Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928292

RESUMO

Tanshinone IIA (T2A) is a bioactive compound that provides promise in the treatment of glioblastoma multiforme (GBM), with a range of molecular mechanisms including the inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy. Recently, T2A has been demonstrated to function through sestrin 2 (SESN) to inhibit mTORC1 activity, but its possible impact on autophagy through this pathway has not been investigated. Here, the model system Dictyostelium discoideum and GBM cell lines were employed to investigate the cellular role of T2A in regulating SESN to inhibit mTORC1 and activate autophagy through a GATOR2 component MIOS. In D. discoideum, T2A treatment induced autophagy and inhibited mTORC1 activity, with both effects lost upon the ablation of SESN (sesn-) or MIOS (mios-). We further investigated the targeting of MIOS to reproduce this effect of T2A, where computational analysis identified 25 novel compounds predicted to strongly bind the human MIOS protein, with one compound (MIOS inhibitor 3; Mi3) reducing cell proliferation in two GBM cells. Furthermore, Mi3 specificity was demonstrated through the loss of potency in the D. discoideum mios- cells regarding cell proliferation and the induction of autophagy. In GBM cells, Mi3 treatment also reduced mTORC1 activity and induced autophagy. Thus, a potential T2A mimetic showing the inhibition of mTORC1 and induction of autophagy in GBM cells was identified.


Assuntos
Abietanos , Autofagia , Dictyostelium , Glioblastoma , Alvo Mecanístico do Complexo 1 de Rapamicina , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Abietanos/farmacologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Dictyostelium/efeitos dos fármacos , Dictyostelium/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/antagonistas & inibidores , Sestrinas
2.
Tissue Cell ; 88: 102398, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728949

RESUMO

BACKGROUND: Allicin regulates macrophage autophagy and senescence, and inhibits hepatoma cell growth. This study investigated the mechanism by which allicin inhibits the growth of hepatoma cells. METHODS: Hepa1-6 mouse hepatoma cells were subcutaneously injected into C57BL/6 J mice to construct a tumor transplantation model. Macrophages were cultured with the supernatant of hepatoma cells to construct a cell model. The levels of mRNA and proteins and the level of Sestrin2 ubiquitination were measured by RTqPCR, immunofluorescence and Western blotting. The levels of autophagy-related factors and the activity of senescence-associated ß-galactosidase were determined by kits, and protein stability was detected by cycloheximide (CHX) tracking. RESULTS: Data analysis of clinical samples revealed that RBX1 was highly expressed in tumor tissues, while Sestrin2 was expressed at low levels in tumor tissues. Allicin can promote the expression of the autophagy-related proteins LC3 and Beclin-1 in tumor macrophages and inhibit the expression of the aging-related proteins p16 and p21, thus promoting autophagy in macrophages and inhibiting cell senescence. Moreover, allicin can inhibit the expression of RBX1, thereby reducing the ubiquitination of Sestrin2, enhancing the stability of Sestrin2, activating autophagy in tumor macrophages and inhibiting senescence. In addition, allicin treatment inhibited the proliferation and migration of hepatoma carcinoma cells cocultured with macrophages and significantly improved the development of liver cancer in mice. CONCLUSION: Allicin can affect the autophagy of macrophages and restrain the growth of hepatoma cells by regulating the ubiquitination of Sestrin2.


Assuntos
Autofagia , Carcinoma Hepatocelular , Senescência Celular , Dissulfetos , Neoplasias Hepáticas , Macrófagos , Ácidos Sulfínicos , Ubiquitinação , Animais , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Dissulfetos/farmacologia , Senescência Celular/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Ácidos Sulfínicos/farmacologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Linhagem Celular Tumoral , Ubiquitinação/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Masculino , Peroxidases/metabolismo , Sestrinas
3.
Gene ; 926: 148606, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788813

RESUMO

Obesity and overweight are multifactorial diseases affecting more than one-third of the world's population. Physical inactivity contributes to a positive energy balance and the onset of obesity. Exercise combined with a balanced diet is an effective non-pharmacological strategy to improve obesity-related disorders. Gallic acid (GA), is a natural endogenous polyphenol found in a variety of fruits, vegetables, and wines, with beneficial effects on energetic homeostasis. The present study aims to investigate the effects of exercise training on obese mice supplemented with GA. Animal experimentation was performed with male Swiss mice divided into five groups: ST (standard control), HFD (obese control), HFD + GA (GA supplement), HFD + Trained (training), and HFD + GA + Trained (GA and training). The groups are treated for eight weeks with 200 mg/kg/body weight of the feed compound and, if applicable, physical training. The main findings of the present study show that GA supplementation improves liver fat, body weight, adiposity, and plasma insulin levels. In addition, animals treated with the GA and a physical training program demonstrate reduced levels of anxiety. Gene expression analyses show that Sesn2 is activated via PGC-1α independent of the GATOR2 protein, which is activated by GA in the context of physical activity. These data are corroborated by molecular docking analysis, demonstrating the interaction of GA with GATOR2. The present study contributes to understanding the metabolic effects of GA and physical training and demonstrates a new hepatic mechanism of action via Sestrin 2 and PGC-1α.


