Rep ; 43(2): 113717, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38285738

RESUMO

The homeostatic regulation of serine palmitoyltransferase (SPT) activity in yeast involves N-terminal phosphorylation of Orm proteins, while higher eukaryotes lack these phosphorylation sites. Although recent studies have indicated a conserved ceramide-mediated feedback inhibition of the SPT-ORM/ORMDL complex in higher eukaryotes, its conservation and relationship with phosphorylation regulation in yeast remain unclear. Here, we determine the structure of the yeast SPT-Orm2 complex in a dephosphomimetic state and identify an evolutionarily conserved ceramide-sensing site. Ceramide stabilizes the dephosphomimetic Orm2 in an inhibitory conformation, facilitated by an intramolecular ß-sheet between the N- and C-terminal segments of Orm2. Moreover, we find that a phosphomimetic mutant of Orm2, positioned adjacent to its intramolecular ß-sheet, destabilizes the inhibitory conformation of Orm2. Taken together, our findings suggest that both Orm dephosphorylation and ceramide binding are crucial for suppressing SPT activity in yeast. This highlights a distinctive regulatory mechanism in yeast involving the collaborative actions of phosphorylation and ceramide.


Assuntos
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolipídeos/metabolismo , Fosforilação , Proteínas/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
J Neurol Neurosurg Psychiatry ; 95(2): 103-113, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38041679

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of the upper and lower motor neurons with varying ages of onset, progression and pathomechanisms. Monogenic childhood-onset ALS, although rare, forms an important subgroup of ALS. We recently reported specific SPTLC1 variants resulting in sphingolipid overproduction as a cause for juvenile ALS. Here, we report six patients from six independent families with a recurrent, de novo, heterozygous variant in SPTLC2 c.778G>A [p.Glu260Lys] manifesting with juvenile ALS. METHODS: Clinical examination of the patients along with ancillary and genetic testing, followed by biochemical investigation of patients' blood and fibroblasts, was performed. RESULTS: All patients presented with early-childhood-onset progressive weakness, with signs and symptoms of upper and lower motor neuron degeneration in multiple myotomes, without sensory neuropathy. These findings were supported on ancillary testing including nerve conduction studies and electromyography, muscle biopsies and muscle ultrasound studies. Biochemical investigations in plasma and fibroblasts showed elevated levels of ceramides and unrestrained de novo sphingolipid synthesis. Our studies indicate that SPTLC2 variant [c.778G>A, p.Glu260Lys] acts distinctly from hereditary sensory and autonomic neuropathy (HSAN)-causing SPTLC2 variants by causing excess canonical sphingolipid biosynthesis, similar to the recently reported SPTLC1 ALS associated pathogenic variants. Our studies also indicate that serine supplementation, which is a therapeutic in SPTLC1 and SPTCL2-associated HSAN, is expected to exacerbate the excess sphingolipid synthesis in serine palmitoyltransferase (SPT)-associated ALS. CONCLUSIONS: SPTLC2 is the second SPT-associated gene that underlies monogenic, juvenile ALS and further establishes alterations of sphingolipid metabolism in motor neuron disease pathogenesis. Our findings also have important therapeutic implications: serine supplementation must be avoided in SPT-associated ALS, as it is expected to drive pathogenesis further.


Assuntos
Esclerose Lateral Amiotrófica , Neuropatias Hereditárias Sensoriais e Autônomas , Doenças Neurodegenerativas , Criança , Humanos , Esclerose Lateral Amiotrófica/genética , Esfingolipídeos , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Serina
12.
J Neurol Neurosurg Psychiatry ; 95(3): 201-205, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38041684

