Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.950
Filtrar
1.
Mol Biol Rep ; 51(1): 759, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874818

RESUMO

BACKGROUND: The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS: In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS: The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.


Assuntos
Colesterol 7-alfa-Hidroxilase , Colesterol , Fagopyrum , Hidroximetilglutaril-CoA Redutases , Metabolismo dos Lipídeos , Compostos Fitoquímicos , Quercetina , Humanos , Fagopyrum/química , Fagopyrum/metabolismo , Células Hep G2 , Colesterol/metabolismo , Quercetina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Compostos Fitoquímicos/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Anticolesterolemiantes/farmacologia , Sinvastatina/farmacologia , Extratos Vegetais/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos
2.
Int J Nanomedicine ; 19: 5317-5333, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859953

RESUMO

Purpose: The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods: Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results: The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion: RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.


Assuntos
Eritrócitos , Síndrome do Desconforto Respiratório , Sinvastatina , Sinvastatina/administração & dosagem , Sinvastatina/farmacocinética , Sinvastatina/química , Síndrome do Desconforto Respiratório/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Animais , Pulmão/efeitos dos fármacos , Humanos , Masculino , Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/farmacocinética , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos , Polietilenoimina/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
3.
Int J Nanomedicine ; 19: 4199-4215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766657

RESUMO

Background: Breast cancer is the most common cancer in women and one of the leading causes of cancer death worldwide. Ferroptosis, a promising mechanism of killing cancer cells, has become a research hotspot in cancer therapy. Simvastatin (SIM), as a potential new anti-breast cancer drug, has been shown to cause ferroptosis of cancer cells and inhibit breast cancer metastasis and recurrence. The purpose of this study is to develop a novel strategy boosting ferroptotic cascade for synergistic cancer therapy. Methods: In this paper, iron base form of layered double hydroxide supported simvastatin (LDHs-SIM) was synthesized by hydrothermal co-precipitation method. The characterization of LDHs-SIM were assessed by various analytical techniques, including ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). Biological activity, ferroptosis mechanism and biocompatibility were analyzed through in vivo and in vitro analysis, so as to evaluate its therapeutic effect on breast cancer. Results: The constructed LDHs-SIM nanosystem can not only release SIM through mevalonate (MVA) pathway, inhibit the expression of glutathione peroxidase 4 (GPX4), inhibit the expression of SLC7A11 and reduce the synthesis efficiency of GSH, but also promote the accumulation of Fe2+ in cells through the release of Fe3+, and increase the intracellular ROS content. In addition, LDHs-SIM nanosystem can induce apoptosis of breast cancer cells to a certain extent, and achieve the synergistic effect of apoptosis and ferroptosis. Conclusion: In the present study, we demonstrated that nanoparticles of layered double hydroxides (LDHs) loaded with simvastatin were more effective than a free drug at inhibiting breast cancer cell growth, In addition, superior anticancer therapeutic effects were achieved with little systemic toxicity, indicating that LDHs-SIM could serve as a safe and high-performance platform for ferroptosis-apoptosis combined anticancer therapy.


Assuntos
Apoptose , Neoplasias da Mama , Ferroptose , Hidróxidos , Sinvastatina , Ferroptose/efeitos dos fármacos , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Hidróxidos/química , Hidróxidos/farmacologia , Sinvastatina/farmacologia , Sinvastatina/química , Sinvastatina/administração & dosagem , Apoptose/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Nanopartículas/química , Sinergismo Farmacológico , Camundongos , Antineoplásicos/farmacologia , Antineoplásicos/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Células MCF-7 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
4.
Am Heart J ; 274: 102-112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38710378