Assuntos
Ácido Gálico , Fígado , Camundongos Obesos , Obesidade , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Animais , Camundongos , Ácido Gálico/farmacologia , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/genética , Obesidade/tratamento farmacológico , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Ansiedade/tratamento farmacológico , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Sestrinas
4.
Phytomedicine ; 129: 155620, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669964

RESUMO

BACKGROUND: Activation of myofibroblasts, linked to oxidative stress, emerges as a pivotal role in the progression of pulmonary fibrosis (PF). Our prior research has underscored the therapeutic promise of tanshinone IIA (Tan-IIA) in mitigating PF by enhancing nuclear factor-erythroid 2-related factor 2 (Nrf2) activity. Nevertheless, the molecular basis through which Tan-IIA influences Nrf2 activity has yet to be fully elucidated. METHODS: The influence of Tan-IIA on PF was assessed in vivo and in vitro models. Inhibitors, overexpression plasmids, and small interfering RNA (siRNA) were utilized to probe its underlying mechanism of action in vitro. RESULTS: We demonstrate that Tan-IIA effectively activates the kelch-like ECH-associated protein 1 (Keap1)-Nrf2 antioxidant pathway, which in turn inhibits myofibroblast activation and ameliorates PF. Notably, the stability and nucleo-cytoplasmic shuttling of Nrf2 is shown to be dependent on augmented autophagic flux, which is in alignment with the observation that Tan-IIA induces autophagy. Inhibition of autophagy, conversely, fosters the activation of extracellular matrix (ECM)-producing myofibroblasts. Further, Tan-IIA initiates an autophagy program through the sestrin 2 (Sesn2)-sequestosome 1 (Sqstm1) signaling axis, crucial for protecting Nrf2 from Keap1-mediated degradation. Meanwhile, these findings were corroborated in a murine model of PF. CONCLUSION: Collectively, we observed for the first time that the Sqstm1-Sesn2 axis-mediated autophagic degradation of Keap1 effectively prevents myofibroblast activation and reduces the synthesis of ECM. This autophagy-dependent degradation of Keap1 can be initiated by the Tan-IIA treatment, which solidifies its potential as an Nrf2-modulating agent for PF treatment.


Assuntos
Abietanos , Autofagia , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Fibrose Pulmonar , Proteína Sequestossoma-1 , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Abietanos/farmacologia , Autofagia/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos Endogâmicos C57BL , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Proteína Sequestossoma-1/metabolismo , Sestrinas , Transdução de Sinais/efeitos dos fármacos
5.
Cell Biochem Funct ; 42(4): e4024, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666564

RESUMO

Diabetic retinopathy (DR) is a significant complication of diabetes that often leads to blindness, impacting Müller cells, the primary retinal macroglia involved in DR pathogenesis. Reactive oxygen species (ROS) play a crucial role in the development of DR. The objective of this study was to investigate the involvement of sestrin2 in DR using a high-glucose (HG)-induced Müller cell model and assessing cell proliferation with 5-ethynyl-2-deoxyuridine (EdU) labeling. Following this, sestrin2 was upregulated in Müller cells to investigate its effects on ROS, tube formation, and inflammation both in vitro and in vivo, as well as its interaction with the nuclear factor erythroid2-related factor 2 (Nrf2) signaling pathway. The findings demonstrated a gradual increase in the number of EdU-positive cells over time, with a subsequent decrease after 72 h of exposure to high glucose levels. Additionally, the expression of sestrin2 exhibited a progressive increase over time, followed by a decrease at 72 h. The rh-sestrin2 treatment suppressed the injury of Müller cells, decreased ROS level, and inhibited the tube formation. Rh-sestrin2 treatment enhanced the expression of sestrin2, Nrf2, heme oxygenase-1 (HO-1), and glutamine synthetase (GS); however, the ML385 treatment reversed the protective effect of rh-sestrin2. Finally, we evaluated the effect of sestrin2 in a DR rat model. Sestrin2 overexpression treatment improved the pathological injury of retina and attenuated the oxidative damage and inflammatory reaction. Our results highlighted the inhibitory effect of sestrin2 in the damage of retina, thus presenting a novel therapeutic sight for DR.