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) leads to paralysis and death by progressive degeneration of motor neurons. Recently, specific gain-of-function mutations in SPTLC1 were identified in patients with juvenile form of ALS. SPTLC2 encodes the second catalytic subunit of the serine-palmitoyltransferase (SPT) complex. METHODS: We used the GENESIS platform to screen 700 ALS whole-genome and whole-exome data sets for variants in SPTLC2. The de-novo status was confirmed by Sanger sequencing. Sphingolipidomics was performed using liquid chromatography and high-resolution mass spectrometry. RESULTS: Two unrelated patients presented with early-onset progressive proximal and distal muscle weakness, oral fasciculations, and pyramidal signs. Both patients carried the novel de-novo SPTLC2 mutation, c.203T>G, p.Met68Arg. This variant lies within a single short transmembrane domain of SPTLC2, suggesting that the mutation renders the SPT complex irresponsive to regulation through ORMDL3. Confirming this hypothesis, ceramide and complex sphingolipid levels were significantly increased in patient plasma. Accordingly, excessive sphingolipid production was shown in mutant-expressing human embryonic kindney (HEK) cells. CONCLUSIONS: Specific gain-of-function mutations in both core subunits affect the homoeostatic control of SPT. SPTLC2 represents a new Mendelian ALS gene, highlighting a key role of dysregulated sphingolipid synthesis in the pathogenesis of juvenile ALS. Given the direct interaction of SPTLC1 and SPTLC2, this knowledge might open new therapeutic avenues for motor neuron diseases.


Assuntos
Esclerose Lateral Amiotrófica , Serina C-Palmitoiltransferase , Humanos , Esclerose Lateral Amiotrófica/genética , Ceramidas , Mutação com Ganho de Função , Mutação/genética , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/química , Esfingolipídeos
13.
Adv Biol Regul ; 91: 101010, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135565

RESUMO

Sphingolipids are a diverse class of lipids with essential functions as determinants of membrane physical properties and as intra- and intercellular signaling agents. Disruption of the normal biochemical processes that establish the levels of individual sphingolipids is associated with a variety of human diseases including cancer, cardiovascular disease, metabolic disease, skin diseases, and lysosomal storage diseases. A unique aspect of this metabolic network is that there is a single enzymatic step that initiates the biosynthetic pathway for all sphingolipids. This step is catalyzed by the enzyme serine palmitoyltranserase (SPT). Under most circumstances SPT condenses serine and the 16-carbon acyl-CoA, palmitoyl-CoA to produce the precursor of all sphingolipids. SPT, a four-subunit protein complex, is subject to classic feedback regulation: when cellular sphingolipids are elevated, SPT activity is inhibited. Ceramide is the sphingolipid sensed by this system and it regulates SPT by directly binding to the complex. The ceramide binding site in the SPT complex, and how ceramide binding results in SPT inhibition, has now been determined in vertebrates, plants, and yeast using molecular modeling and cryo-electron microscopy. Here we discuss the similarities and differences revealed by these resolved structures and the surprising result that ceramide binds at almost identical positions in the SPT complex of these divergent organisms, but accomplishes SPT regulation in very different ways.


Assuntos
Ceramidas , Serina C-Palmitoiltransferase , Animais , Humanos , Ceramidas/genética , Ceramidas/metabolismo , Microscopia Crioeletrônica , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina
14.
J Cell Sci ; 136(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982431

RESUMO

Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism to changing environmental conditions. Therefore, the Orm proteins are phosphorylated by two signaling pathways originating from either the plasma membrane or the lysosome (or vacuole in yeast). Moreover, uptake of exogenous serine is necessary for the regulation of SP biosynthesis, which suggests the existence of differentially regulated SPT pools based on their intracellular localization. However, measuring lipid metabolic enzyme activity in different cellular sub-compartments has been challenging. Combining a nanobody recruitment approach with SP flux analysis, we show that the nuclear endoplasmic reticulum (ER)-localized SPT and the peripheral ER localized SPT pools are differentially active. Thus, our data add another layer to the complex network of SPT regulation. Moreover, combining lipid metabolic enzyme re-localization with flux analysis serves as versatile tool to measure lipid metabolism with subcellular resolution.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Nat Commun ; 14(1): 6196, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794019

RESUMO

Sphingolipids are structural membrane components that also function in cellular stress responses. The serine palmitoyltransferase (SPT) catalyzes the rate-limiting step in sphingolipid biogenesis. Its activity is tightly regulated through multiple binding partners, including Tsc3, Orm proteins, ceramides, and the phosphatidylinositol-4-phosphate (PI4P) phosphatase Sac1. The structural organization and regulatory mechanisms of this complex are not yet understood. Here, we report the high-resolution cryo-EM structures of the yeast SPT in complex with Tsc3 and Orm1 (SPOT) as dimers and monomers and a monomeric complex further carrying Sac1 (SPOTS). In all complexes, the tight interaction of the downstream metabolite ceramide and Orm1 reveals the ceramide-dependent inhibition. Additionally, observation of ceramide and ergosterol binding suggests a co-regulation of sphingolipid biogenesis and sterol metabolism within the SPOTS complex.