RESUMO

BACKGROUND: The response of low-density lipoprotein cholesterol (LDL-C) to statin therapy is variable, and may be affected by the presence of co-morbid conditions or the use of concomitant medications. Systematic variation in the response to statins based on these factors could affect the selection of the statin treatment regimen in population subgroups. We investigated whether common comorbidities and co-medications had clinically important effects on statin responses in individual patients. METHODS: This register-based cohort study included 89,006 simvastatin or atorvastatin initiators with measurements of pre-statin and on-statin LDL-C levels, in Denmark, 2008-2018. We defined statin response as the percentage reduction in LDL-C, and used linear regression to estimate percentage reduction differences (PRD) according to 175 chronic comorbidities and 99 co-medications. We evaluated both the statistical significance (P-values corrected for multiple testing) and the clinical importance (PRD of 5 percentage points or more) of the observed associations. RESULTS: Concomitant use of oral blood-glucose lowering drugs, which included metformin in 96% of treated individuals, was associated with a greater response to statin therapy that was both statistically significant and clinically important, with a PRD of 5.18 (95% confidence interval: 4.79 to 5.57). No other comorbidity or co-medication reached the prespecified thresholds for a significant, clinically important effect on statin response. Overall, comorbidities and co-medications had little effect on statin response, and altogether explained only 1.7% of the total observed population variance. CONCLUSION: Most of the studied comorbidities and co-medications did not have a clinically important effect on statin response, suggesting no need to modify treatment regimens. However, use of metformin was associated with a significantly enhanced LDL-C response to statins, suggesting that lower statin doses may be effective in patients taking metformin.


Assuntos
LDL-Colesterol , Comorbidade , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Feminino , Masculino , LDL-Colesterol/sangue , Dinamarca/epidemiologia , Pessoa de Meia-Idade , Idoso , Atorvastatina/uso terapêutico , Sistema de Registros , Sinvastatina/uso terapêutico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Estudos de Coortes
5.
ACS Appl Mater Interfaces ; 16(20): 26685-26712, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722359

RESUMO

The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.


Assuntos
Quitosana , Estruturas Metalorgânicas , Simulação de Dinâmica Molecular , Nanoestruturas , Rosuvastatina Cálcica , Sinvastatina , Poluentes Químicos da Água , Quitosana/química , Estruturas Metalorgânicas/química , Sinvastatina/química , Rosuvastatina Cálcica/química , Adsorção , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Nanoestruturas/química , Oxirredução , Ácidos Ftálicos
6.
Phytomedicine ; 129: 155662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728917

RESUMO

BACKGROUND: Naoxintong capsule (NXT) is a compound traditional Chinese medicine prescription with demonstrated effect for the treatment of cardiovascular and cerebrovascular diseases including atherosclerosis (AS). However, the pharmacological mechanisms of NXT in ameliorating early-stage AS are still unclear, especially regarding the role of gut microbiota. PURPOSE: This study is aiming to evaluate the therapeutic effect of NXT against early-stage AS, and further illustrate the potential correlations among AS, gut microbiota, and NXT. METHODS: Thirty-two male ApoE knockout mice (C57BL/6 background) were fed with a high cholesterol diet (HCD) for 4 weeks to establish an early-stage AS model. NXT in two different dosages and simvastatin (Simv) were than administrated for another 8 weeks. Lipid metabolism indicators and inflammation levels were measured with corresponding assay kits. Changes in blood vessels, liver lesions, and intestinal barrier proteins were evaluated with different staining methods. Furthermore, the gut microbiota structure was analyzed using 16S rRNA sequencing technology, while GC-MS was utilized to determine the fecal contents of short-chain fatty acids (SCFAs). RESULTS: Administration of NXT significantly ameliorated obesity, hyperlipidemia, systemic inflammation, vasculopathy, liver injury, and intestinal barrier disorder in AS mice. Administration of NXT also significantly regulated the gut microbiota disturbance and increased the total contents of fecal SCFAs in AS mice. Furthermore, acetic acid content and the relative abundance of Faecalibacterium in feces were proposed as potential therapeutic biomarkers of NXT for AS treatment as indicated via the correlation analysis. CONCLUSION: This study demonstrated that NXT could effectively treat early-stage AS induced by HCD in mice. NXT regulated the gut microbiota and metabolites, maintained intestinal homeostasis, and improved the systemic inflammatory response. These findings may provide robust experimental support for the clinical use of NXT for AS treatment.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Aterosclerose/tratamento farmacológico , Camundongos , Apolipoproteínas E , Camundongos Knockout para ApoE , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Modelos Animais de Doenças , Cápsulas , Dieta Hiperlipídica , Sinvastatina/farmacologia
7.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167157, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582266

RESUMO

Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.