Assuntos
Retinopatia Diabética , Espécies Reativas de Oxigênio , Sestrinas , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Ratos , Masculino , Ratos Sprague-Dawley , Fator 2 Relacionado a NF-E2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Glucose/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Transdução de Sinais/efeitos dos fármacos , Peroxidases/metabolismo , Células Cultivadas
6.
Exp Gerontol ; 190: 112428, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604253

RESUMO

BACKGROUND: Mitochondrial dysregulation in skeletal myocytes is considered a major factor in aged sarcopenia. In this study, we aimed to study the effects of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) on Sestrin2-mediated mechanistic target of rapamycin complex 1 (mTORC1) in aged skeletal muscles. METHODS: C2C12 myoblasts were stimulated by 50 µM 7ß-hydroxycholesterol (7ß-OHC) to observe the changes of DNA damage, mitochondrial membrane potential (Δψm), mitochondrial ROS and PGC-1α protein. The PGC-1α silence in the C2C12 cells was established by siRNA transfection. The levels of DNA damage, Δψm, mitochondrial ROS, Sestrin2 and p-S6K1/S6K1 proteins were observed after the PGC-1α silence in the C2C12 cells. Recombinant Sestrin2 treatment was used to observe the changes of DNA damage, Δψm, mitochondrial ROS and p-S6K1/S6K1 protein in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. Wild-type (WT) mice and muscle-specific PGC-1α conditional knockout (MKO) mice, including young and old, were used to analyse the effects of PGC-1α on muscle function and the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles. Recombinant Sestrin2 was administrated to analyse its effects on muscle function in the old WT mice and old MKO mice. RESULTS: 7ß-OHC treatment induced DNA damage, mitochondrial dysfunction and decrease of PGC-1α protein in the C2C12 cells. PGC-1α silence also induced DNA damage and mitochondrial dysfunction in the C2C12 cells. Additionally, PGC-1α silence or 7ß-OHC treatment decreased the levels of Sestrin2 and p-S6K1/S6K1 protein in the C2C12 cells. Recombinant Sestrin2 treatment significantly improved the DNA damage and mitochondrial dysfunction in the 7ß-OHC-treated or PGC-1α siRNA-transfected C2C12 cells. At the same age, muscle-specific PGC-1α deficiency aggravated aged sarcopenia and decreased the levels of Sestrin2 and p-S6K1 in the white gastrocnemius muscles when compared to the WT mice. Recombinant Sestrin2 treatment improved muscle function and increased p-S6K1 levels in the old two genotypes. CONCLUSION: This research demonstrates that PGC-1α participates in regulating mitochondrial function in aged sarcopenia through effects on the Sestrin2-mediated mTORC1 pathway.


Assuntos
Dano ao DNA , Alvo Mecanístico do Complexo 1 de Rapamicina , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases S6 Ribossômicas 90-kDa , Sarcopenia , Sestrinas , Animais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Camundongos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sarcopenia/metabolismo , Camundongos Knockout , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/fisiologia , Envelhecimento/metabolismo , Transdução de Sinais , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Masculino , Músculo Esquelético/metabolismo , Linhagem Celular , Mitocôndrias/metabolismo , Peroxidases/metabolismo , Camundongos Endogâmicos C57BL , Mioblastos/metabolismo
7.
Biol Reprod ; 111(1): 197-211, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38519102

RESUMO

Heat stress induces testicular oxidative stress, impairs spermatogenesis, and increases the risk of male infertility. Recent studies have highlighted the antioxidative properties of the Sestrins family in reducing cellular oxidative damage. However, the role of Sestrins (Sestrin1, 2, and 3) in the testicular response to heat stress remains unclear. Here, we found that Sestrin2 and 3 were highly expressed in the testis relative to Sestrin1. Then, the Sestrin2-/- and Sestrin3-/- mice were generated by CRISPR/Cas9 to investigate the role of them on spermatogenesis after heat stress. Our data showed that Sestrin2-/- and Sestrin3-/- mice testes exhibited more severe damage manifested by exacerbated loss of germ cells and higher levels of oxidative stress as compared to wild-type counterparts after heat stress. Notably, Sestrin2-/- and Sestrin3-/- mice underwent a remarkable increase in heat-induced spermatocyte apoptosis than that of controls. Furthermore, the transcriptome landscape of spermatocytes and chromosome spreading showed that loss of Sestrin2 and Sestrin3 exacerbated meiotic failure by compromising DNA double-strand breaks repair after heat stress. Taken together, our work demonstrated a critical protective function of Sestrin2 and Sestrin3 in mitigating the impairments of spermatogenesis against heat stress.