Assuntos
Ceramidas , Proteínas de Saccharomyces cerevisiae , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Gastroenterology ; 165(5): 1136-1150, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37541526

RESUMO

BACKGROUND & AIMS: Cancers of the alimentary tract, including esophageal adenocarcinomas, colorectal cancers, and cancers of the gastric cardia, are common comorbidities of obesity. Prolonged, excessive delivery of macronutrients to the cells lining the gut can increase one's risk for these cancers by inducing imbalances in the rate of intestinal stem cell proliferation vs differentiation, which can produce polyps and other aberrant growths. We investigated whether ceramides, which are sphingolipids that serve as a signal of nutritional excess, alter stem cell behaviors to influence cancer risk. METHODS: We profiled sphingolipids and sphingolipid-synthesizing enzymes in human adenomas and tumors. Thereafter, we manipulated expression of sphingolipid-producing enzymes, including serine palmitoyltransferase (SPT), in intestinal progenitors of mice, cultured organoids, and Drosophila to discern whether sphingolipids altered stem cell proliferation and metabolism. RESULTS: SPT, which diverts dietary fatty acids and amino acids into the biosynthetic pathway that produces ceramides and other sphingolipids, is a critical modulator of intestinal stem cell homeostasis. SPT and other enzymes in the sphingolipid biosynthesis pathway are up-regulated in human intestinal adenomas. They produce ceramides, which serve as prostemness signals that stimulate peroxisome-proliferator activated receptor-α and induce fatty acid binding protein-1. These actions lead to increased lipid utilization and enhanced proliferation of intestinal progenitors. CONCLUSIONS: Ceramides serve as critical links between dietary macronutrients, epithelial regeneration, and cancer risk.


Assuntos
Adenoma , Ceramidas , Humanos , Animais , Camundongos , Ceramidas/metabolismo , Ácidos Graxos , Esfingolipídeos/metabolismo , Serina C-Palmitoiltransferase/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-37348646

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neuromuscular disease. Recently, several gain-of-function mutations in SPTLC1 were associated with juvenile ALS. SPTLC1 encodes for a subunit of the serine-palmitoyltransferase (SPT) - the rate-limiting enzyme in the de novo synthesis of sphingolipids (SL). SPT activity, and thus SL de novo synthesis, is tightly controlled by a homeostatic feedback mechanism mediated by ORMDL proteins. Here we report a novel SPTLC1p.L38R mutation in a young Chinese girl with a signature of juvenile ALS. The patient presented with muscular weakness and atrophy, tongue tremor and fasciculation, breathing problems and positive pyramidal signs. All SPTLC1-ALS mutations including the SPTLC1 p.L38R are located within a single membrane-spanning domain of the protein and impede the interaction with the regulatory ORMDL subunit of SPT. Pertinent to the altered homeostatic control, lipid analysis showed overall increased SL levels in the patient plasma. An increased SPT activity and SL de novo synthesis was confirmed in p.L38R expressing HEK293 cells. Particularily dihydro-sphingolipids (dhSL) were signficantly increased in patient plasma and p.L38R mutant expressing cells. Increased dhSL formation has been previously linked to neurotoxicity and may be involved in the pathomechanism of SPTLC1-ALS mutations.


