Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 68(10): 1968-1986, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32157745

RESUMO

Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid-derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid-derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid-derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness.


Assuntos
Comunicação Celular/fisiologia , Microglia/metabolismo , Inibição Neural/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Toxoplasmose/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/parasitologia , Microglia/patologia , Neurônios/parasitologia , Neurônios/patologia , Sinapses/parasitologia , Sinapses/patologia , Toxoplasma , Toxoplasmose/patologia
2.
J Neuroinflammation ; 16(1): 159, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31352901

RESUMO

BACKGROUND: It has become increasingly evident that the immune and nervous systems are closely intertwined, relying on one another during regular homeostatic conditions. Prolonged states of imbalance between neural and immune homeostasis, such as chronic neuroinflammation, are associated with a higher risk for neural damage. Toxoplasma gondii is a highly successful neurotropic parasite causing persistent subclinical neuroinflammation, which is associated with psychiatric and neurodegenerative disorders. Little is known, however, by what means neuroinflammation and the associated neural impairment can be modulated by peripheral inflammatory processes. METHODS: Expression of immune and synapse-associated genes was assessed via quantitative real-time PCR to investigate how T. gondii infection-induced chronic neuroinflammation and associated neuronal alterations can be reshaped by a subsequent acute intestinal nematode co-infection. Immune cell subsets were characterized via flow cytometry in the brain of infected mice. Sulfadiazine and interferon-γ-neutralizing antibody were applied to subdue neuroinflammation. RESULTS: Neuroinflammation induced by T. gondii infection of mice was associated with increased microglia activation, recruitment of immune cells into the brain exhibiting Th1 effector functions, and enhanced production of Th1 and pro-inflammatory molecules (IFN-γ, iNOS, IL-12, TNF, IL-6, and IL-1ß) following co-infection with Heligmosomoides polygyrus. The accelerated cerebral Th1 immune response resulted in enhanced T. gondii removal but exacerbated the inflammation-related decrease of synapse-associated gene expression. Synaptic proteins EAAT2 and GABAAα1, which are involved in the excitation/inhibition balance in the CNS, were affected in particular. These synaptic alterations were partially recovered by reducing neuroinflammation indirectly via antiparasitic treatment and especially by application of IFN-γ-neutralizing antibody. Impaired iNOS expression following IFN-γ neutralization directly affected EAAT2 and GABAAα1 signaling, thus contributing to the microglial regulation of neurons. Besides, reduced CD36, TREM2, and C1qa gene expression points toward inflammation induced synaptic pruning as a fundamental mechanism. CONCLUSION: Our results suggest that neuroimmune responses following chronic T. gondii infection can be modulated by acute enteric nematode co-infection. While consecutive co-infection promotes parasite elimination in the CNS, it also adversely affects gene expression of synaptic proteins, via an IFN-γ-dependent manner.


Assuntos
Encéfalo/metabolismo , Interferon gama/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Infecções por Strongylida/metabolismo , Toxoplasmose/metabolismo , Animais , Encéfalo/parasitologia , Coinfecção , Ativação de Macrófagos/fisiologia , Camundongos , Microglia/parasitologia , Nematospiroides dubius , Neurônios/parasitologia , Sinapses/metabolismo , Sinapses/parasitologia , Toxoplasma
3.
Neurobiol Aging ; 32(12): 2229-43, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20097447

RESUMO

Until recently, free d-amino acids were thought to be involved only in bacterial physiology. Nevertheless, today there is evidence that D-serine, by acting as co-agonist at NMDARs, plays a role in controlling neuronal functions in mammals. Besides D-serine, another D-amino acid, D-aspartate (D-Asp), is found in the mammalian brain with a temporal gradient of occurrence: high in embryo and low in adult. In this study, we demonstrate that D-Asp acts as an endogenous NMDAR agonist, since it triggers currents via interaction with each of NR2A-D receptor subunits. According to its pharmacological features, we showed that oral administration of D-Asp strongly enhances NMDAR-dependent LTP in adulthood and, in turn, completely rescues the synaptic plasticity decay observed in the hippocampus of aged animals. Therefore, our findings suggest a tantalizing hypothesis for which this in-embryo-occurring D-amino acid, when "forced" over its physiological content, may disclose plasticity windows inside which it counteracts the age-related reduction of NMDAR signaling.