Assuntos
Resposta ao Choque Térmico , Meiose , Camundongos Knockout , Espermatogênese , Animais , Masculino , Espermatogênese/fisiologia , Espermatogênese/genética , Camundongos , Meiose/fisiologia , Resposta ao Choque Térmico/fisiologia , Sestrinas/genética , Sestrinas/metabolismo , Estresse Oxidativo/fisiologia , Testículo/metabolismo , Espermatócitos/metabolismo , Apoptose/fisiologia
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432454

RESUMO

AIM: To compare the effects of different exercise preconditioning in the context of skeletal muscle atrophy and to investigate the potential involvement of Sestrin2 (SESN2), a stress-inducible protein that can be regulated by exercise, in exercise preconditioning on preventing disuse muscle atrophy. METHODS: Eight-week-old male C57BL/6J mice were randomly assigned to sedentary groups (SD), aerobic exercise groups (AE), resistance exercise groups (RE), and combined exercise groups (CE) with or without 7 days of immobilization. The duration of the exercise intervention was 10 weeks. The effects of different exercise preconditioning to prevent muscle atrophy were analyzed by evaluating skeletal muscle function and mass. Additionally, to investigate the potential underlying mechanism of exercise-induced protection of skeletal muscle, wild-type and SESN2--/-- mice were randomly divided into sedentary group and resistance exercise preconditioning group. C2C12 cells were treated with SESN2 adenoviruses and MK2206 (an AKT inhibitor) for 48 h to elucidate the underlined mechanism. RESULTS: RE was more effective in preserving skeletal muscle function, muscle mass and maintaining skeletal muscle protein homeostasis than AE and CE under immobilized condition. Importantly, exercise performance, muscle mass to body weight ratio, and the cross-sectional area of muscle fibers were significantly lower in SESN2-/- mice than wild-type mice after resistance exercise preconditioning. Mechanistically, the absence of SESN2 led to activation of the ubiquitin-proteasome system and induction of apoptosis. In vitro experiments showed that MK2206 treatment mitigated the regulatory effects of overexpression-SESN2 on protein hydrolysis and apoptosis. CONCLUSION: RE was more effective than AE or CE in preventing disuse muscle atrophy. SESN2 mediated the protective effects of resistance exercise preconditioning on skeletal muscle atrophy.


Assuntos
Treinamento Resistido , Humanos , Camundongos , Masculino , Animais , Proteólise , Camundongos Endogâmicos C57BL , Atrofia Muscular/prevenção & controle , Atrofia Muscular/metabolismo , Apoptose , Sestrinas/metabolismo
9.
CNS Neurosci Ther ; 30(3): e14664, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516781

RESUMO

AIMS: Neuroblastoma (NB) is the most common extracranial solid tumor in children, with a 5-year survival rate of <50% in high-risk patients. MYCN amplification is an important factor that influences the survival rate of high-risk patients. Our results indicated MYCN regulates the expression of SESN1. Therefore, this study aimed to investigate the role and mechanisms of SESN1 in NB. METHODS: siRNAs or overexpression plasmids were used to change MYCN, SESN1, or MyD88's expression. The role of SESN1 in NB cell proliferation, migration, and invasion was elucidated. Xenograft mice models were built to evaluate SESN1's effect in vivo. The correlation between SESN1 expression and clinicopathological data of patients with NB was analyzed. RNA-Seq was done to explore SESN1's downstream targets. RESULTS: SESN1 was regulated by MYCN in NB cells. Knockdown SESN1 promoted NB cell proliferation, cell migration, and cell invasion, and overexpressing SESN1 had opposite functions. Knockdown SESN1 promoted tumor growth and shortened tumor-bearing mice survival time. Low expression of SESN1 had a positive correlation with poor prognosis in patients with NB. RNA-Seq showed that Toll-like receptor (TLR) signaling pathway, and PD-L1 expression and PD-1 checkpoint pathway in cancer were potential downstream targets of SESN1. Knockdown MyD88 or TLRs inhibitor HCQ reversed the effect of knockdown SESN1 in NB cells. High expression of SESN1 was significantly associated with a higher immune score and indicated an active immune microenvironment for patients with NB. CONCLUSIONS: SESN1 functions as a new tumor suppressor gene via TLR signaling pathway in NB.


Assuntos
Fator 88 de Diferenciação Mieloide , Neuroblastoma , Criança , Humanos , Animais , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fatores de Transcrição/genética , Transdução de Sinais/genética , Neuroblastoma/patologia , Genes Supressores de Tumor , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral , Sestrinas/genética , Sestrinas/metabolismo
10.
Prostaglandins Other Lipid Mediat ; 172: 106832, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460759