Assuntos
Aterosclerose , Inibidores de Hidroximetilglutaril-CoA Redutases , Estresse Oxidativo , Sinvastatina , Ubiquinona , Animais , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Camundongos , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/induzido quimicamente , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Sinvastatina/farmacologia , Miotoxicidade/tratamento farmacológico , Miotoxicidade/patologia , Miotoxicidade/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia
9.
Int J Biol Macromol ; 268(Pt 2): 131516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621556

RESUMO

Simvastatin (SV) is a statin drug that can effectively control cholesterol and prevent cardiovascular diseases. However, SV is water-insoluble, and poor oral bioavailability (<5 %). Solid self-emulsifying carrier system is more stable than liquid emulsions, facilitating to improve the solubility and bioavailability of poorly soluble drugs. In the present study, a solid self-emulsifying carrier stabilized by casein (Cas-SSE) was successfully used to load SV to improve its solubility in water, by formulation selection and emulsification process optimization. Compared with oral tablets, the release of SV from Cas-SSE was significantly enhanced in artificial intestinal fluid. Furthermore, everted gut sac experiments indicated some water-soluble dispersing agents such as hydroxyethyl starch (HES), were not conducive to drug absorption. Pharmacokinetic studies suggested Cas-SSE without dispersing agent has much higher relative bioavailability (184.1 % of SV and 284.5 % of simvastatin acid) than SV tablet. The present work suggests Cas-SSE is a promising drug delivery platform with good biocompatibility for improving oral bioavailability of poorly water-soluble drugs.


Assuntos
Disponibilidade Biológica , Caseínas , Portadores de Fármacos , Emulsões , Sinvastatina , Solubilidade , Sinvastatina/farmacocinética , Sinvastatina/química , Sinvastatina/administração & dosagem , Caseínas/química , Caseínas/farmacocinética , Administração Oral , Animais , Portadores de Fármacos/química , Emulsões/química , Ratos , Masculino , Liberação Controlada de Fármacos
10.
Biochem Biophys Res Commun ; 710: 149841, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38588613

RESUMO

Prostate cancer is the most prevalent malignancy in men. While diagnostic and therapeutic interventions have substantially improved in recent years, disease relapse, treatment resistance, and metastasis remain significant contributors to prostate cancer-related mortality. Therefore, novel therapeutic approaches are needed. Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), the rate-limiting enzyme of the mevalonate pathway which plays an essential role in cholesterol homeostasis. Numerous preclinical studies have provided evidence for the pleiotropic antitumor effects of statins. However, results from clinical studies remain controversial and have shown substantial benefits to even no effects on human malignancies including prostate cancer. Potential statin resistance mechanisms of tumor cells may account for such discrepancies. In our study, we treated human prostate cancer cell lines (PC3, C4-2B, DU-145, LNCaP) with simvastatin, atorvastatin, and rosuvastatin. PC3 cells demonstrated high statin sensitivity, resulting in a significant loss of vitality and clonogenic potential (up to - 70%; p < 0.001) along with an activation of caspases (up to 4-fold; p < 0.001). In contrast, C4-2B and DU-145 cells were statin-resistant. Statin treatment induced a restorative feedback in statin-resistant C4-2B and DU-145 cells through upregulation of the HMGCR gene and protein expression (up to 3-folds; p < 0.01) and its transcription factor sterol-regulatory element binding protein 2 (SREBP-2). This feedback was absent in PC3 cells. Blocking the feedback using HMGCR-specific small-interfering (si)RNA, the SREBP-2 activation inhibitor dipyridamole or the HMGCR degrader SR12813 abolished statin resistance in C4-2B and DU-145 and induced significant activation of caspases by statin treatment (up to 10-fold; p < 0.001). Consistently, long-term treatment with sublethal concentrations of simvastatin established a stable statin resistance of a PC3SIM subclone accompanied by a significant upregulation of both baseline as well as post-statin HMGCR protein (gene expression up to 70-fold; p < 0.001). Importantly, the statin-resistant phenotype of PC3SIM cells was reversible by HMGCR-specific siRNA and dipyridamole. Our investigations reveal a key role of a restorative feedback driven by the HMGCR/SREBP-2 axis in statin resistance mechanisms of prostate cancer cells.