Assuntos
Esclerose Lateral Amiotrófica , Feminino , Humanos , Criança , Esclerose Lateral Amiotrófica/genética , Células HEK293 , Esfingolipídeos/metabolismo , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
18.
Sci Transl Med ; 15(696): eade6509, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196064

RESUMO

Disruption of mitochondrial function and protein homeostasis plays a central role in aging. However, how these processes interact and what governs their failure in aging remain poorly understood. Here, we showed that ceramide biosynthesis controls the decline in mitochondrial and protein homeostasis during muscle aging. Analysis of transcriptome datasets derived from muscle biopsies obtained from both aged individuals and patients with a diverse range of muscle disorders revealed that changes in ceramide biosynthesis, as well as disturbances in mitochondrial and protein homeostasis pathways, are prevalent features in these conditions. By performing targeted lipidomics analyses, we found that ceramides accumulated in skeletal muscle with increasing age across Caenorhabditis elegans, mice, and humans. Inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme of the ceramide de novo synthesis, by gene silencing or by treatment with myriocin restored proteostasis and mitochondrial function in human myoblasts, in C. elegans, and in the skeletal muscles of mice during aging. Restoration of these age-related processes improved health and life span in the nematode and muscle health and fitness in mice. Collectively, our data implicate pharmacological and genetic suppression of ceramide biosynthesis as potential therapeutic approaches to delay muscle aging and to manage related proteinopathies via mitochondrial and proteostasis remodeling.


Assuntos
Resistência à Insulina , Proteostase , Camundongos , Humanos , Animais , Idoso , Caenorhabditis elegans , Músculo Esquelético/metabolismo , Ceramidas/metabolismo , Mitocôndrias/metabolismo , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Envelhecimento
19.
Pharmacol Res Perspect ; 11(3): e01094, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37204099

RESUMO

Ceramide is a central molecule of sphingolipid metabolism and is involved in the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). It has already been reported that the inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme in the sphingolipid biosynthetic pathway, has an inhibitory effect on hepatic lipidosis, but its effect on severe hepatic fibrosis is not clear. In this study, we examined whether a SPT inhibitor could suppress the activation of hepatic stellate cells (HSC) and ameliorate the progression of NASH. Effects on sphingolipid metabolism and HSC activation marker genes by NA808, a SPT inhibitor, were evaluated in an immortalized HSC cell line (E14C12). NA808 decreased sphingolipid synthesis and the expression of α-smooth muscle actin (α-SMA) and collagen 1A1 mRNA in HSC. We identified a novel oral SPT inhibitor, CH5169356, which is a prodrug of NA808. CH5169356 was administered in the Ath+HF model, a NASH mouse model with liver fibrosis induced by atherogenic and high-fat content diets. CH5169356 showed a significant decrease in the expression of α-SMA and collagen 1A1 mRNA in the liver and an inhibition of liver fibrosis progression. CH5169356 was also evaluated in a Stelic animal model (STAM), a NASH mouse model induced through a different mechanism than that of the Ath+HF model, and showed a significant anti-fibrotic effect. In conclusion, CH5169356 could inhibit the progression of hepatic fibrosis in the pathogenesis of NASH by suppressing HSC activation, suggesting that CH5169356 would be a potential oral NASH therapeutic agent.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/etiologia , Modelos Animais de Doenças , RNA Mensageiro/metabolismo
20.
Chembiochem ; 24(18): e202300209, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37144248

RESUMO

Type I fatty acid synthases (FASs) are known from higher eukaryotes and fungi. We report the discovery of FasT, a rare type I FAS from the cyanobacterium Chlorogloea sp. CCALA695. FasT possesses an unusual off-loading domain, which was heterologously expressed in E. coli and found to act as an α-oxoamine synthase (AOS) in vitro. Similar to serine palmitoyltransferases from sphingolipid biosynthesis, the AOS off-loading domain catalyzes a decarboxylative Claisen condensation between l-serine and a fatty acyl thioester. While the AOS domain was strictly specific for l-serine, thioesters with saturated fatty acyl chains of six carbon atoms and longer were tolerated, with the highest activity observed for stearoyl-coenzyme A (C18 ). Our findings suggest a novel route to α-amino ketones via the direct condensation of iteratively produced long-chain fatty acids with l-serine by a FAS with a cis-acting AOS off-loading domain.


Assuntos
Escherichia coli , Serina C-Palmitoiltransferase , Ácidos Graxos , Serina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...