RESUMO

Atherosclerosis (AS) represents a prevalent initiating factor for cardiovascular events. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an oncofetal RNA-binding protein that participates in cardiovascular diseases. This work aimed to elaborate the effects of IGF2BP3 on AS and the probable mechanism by using an oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) model. Results indicated that IGF2BP3 expression was declined in the blood of AS patients and ox-LDL-induced HUVECs. IGF2BP3 elevation alleviated ox-LDL-provoked viability loss, apoptosis, oxidative DNA damage and endothelial dysfunction in HUVECs. Moreover, IGF2BP3 bound SESN1 and stabilized SESN1 mRNA. Furthermore, SESN1 interference reversed the impacts of IGF2BP3 overexpression on the apoptosis, oxidative DNA damage and endothelial dysfunction of ox-LDL-challenged HUVECs. Additionally, the activation of Nrf2 signaling mediated by IGF2BP3 up-regulation in ox-LDL-treated HUVECs was blocked by SESN1 absence. Collectively, SESN1 stabilized by IGF2BP3 might protect against AS by activating Nrf2 signaling.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Lipoproteínas LDL , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , RNA Mensageiro , Proteínas de Ligação a RNA , Transdução de Sinais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Apoptose/efeitos dos fármacos , Aterosclerose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Estabilidade de RNA/efeitos dos fármacos , Dano ao DNA , Sestrinas
11.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396629

RESUMO

Non-small cell lung cancer (NSCLC) represents 80% of all lung cancer cases and is characterized by low survival rates due to chemotherapy and radiation resistance. Novel treatment strategies for NSCLC are urgently needed. Liver kinase B1 (LKB1), a tumor suppressor prevalently mutated in NSCLC, activates AMP-activated protein kinase (AMPK) which in turn inhibits mammalian target of rapamycin complex 1 (mTORC1) and activates unc-51 like autophagy activating kinase 1 (ULK1) to promote autophagy. Sestrin-2 is a stress-induced protein that enhances LKB1-dependent activation of AMPK, functioning as a tumor suppressor in NSCLC. In previous studies, rosemary (Rosmarinus officinalis) extract (RE) activated the AMPK pathway while inhibiting mTORC1 to suppress proliferation, survival, and migration, leading to the apoptosis of NSCLC cells. In the present study, we investigated the anticancer potential of carnosic acid (CA), a bioactive polyphenolic diterpene compound found in RE. The treatment of H1299 and H460 NSCLC cells with CA resulted in concentration and time-dependent inhibition of cell proliferation assessed with crystal violet staining and 3H-thymidine incorporation, and concentration-dependent inhibition of survival, assessed using a colony formation assay. Additionally, CA induced apoptosis of H1299 cells as indicated by decreased B-cell lymphoma 2 (Bcl-2) levels, increased cleaved caspase-3, -7, poly (ADP-ribose) polymerase (PARP), Bcl-2-associated X protein (BAX) levels, and increased nuclear condensation. These antiproliferative and proapoptotic effects coincided with the upregulation of sestrin-2 and the phosphorylation/activation of LKB1 and AMPK. Downstream of AMPK signaling, CA increased levels of autophagy marker light chain 3 (LC3), an established marker of autophagy; inhibiting autophagy with 3-methyladenine (3MA) blocked the antiproliferative effect of CA. Overall, these data indicate that CA can inhibit NSCLC cell viability and that the underlying mechanism of action of CA involves the induction of autophagy through a Sestrin-2/LKB1/AMPK signaling cascade. Future experiments will use siRNA and small molecule inhibitors to better elucidate the role of these signaling molecules in the mechanism of action of CA as well as tumor xenograft models to assess the anticancer properties of CA in vivo.


Assuntos
Abietanos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Abietanos/farmacologia , Abietanos/uso terapêutico , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Serina-Treonina Quinases/metabolismo , Sestrinas/efeitos dos fármacos , Sestrinas/metabolismo , Quinases Proteína-Quinases Ativadas por AMP/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/metabolismo
12.
Int J Immunopathol Pharmacol ; 38: 3946320241234741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38379215

RESUMO

OBJECTIVE: We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS: To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 µM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1ß, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS: SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1ß, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION: SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.


Assuntos
Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Interleucina-18/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Sestrinas/metabolismo , Estresse Oxidativo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Células Epiteliais/metabolismo , Superóxido Dismutase , Sirolimo/farmacologia , Sobrevivência Celular
13.
J Ovarian Res ; 17(1): 28, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297375

RESUMO

BACKGROUND: Sestrins have been implicated in regulating aging in various organs through multiple pathways. However, their roles in ovarian aging remain unrevealed. METHODS: Female Sestrin1-/-, Sestrin2-/-, and Sestrin3-/- mice were generated using the CRISPR-Cas9 system. Body weights, little sizes, ovarian weights, estrous cyclicity, and follicle number in female mice were observed. ELISA was utilized to measure serum anti-Müllerian hormone (AMH) levels. Real time PCR, western blot, immunofluorescence, and Masson trichrome staining were employed for assessment of aging-related change. RESULTS: The deletion of Sestrin 1, 2, or 3 had no discernible impact on body weights,or serum AMH levels in female mice at the age of 12 months. And there were no discernible differences in litter sizes or estrous cyclicity which were assessed at the age of 8 months. At the age of 12 months, no significant differences were observed in ovarian weights or follicle numbers among the knockout mice. Consistently, the extent of fibrosis within the ovaries remained comparable across all experimental groups at this age. Additionally, autophagy, apoptosis, DNA damage, and inflammation within the ovaries were also found to be comparable to those in wild-type mice of the same age. CONCLUSIONS: The loss of Sestrin 1, 2, or 3 does not exert a noticeable influence on ovarian function during the aging process. Sestrin1, 2, and 3 are not essential for female fertility in mice.