Assuntos
Envelhecimento/fisiologia , Ácido D-Aspártico/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Regulação para Cima/fisiologia , Envelhecimento/patologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Ácido D-Aspártico/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Comportamento Exploratório/fisiologia , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/parasitologia
4.
Dig Dis Sci ; 54(5): 937-46, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19058006

RESUMO

BACKGROUND AND AIM: Synaptic plasticity plays an important role in affecting the intensity of visceral reflex. It may also be involved in the development of visceral hypersensitivity. The aim of this study was to investigate the role of synaptic plasticity on visceral hypersensitivity of rats infected by Trichinella spiralis. METHODS: Thirty male Sprague-Dawley (SD) rats were randomly divided into control, acute, and chronic infection groups, and were investigated at 1 week after adaptive feeding and at 2 and 8 weeks post infection (PI) by oral administration of 1 ml phosphate-buffered saline (PBS) containing 8,000 Trichinella spiralis larvae. Visceral sensitivity was evaluated by electromyography (EMG) recording during colorectal distension. Intestinal inflammation was observed by hematoxylin-eosin (HE) staining. Synaptic ultrastructure parameters, such as postsynaptic density (PSD) length, synaptic cleft, and number of synaptic vesicles, were examined by transmission electron microscopy (TEM). The expression of protein associated with synaptic plasticity, including postsynaptic density-95 (PSD-95), synaptophysin, calbindin-28 K, N-methyl-D-aspartate receptor-1 (NMDA-R1), alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPA-R), and glial cell line-derived neurotrophic factor (GDNF), were analyzed by Western blot. RESULTS: (1) Visceral hypersensitivity was noted in the chronic infection group, although the inflammation was nearly eliminated (P<0.05). Severe inflammation and downregulation of visceral sensitivity were observed in the acute infection group (P<0.05). (2) There were many more synaptic vesicles and longer PSD in the chronic infection group than in the control group (P<0.05, respectively). However, in comparison with control rats, disappearance of mitochondria cristae in the synapses, and decrease of synaptic vesicles and length of PSD were observed in the acute infection group. There was no significant difference in width of synaptic cleft among the three groups. (3) Compared with the control, the expression of proteins associated with synaptic plasticity was significantly upregulated during chronic infection phase (P<0.05), and downregulated during acute infection phase. CONCLUSION: Synaptic plasticity was observed in SD rats infected by Trichinella spiralis and was associated with visceral sensitivity, which suggests that it may play an important role in the formation of visceral hypersensitivity.


Assuntos
Enterite/fisiopatologia , Intestinos/inervação , Síndrome do Intestino Irritável/fisiopatologia , Plasticidade Neuronal , Sensação , Sinapses/parasitologia , Triquinelose/fisiopatologia , Doença Aguda , Animais , Calbindinas , Doença Crônica , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Eletromiografia , Enterite/parasitologia , Enterite/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Intestinos/ultraestrutura , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndrome do Intestino Irritável/parasitologia , Síndrome do Intestino Irritável/patologia , Masculino , Proteínas de Membrana/metabolismo , Pressão , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Sinaptofisina/metabolismo , Fatores de Tempo , Trichinella spiralis , Triquinelose/complicações , Triquinelose/parasitologia , Triquinelose/patologia
5.
J Neurosci ; 20(22): 8290-7, 2000 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11069935

RESUMO

Long-term depression (LTD) is a form of synaptic plasticity that can be induced either by low-frequency stimulation of presynaptic fibers or in an associative manner by asynchronous pairing of presynaptic and postsynaptic activity. We investigated the induction mechanisms of associative LTD in CA1 pyramidal neurons of the hippocampus using whole-cell patch-clamp recordings and Ca(2+) imaging in acute brain slices. Asynchronous pairing of postsynaptic action potentials with EPSPs evoked with a delay of 20 msec induced a robust, long-lasting depression of the EPSP amplitude to 43%. Unlike LTD induced by low-frequency stimulation, associative LTD was resistant to the application of d-AP-5, indicating that it is independent of NMDA receptors. In contrast, associative LTD was inhibited by (S)-alpha-methyl-4-carboxyphenyl-glycine, indicating the involvement of metabotropic glutamate receptors. Furthermore, associative LTD is dependent on the activation of voltage-gated Ca(2+) channels by postsynaptic action potentials. Both nifedipine, an L-type Ca(2+) channel antagonist, and omega-conotoxin GVIA, a selective N-type channel blocker, abolished the induction of associative LTD. 8-hydroxy-2-dipropylaminotetralin (OH-DPAT), a 5-HT(1A) receptor agonist, inhibited postsynaptic Ca(2+) influx through N-type Ca(2+) channels, without affecting presynaptic transmitter release. OH-DPAT also inhibited the induction of associative LTD, suggesting that the involvement of N-type channels makes synaptic plasticity accessible to modulation by neurotransmitters. Thus, the modulation of N-type Ca(2+) channels provides a gain control for synaptic depression in hippocampal pyramidal neurons.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Hipocampo/metabolismo , Inibição Neural/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Corantes Fluorescentes , Hipocampo/citologia , Técnicas In Vitro , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/citologia , Células Piramidais/metabolismo , Ratos , Ratos Wistar , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Agonistas do Receptor de Serotonina/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/parasitologia , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...