Assuntos
Acil Coenzima A , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias da Próstata , Masculino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1 , Sinvastatina/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Caspases , Dipiridamol
11.
Nat Commun ; 15(1): 2966, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580683

RESUMO

Between 30% and 70% of patients with breast cancer have pre-existing chronic conditions, and more than half are on long-term non-cancer medication at the time of diagnosis. Preliminary epidemiological evidence suggests that some non-cancer medications may affect breast cancer risk, recurrence, and survival. In this nationwide cohort study, we assessed the association between medication use at breast cancer diagnosis and survival. We included 235,368 French women with newly diagnosed non-metastatic breast cancer. In analyzes of 288 medications, we identified eight medications positively associated with either overall survival or disease-free survival: rabeprazole, alverine, atenolol, simvastatin, rosuvastatin, estriol (vaginal or transmucosal), nomegestrol, and hypromellose; and eight medications negatively associated with overall survival or disease-free survival: ferrous fumarate, prednisolone, carbimazole, pristinamycin, oxazepam, alprazolam, hydroxyzine, and mianserin. Full results are available online from an interactive platform ( https://adrenaline.curie.fr ). This resource provides hypotheses for drugs that may naturally influence breast cancer evolution.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Estudos de Coortes , Comorbidade , Sinvastatina
12.
Sci Rep ; 14(1): 9878, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684848

RESUMO

Chronic stress is associated with major depressive disorder (MDD). Increased glucocorticoid levels caused by uncontrolled release through the hypothalamic‒pituitary‒adrenal (HPA) axis can cause changes in the lipid content of the cellular plasma membrane. These changes are suspected to be involved in the development of depressive disorders. St. John's wort extract (SJW) Ze 117 has long been used as an alternative to synthetic antidepressants. Part of its effect may be due to an effect on the cellular lipid composition and thus on the properties of plasma membranes and receptor systems embedded therein. In this study, we investigated the effect of Ze 117 on that of dexamethasone and simvastatin. Dexamethasone increases the fluidity of C6 cell plasma membranes. This effect is counteracted by administration of Ze 117. Here we demonstrate that this is not due to a change in C16:1/16:0 and C18:1/18:0 ratios in C6 cell fatty acids. On the other hand, Ze 117 increased the cellular cholesterol content by 42.5%, whereas dexamethasone reduced cholesterol levels similarly to simvastatin. Lowering cholesterol levels by dexamethasone or simvastatin resulted in decreased ß-arrestin 2 recruitment to the 5-HT1a receptor. This effect was counterbalanced by Ze 117, whereas the SJW extract had little effect on ß-arrestin 2 recruitment in non-stressed cells. Taken together, in C6 cells, Ze 117 induces changes in membrane fluidity through its effect on cellular cholesterol metabolism rather than by affecting fatty acid saturation. This effect is reflected in an altered signal transduction of the 5-HT1a receptor under Ze 117 administration. The current in vitro results support the hypothesis that Ze 117 addresses relevant parts of the cellular lipid metabolism, possibly explaining some of the antidepressant actions of Ze 117.


Assuntos
Colesterol , Dexametasona , Hypericum , Fluidez de Membrana , Extratos Vegetais , Sinvastatina , Hypericum/química , Extratos Vegetais/farmacologia , Colesterol/metabolismo , Fluidez de Membrana/efeitos dos fármacos , Dexametasona/farmacologia , Linhagem Celular Tumoral , Sinvastatina/farmacologia , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Animais , Ratos , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , Ácidos Graxos/metabolismo
13.
PLoS One ; 19(4): e0297766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38648228