Assuntos
Fertilidade , Ovário , Sestrinas , Animais , Feminino , Camundongos , Hormônio Antimülleriano , Peso Corporal , Folículo Ovariano/metabolismo , Ovário/metabolismo , Sestrinas/metabolismo
14.
J Mol Histol ; 55(1): 109-120, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165567

RESUMO

Endothelial cells are a crucial component of the vessel-tissue wall and exert an important role in atherosclerosis (AS). To explore the role of Orientin in AS, human vascular endothelial cells (HUVECs) were induced by oxidized low-density lipoprotein (ox-LDL) to simulate the vascular endothelial injury during AS. Cell viability was detected by CCK-8 assay. Oxidative stress and inflammation related markers were measured using kits, RT-qPCR or western blot. Besides, cell apoptosis was assessed with TUNEL staining and cell autophagy was evaluated by LC3 immunofluorescent staining. Additionally, western blot was utilized to evaluate the expression of Sestrin 1 (SESN1) and proteins in AMPK/mTOR signaling. Afterwards, SESN1 was silenced to determine the expression of autophagy-related proteins. The further application of autophagy inhibitor 3-methyladenine (3-MA) was used to clarify the regulatory mechanism of Orientin on autophagy. Results showed that the decreased viability of HUVECs caused by ox-LDL induction was elevated by Orientin. Oxidative stress and inflammation were also attenuated after Orientin addition in HUVECs under ox-LDL condition. Moreover, Orientin suppressed apoptosis and induced autophagy of HUVECs stimulated by ox-LDL, accompanied by enhanced level of phospho (p)-AMPK and declined level of p-mTOR. Interestingly, SESN1 level was elevated by Orientin, and SESN1 depletion alleviated autophagy and reduced p-AMPK expression but enhanced p-mTOR expression. The further experiments indicated that SESN1 silencing or 3-MA addition reversed the inhibitory effects of Orientin on the oxidative stress, inflammation and apoptosis of HUVECs. Collectively, Orientin could induce autophagy by activating SESN1 expression, thereby regulating AMPK/mTOR signaling in ox-LDL-induced HUVECs.


Assuntos
Proteínas Quinases Ativadas por AMP , Flavonoides , Glucosídeos , Sestrinas , Humanos , Sestrinas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Proteínas Quinases Ativadas por AMP/metabolismo , Estresse Oxidativo , Lipoproteínas LDL/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Autofagia , Inflamação/metabolismo
15.
Ecotoxicol Environ Saf ; 271: 115954, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232523

RESUMO

BACKGROUND: Nickel is a confirmed human lung carcinogen. Nonetheless, the molecular mechanisms driving its carcinogenic impact on lung tissue remain poorly defined. In this study, we assessed SESN2 expression and the signaling pathways responsible for cellular transformation in human bronchial epithelial cells (HBECs) as a result of nickel exposure. METHODS: We employed the Western blotting to determine the induction of SESN2 by nickel. To clarify the signaling pathways leading to cellular transformation following nickel exposure, we applied techniques such as gene knockdown, methylation-specific PCR, and chromatin immunoprecipitation. RESULT: Exposure to nickel results in the upregulation of SESN2 and the initiation of autophagy in human bronchial epithelial cells (HBECs). This leads to degradation of HUR protein and consequently downregulation of USP28 mRNA, PP2AC protein, ß-catenin protein, and diminished VHL transcription, culminating in the accumulation of hypoxia-inducible factor-1α (HIF-1α) and the malignant transformation of these cells. Mechanistic studies revealed that the increased expression of SESN2 is attributed to the demethylation of the SESN2 promoter induced by nickel, a process facilitated by decreased DNA methyl-transferase 3 A (DNMT3a) expression, while The downregulation of VHL transcription is linked to the suppression of the PP2A-C/GSK3ß/ß-Catenin/C-Myc pathway. Additionally, we discovered that SESN2-mediated autophagy triggers the degradation of HUR protein, which subsequently reduces the stability of USP28 mRNA and inhibits the PP2A-C/GSK3ß/ß-Catenin pathway and c-Myc transcription in HBECs post nickel exposure. CONCLUSION: Our results reveal that nickel exposure leads to the downregulation of DNMT3a, resulting in the hypomethylation of the SESN2 promoter and its protein induction. This triggers autophagy-dependent suppression of the HUR/USP28/PP2A/ß-Catenin/c-Myc pathway, subsequently leading to reduced VHL transcription, accumulation of HIF-1α protein, and the malignant transformation of human bronchial epithelial cells (HBECs). Our research offers novel insights into the molecular mechanisms that underlie the lung carcinogenic effects of nickel exposure. Specifically, nickel induces aberrant DNA methylation in the SESN2 promoter region through the decrease of DNMT3a levels, which ultimately leads to HIF-1α protein accumulation and the malignant transformation of HBECs. Specifically, nickel initiates DNA-methylation of the SESN2 promoter region by decreasing DNMT3a, ultimately resulting in HIF-1α protein accumulation and malignant transformation of HBECs. This study highlights DNMT3a as a potential prognostic biomarker or therapeutic target to improve clinical outcomes in lung cancer patients.


Assuntos
Níquel , beta Catenina , Humanos , Níquel/toxicidade , Níquel/metabolismo , beta Catenina/metabolismo , Sestrinas/metabolismo , Regulação para Cima , Transferases/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Epiteliais/metabolismo , Transformação Celular Neoplásica/genética , DNA/metabolismo , RNA Mensageiro/metabolismo , Ubiquitina Tiolesterase/metabolismo
16.
Cell Biochem Biophys ; 82(1): 279-290, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214812

RESUMO

Ferroptosis and autophagy are two different cellular processes that have recently been highlighted for their potential roles in the pathogenesis and progression of gestational diabetes (GD). This research sought to uncover the crucial genes tied to ferroptosis and autophagy in GD, further investigating their mechanisms. Differentially expressed genes (DEGs) linked to ferroptosis and autophagy in GD were identified using publicly available data. Pathway enrichment, protein interactions, correlation with immune cell infiltration, and diagnostic value of DEGs were analyzed. HTR-8/SVneo cells were subjected to varying glucose levels to evaluate cell viability and the expression of markers related to ferroptosis and proteins associated with autophagy. Crucial DEGs were validated in vitro. A total of 12 DEGs associated with ferroptosis and autophagy in GD were identified, enriched in the PI3K-AKT signaling pathway. These genes exhibited significant correlations with monocyte infiltration, resting CD4 memory T cells, and follicular helper T cells. They exhibited high diagnostic value for GD (AUC: 0.77-0.97). High glucose treatment inhibited cell viability, induced ferroptosis, and activated autophagy in HTR-8/SVneo cells. Validation confirmed altered expression of SNCA, MTDH, HMGB1, TLR4, SOX2, SESN2, and HMOX1 after glucose treatments. In conclusion, ferroptosis and autophagy may play a role in GD development through key genes (e.g., TLR4, SOX2, SNCA, HMOX1, HMGB1). These genes could serve as promising biomarkers for GD diagnosis.


Assuntos
Diabetes Gestacional , Ferroptose , Proteína HMGB1 , Feminino , Humanos , Gravidez , Diabetes Gestacional/genética , Fosfatidilinositol 3-Quinases , Receptor 4 Toll-Like , Autofagia , Glucose , Sestrinas , Proteínas de Membrana , Proteínas de Ligação a RNA
17.
Biogerontology ; 25(1): 9-22, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37516672

RESUMO

Sestrins are a type of highly conserved stress-inducing protein that has antioxidant and mTORC1 inhibitory functions. Metabolic dysfunction and aging are the main risk factors for development of human diseases, such as diabetes, neurodegenerative diseases, and cancer. Sestrins have important roles in regulating glucose and lipid metabolism, anti-tumor functions, and aging by inhibiting the reactive oxygen species and mechanistic target of rapamycin complex 1 pathways. In this review, the structure and biological functions of sestrins are summarized, and how sestrins are activated and contribute to regulation of the downstream signal pathways of metabolic and aging-related diseases are discussed in detail with the goal of providing new ideas and therapeutic targets for the treatment of related diseases.