RESUMO

OBJECTIVE: This study comprehensively evaluated the causal relationship between different types of statins use and knee/hip osteoarthritis (OA) using a two-sample and multivariate Mendelian randomization (MR) method. METHODS: MR analysis was conducted using publicly available summary statistics data from genome-wide association studies (GWAS) to assess the causal associations between total statins use (including specific types) and knee/hip OA. The primary analysis utilized the inverse variance-weighted (IVW) method, with sensitivity analysis conducted to assess robustness. Multivariable MR (MVMR) analysis adjusted for low-density lipoprotein cholesterol (LDL-C), intermediate-density lipoprotein cholesterol (IDL-C), high-density lipoprotein cholesterol (HDL-C), and body mass index (BMI). RESULTS: The MR analysis revealed a significant inverse association between genetically predicted total statins use and the risk of knee OA (OR = 0.950, 95%CI: 0.920-0.982, p = 0.002) as well as hip OA (OR = 0.932, 95%CI: 0.899-0.966, p <0.001). Furthermore, this study highlighted a reduced risk of knee/hip OA with the use of atorvastatin and simvastatin. Rosuvastatin use was associated with a decreased risk of hip OA but showed no association with knee OA. MVMR results indicated no correlation between exposure factors and outcomes after adjusting for LDL-C or IDL-C. HDL-C may not significantly contribute to statin-induced osteoarthritis, while BMI may play an important role. CONCLUSION: This study provides compelling evidence of the close relationship between statin use and a reduced risk of knee/hip OA, particularly with atorvastatin and simvastatin. LDL-C and IDL-C may mediate these effects. These findings have important implications for the clinical prevention and treatment of knee/hip OA.


Assuntos
Estudo de Associação Genômica Ampla , Inibidores de Hidroximetilglutaril-CoA Redutases , Análise da Randomização Mendeliana , Osteoartrite do Quadril , Osteoartrite do Joelho , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/epidemiologia , Osteoartrite do Quadril/genética , LDL-Colesterol/sangue , Sinvastatina/uso terapêutico , Sinvastatina/efeitos adversos , Índice de Massa Corporal , HDL-Colesterol/sangue , Polimorfismo de Nucleotídeo Único , Fatores de Risco
14.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674010

RESUMO

The solute carrier organic anion transporter family member 1B1 (SLCO1B1) encodes the organic anion-transporting polypeptide 1B1 (OATP1B1 protein) that transports statins to liver cells. Common genetic variants in SLCO1B1, such as *5, cause altered systemic exposure to statins and therefore affect statin outcomes, with potential pharmacogenetic applications; yet, evidence is inconclusive. We studied common and rare SLCO1B1 variants in up to 64,000 patients from UK Biobank prescribed simvastatin or atorvastatin, combining whole-exome sequencing data with up to 25-year routine clinical records. We studied 51 predicted gain/loss-of-function variants affecting OATP1B1. Both SLCO1B1*5 alone and the SLCO1B1*15 haplotype increased LDL during treatment (beta*5 = 0.08 mmol/L, p = 6 × 10-8; beta*15 = 0.03 mmol/L, p = 3 × 10-4), as did the likelihood of discontinuing statin prescriptions (hazard ratio*5 = 1.12, p = 0.04; HR*15 = 1.05, p = 0.04). SLCO1B1*15 and SLCO1B1*20 increased the risk of General Practice (GP)-diagnosed muscle symptoms (HR*15 = 1.22, p = 0.003; HR*20 = 1.25, p = 0.01). We estimated that genotype-guided prescribing could potentially prevent 18% and 10% of GP-diagnosed muscle symptoms experienced by statin patients, with *15 and *20, respectively. The remaining common variants were not individually significant. Rare variants in SLCO1B1 increased LDL in statin users by up to 1.05 mmol/L, but replication is needed. We conclude that genotype-guided treatment could reduce GP-diagnosed muscle symptoms in statin patients; incorporating further SLCO1B1 variants into clinical prediction scores could improve LDL control and decrease adverse events, including discontinuation.