Assuntos
Neoplasias , Sestrinas , Humanos , Sestrinas/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia , Envelhecimento , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Choque Térmico/metabolismo
18.
Autophagy ; 20(1): 15-28, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37674294

RESUMO

Macroautophagy/autophagy is an evolutionarily highly conserved catabolic process that is important for the clearance of cytosolic contents to maintain cellular homeostasis and survival. Recent findings point toward a critical role for autophagy in brain function, not only by preserving neuronal health, but especially by controlling different aspects of neuronal development and functioning. In line with this, mutations in autophagy-related genes are linked to various key characteristics and symptoms of neurodevelopmental disorders (NDDs), including autism, micro-/macrocephaly, and epilepsy. However, the group of NDDs caused by mutations in autophagy-related genes is relatively small. A significant proportion of NDDs are associated with mutations in genes encoding epigenetic regulatory proteins that modulate gene expression, so-called chromatinopathies. Intriguingly, several of the NDD-linked chromatinopathy genes have been shown to regulate autophagy-related genes, albeit in non-neuronal contexts. From these studies it becomes evident that tight transcriptional regulation of autophagy-related genes is crucial to control autophagic activity. This opens the exciting possibility that aberrant autophagic regulation might underly nervous system impairments in NDDs with disturbed epigenetic regulation. We here summarize NDD-related chromatinopathy genes that are known to regulate transcriptional regulation of autophagy-related genes. Thereby, we want to highlight autophagy as a candidate key hub mechanism in NDD-related chromatinopathies.Abbreviations: ADNP: activity dependent neuroprotector homeobox; ASD: autism spectrum disorder; ATG: AutTophaGy related; CpG: cytosine-guanine dinucleotide; DNMT: DNA methyltransferase; EHMT: euchromatic histone lysine methyltransferase; EP300: E1A binding protein p300; EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit; H3K4me3: histone 3 lysine 4 trimethylation; H3K9me1/2/3: histone 3 lysine 9 mono-, di-, or trimethylation; H3K27me2/3: histone 3 lysine 27 di-, or trimethylation; hiPSCs: human induced pluripotent stem cells; HSP: hereditary spastic paraplegia; ID: intellectual disability; KANSL1: KAT8 regulatory NSL complex subunit 1; KAT8: lysine acetyltransferase 8; KDM1A/LSD1: lysine demethylase 1A; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin complex 1; NDD: neurodevelopmental disorder; PHF8: PHD finger protein 8; PHF8-XLID: PHF8-X linked intellectual disability syndrome; PTM: post-translational modification; SESN2: sestrin 2; YY1: YY1 transcription factor; YY1AP1: YY1 associated protein 1.


Assuntos
Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Humanos , Histonas/metabolismo , Epigênese Genética , Lisina/metabolismo , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Autofagia/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sestrinas/genética , Sestrinas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histona Desmetilases/metabolismo
19.
Antioxid Redox Signal ; 40(10-12): 598-615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37265150

RESUMO

Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3ß) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3ß/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.


Assuntos
Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Antioxidantes/metabolismo , Cardiotoxicidade , Dieta Hiperlipídica/efeitos adversos , Doxorrubicina/toxicidade , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Obesos , Fator 2 Relacionado a NF-E2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/etiologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sestrinas/metabolismo
20.
J Pediatr Endocrinol Metab ; 37(1): 21-26, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37966142

RESUMO

OBJECTIVES: This study was conducted to study the expression of both microRNA-29a and microRNA-122, and serum levels of sestrin-2, interleukin-6 (IL-6), and other inflammatory markers among obese children with/and without diabetes mellitus. METHODS: One hundred obese children with diabetes in addition to 100 age- and sex-matched obese children without diabetes, and 100 age- and sex-matched apparently healthy children were included in the study. Expressions of both microRNA-29a and microRNA-122, and serum levels of sestrin-2, IL-6, tumor necrosis factor-α (TNF-α), and high sensitive-CRP (hsCRP) were measured for all included study populations. RESULTS: Study results showed that the expressions of both microRNA-29a and microRNA-122, serum levels of IL-6, TNF-α, and hsCRP were significantly higher among obese children with diabetes in comparison to both obese children without diabetes and healthy children. In contrast, serum sestrin level was significantly low among obese children with diabetes in comparison to the other study populations. Expressions of both microRNA-29a and microRNA-122 were correlated with waist circumference, BMI, total cholesterol, triglycerides, LDL-cholesterol, HbA1c, c-peptide, glucose, insulin, homeostatic model assessment-insulin resistance (HOMA-IR), IL-6, hsCRP, and TNF-α among obese children with diabetes. However, serum sestrin-2 level was correlated inversely with these parameters. Higher expressions of both microRNA-29a and microRNA-122 among obese children either with or without diabetes mellitus (DM) can suggest their roles in the development of obesity among children. CONCLUSIONS: The study results can hypothesize that down-regulation of these micro-RNAs may solve this health problem with its sequelae, a hypothesis that needs more studies.


Assuntos
Diabetes Mellitus , Resistência à Insulina , MicroRNAs , Obesidade Infantil , Criança , Humanos , Glicemia , Índice de Massa Corporal , Proteína C-Reativa/metabolismo , Colesterol , Interleucina-6 , MicroRNAs/genética , Obesidade Infantil/complicações , Obesidade Infantil/genética , Sestrinas , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...