Assuntos
Bancos de Espécimes Biológicos , Sequenciamento do Exoma , Inibidores de Hidroximetilglutaril-CoA Redutases , Transportador 1 de Ânion Orgânico Específico do Fígado , Humanos , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Sequenciamento do Exoma/métodos , Reino Unido , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Sinvastatina/uso terapêutico , Resultado do Tratamento , Atorvastatina/uso terapêutico , Polimorfismo de Nucleotídeo Único , Biobanco do Reino Unido
16.
Cell Signal ; 119: 111172, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38604342

RESUMO

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Sinvastatina , Sinvastatina/farmacologia , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Células HeLa , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mitose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Int J Cardiol ; 406: 132035, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604450

RESUMO

BACKGROUND: Secreted glycoproteins of the Dickkopf (DKK) family modify Wnt signaling and may influence plaque destabilization but their modulation by statins in MI patients is not known. METHODS: We measured plasma DKK-1 and DKK-3 in patients with acute ST-segment elevation MI (STEMI) before percutaneous coronary intervention (PCI) and after 2 and 7 days and 2 months in patients receiving short-term high-dose (40 mg rosuvastatin, given before PCI; n = 25) and moderate dose (20 mg simvastatin, given the day after PCI; n = 34). In vitro modulation of DKK-1 in human umbilical vein endothelial cells (HUVECs) by statins were assessed. RESULTS: (i) Patients receiving high dose rosuvastatin had a marked decline in DKK-1 at day 2 which was maintained throughout the study period. However, a more prevalent use of ß-blockers in the simvastatin group, that could have contributed to higher DKK-1 levels in these patients. (ii) There was a strong correlation between baseline DKK-1 levels and change in DKK-1 from baseline to day 2 in patients receiving high dose rosuvastatin treatment. (iii) DKK-3 increased at day 2 but returned to baseline levels at 2 months in both treatment groups. (iv) Statin treatment dose-dependently decreased DKK-1 mRNA and protein levels in HUVEC. CONCLUSIONS: Our findings suggest that high dose statin treatment with 40 mg rosuvastatin could persistently down-regulate DKK-1 levels, even at 2 months after the initial event in STEMI patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Inibidores de Hidroximetilglutaril-CoA Redutases , Peptídeos e Proteínas de Sinalização Intercelular , Rosuvastatina Cálcica , Humanos , Masculino , Feminino , Rosuvastatina Cálcica/administração & dosagem , Rosuvastatina Cálcica/uso terapêutico , Pessoa de Meia-Idade , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Idoso , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Relação Dose-Resposta a Droga , Sinvastatina/administração & dosagem , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/sangue , Biomarcadores/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/sangue , Infarto do Miocárdio com Supradesnível do Segmento ST/tratamento farmacológico , Células Cultivadas
18.
Int Ophthalmol ; 44(1): 158, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530532

RESUMO

PURPOSE: Rhegmatogenous retinal detachment is a severe vision-threatening complication that can result into proliferative vitreoretinopathy (PVR) and re-detachment of the retina if recovery from surgery fails. Inflammation and changes in retinal pigment epithelial (RPE) cells are important contributors to the disease. Here, we studied the effects of simvastatin and amfenac on ARPE-19 cells under inflammatory conditions. METHODS: ARPE-19 cells were pre-treated with simvastatin and/or amfenac for 24 h after which interleukin (IL)-1α or IL-1ß was added for another 24 h. After treatments, lactate dehydrogenase release, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) processing, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity, prostaglandin E2 (PGE2) level, and extracellular levels of IL-6, IL-8, monocytic chemoattractant protein (MCP-1), vascular endothelial growth factor (VEGF), and pigment epithelium-derived factor, as well as the production of reactive oxygen species (ROS) were determined. RESULTS: Pre-treatment of human ARPE-19 cells with simvastatin reduced the production of IL-6, IL-8, and MCP-1 cytokines, PGE2 levels, as well as NF-κB activity upon inflammation, whereas amfenac reduced IL-8 and MCP-1 release but increased ROS production. Together, simvastatin and amfenac reduced the release of IL-6, IL-8, and MCP-1 cytokines as well as NF-κB activity but increased the VEGF release upon inflammation in ARPE-19 cells. CONCLUSION: Our present study supports the anti-inflammatory capacity of simvastatin as pre-treatment against inflammation in human RPE cells, and the addition of amfenac complements the effect. The early modulation of local conditions in the retina can prevent inflammation induced PVR formation and subsequent retinal re-detachment.


Assuntos
Fenilacetatos , Descolamento Retiniano , Vitreorretinopatia Proliferativa , Humanos , Vitreorretinopatia Proliferativa/metabolismo , Descolamento Retiniano/cirurgia , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Epitélio Pigmentado da Retina , Sinvastatina/metabolismo , Sinvastatina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios , Inflamação/metabolismo
19.
Int J Biol Macromol ; 265(Pt 1): 130954, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499125

RESUMO

Designing multifunctional wound dressings is a prerequisite to prevent infection and stimulate healing. In this study, a bilayer scaffold (BS) with a top layer (TL) comprising 3D printed pectin/polyacrylic acid/platelet rich fibrin hydrogel (Pec/PAA/PRF) and a bottom nanofibrous layer (NL) containing Pec/PAA/simvastatin (SIM) was produced. The biodegradable and biocompatible polymers Pec and PAA were cross-linked to form hydrogels via Ca2+ activation through galacturonate linkage and chelation, respectively. PRF as an autologous growth factor (GF) source and SIM together augmented angiogenesis and neovascularization. Because of 3D printing, the BS possessed a uniform distribution of PRF in TL and an average fiber diameter of 96.71 ± 18.14 nm was obtained in NL. The Young's modulus of BS was recorded as 6.02 ± 0.31 MPa and its elongation at break was measured as 30.16 ± 2.70 %. The wound dressing gradually released growth factors over 7 days of investigation. Furthermore, the BS significantly outperformed other groups in increasing cell viability and in vivo wound closure rate (95.80 ± 3.47 % after 14 days). Wounds covered with BS healed faster with more collagen deposition and re-epithelialization. The results demonstrate that the BS can be a potential remedy for skin tissue regeneration.


Assuntos
Fibrina Rica em Plaquetas , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Pectinas/farmacologia , Pectinas/metabolismo , Pele/metabolismo , Impressão Tridimensional
20.
Skin Res Technol ; 30(3): e13642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454597

RESUMO

AIMS AND OBJECTIVES: The purpose of this study is to investigate the effectiveness and safety of oral and injectable systemic treatments, such as methotrexate, azathioprine, cyclosporine, tofacitinib, baricitinib, corticosteroids, statins, zinc, apremilast, etc., for treating vitiligo lesions. METHOD: Databases including PubMed, Scopus, and Web of Science were meticulously searched for studies spanning from 2010 to August 2023, focusing on systemic oral and injectable therapies for vitiligo, using comprehensive keywords and search syntaxes tailored to each database. Key data extracted included study design, treatment efficacy, patient outcomes, patient satisfaction, and safety profiles. RESULTS: In a total of 42 included studies, oral mini-pulse corticosteroid therapy (OMP) was the subject of six studies (14.2%). Minocycline was the focus of five studies (11.9%), while methotrexate, apremilast, and tofacitinib each were examined in four studies (9.5%). Antioxidants and Afamelanotide were the subjects of three studies each (7.1%). Cyclosporine, simvastatin, oral zinc, oral corticosteroids (excluding OMP) and injections, and baricitinib were each explored in two studies (4.8%). Azathioprine, mycophenolate mofetil, and Alefacept were the subjects of one study each (2.4%). CONCLUSION: Systemic treatments for vitiligo have been successful in controlling lesions without notable side effects. OMP, Methotrexate, Azathioprine, Cyclosporine, Mycophenolate mofetil, Simvastatin, Apremilast, Minocycline, Afamelanotide, Tofacitinib, Baricitinib, Antioxidants, and oral/injectable corticosteroids are effective treatment methods. However, oral zinc and alefacept did not show effectiveness.


Assuntos
Azetidinas , Hipopigmentação , Purinas , Pirazóis , Sulfonamidas , Talidomida/análogos & derivados , Vitiligo , Humanos , Metotrexato/uso terapêutico , Azatioprina/uso terapêutico , Vitiligo/tratamento farmacológico , Vitiligo/patologia , Ácido Micofenólico/uso terapêutico , Minociclina/uso terapêutico , Alefacept/uso terapêutico , Ciclosporina/uso terapêutico , Corticosteroides , Sinvastatina/uso terapêutico , Zinco/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...