Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Biochem Biophys Res Commun ; 716: 150039, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38701556

RESUMO

The objective of this study was to better characterize the role of the glutamine transporter SLC38A1 in cervical cancer and explore the underlying mechanisms. Data from public databases and clinical cervical cancer tissue samples were used to assess the expression of SLC38A1 and its prognostic significance. Immunohistochemical staining, qRT-PCR, and Western blotting were used to evaluate the expression of relevant genes and proteins. Cell viability, cell cycle, apoptosis, and intracellular glutamine content were measured using CCK-8, flow cytometry, and biochemical assays. Additionally, the RNA immunoprecipitation (RIP) assay was used to examine the impact of METTL3/IGF2BP3 on the m6A modification of the SLC38A1 3'UTR. Both cervical cancer specimens and cells showed significantly increased expression of SLC38A1 and its expression correlated with an unfavorable prognosis. Knockdown of SLC38A1 inhibited cell viability and cell cycle progression, induced apoptosis, and suppressed tumor growth in vivo. Glutaminase-1 inhibitor CB-839 reversed the effects of SLC38A1 overexpression. METTL3 promoted m6A modification of SLC38A1 and enhanced its mRNA stability through IGF2BP3 recruitment. Moreover, METTL3 silencing inhibited cell viability, cell cycle progression, intracellular glutamine content, and induced apoptosis, but these effects were reversed by SLC38A1 overexpression. In conclusion, METTL3-mediated m6A methylation of SLC38A1 stimulates cervical cancer progression. SLC38A1 inhibition is a potential therapeutic strategy for cervical cancer.


Assuntos
Adenosina , Metiltransferases , Neoplasias do Colo do Útero , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Humanos , Feminino , Metiltransferases/metabolismo , Metiltransferases/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Metilação , Linhagem Celular Tumoral , Proliferação de Células/genética , Animais , Sistema A de Transporte de Aminoácidos/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Camundongos Nus , Camundongos , Prognóstico , Sobrevivência Celular/genética
2.
Elife ; 132024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813868

RESUMO

Germline epigenetic programming, including genomic imprinting, substantially influences offspring development. Polycomb Repressive Complex 2 (PRC2) plays an important role in Histone 3 Lysine 27 trimethylation (H3K27me3)-dependent imprinting, loss of which leads to growth and developmental changes in mouse offspring. In this study, we show that offspring from mouse oocytes lacking the PRC2 protein Embryonic Ectoderm Development (EED) were initially developmentally delayed, characterised by low blastocyst cell counts and substantial growth delay in mid-gestation embryos. This initial developmental delay was resolved as offspring underwent accelerated fetal development and growth in late gestation resulting in offspring that were similar stage and weight to controls at birth. The accelerated development and growth in offspring from Eed-null oocytes was associated with remodelling of the placenta, which involved an increase in fetal and maternal tissue size, conspicuous expansion of the glycogen-enriched cell population, and delayed parturition. Despite placental remodelling and accelerated offspring fetal growth and development, placental efficiency, and fetal blood glucose levels were low, and the fetal blood metabolome was unchanged. Moreover, while expression of the H3K27me3-imprinted gene and amino acid transporter Slc38a4 was increased, fetal blood levels of individual amino acids were similar to controls, indicating that placental amino acid transport was not enhanced. Genome-wide analyses identified extensive transcriptional dysregulation and DNA methylation changes in affected placentas, including a range of imprinted and non-imprinted genes. Together, while deletion of Eed in growing oocytes resulted in fetal growth and developmental delay and placental hyperplasia, our data indicate a remarkable capacity for offspring fetal growth to be normalised despite inefficient placental function and the loss of H3K27me3-dependent genomic imprinting.


Assuntos
Impressão Genômica , Animais , Feminino , Gravidez , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Desenvolvimento Fetal/genética , Placenta/metabolismo , Oócitos/metabolismo , Oócitos/crescimento & desenvolvimento , Sistema A de Transporte de Aminoácidos
3.
PLoS One ; 19(4): e0301356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635778

RESUMO

BACKGROUND: CircTADA2A has been demonstrated to play critical roles in the occurrence and development of human cancer. However, the expression pattern and biological mechanisms of circTADA2A in melanoma remains largely unknown. METHODS: CircTADA2A were detected by quantitative real-time RT-PCR (qRT-PCR) and validated by Sanger sequencing. Function of circTADA2A and its protein partner in melanoma cells was investigated using RNA interference and overexpression assays. Interaction of circTADA2A, CCHC-type zinc finger nucleic acid binding protein (CNBP) and solute carrier family 38 member 1 (SLC38A1) was confirmed by RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter assay. The expression of genes and proteins were detected by qRT-PCR and western blot assays. RESULTS: Data from the investigation showed that a novel circRNA (circTADA2A, hsa_circ_0043278) was markedly downregulated in melanoma cells. Functionally, circTADA2A repressed cell proliferation, migration, invasion in melanoma cells. Mechanistically, circTADA2A interacted with CNBP, acting to suppress the binding of CNBP to the SLC38A1 promoter and subsequently restrained SLC38A1 transcription, which resulting in repression of melanoma progression. CONCLUSIONS: CircTADA2A suppresses melanoma progression by regulating CNBP/SLC38A1 axis, indicating a potential therapeutic target in melanoma.


Assuntos
Melanoma , MicroRNAs , Humanos , Melanoma/genética , Melanoma/metabolismo , RNA/genética , Interferência de RNA , RNA Circular/genética , MicroRNAs/genética , Proliferação de Células/genética , Movimento Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo
4.
Cell Signal ; 117: 111110, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38382691

RESUMO

Glutamine addiction is a significant hallmark of metabolic reprogramming in tumors and is crucial to the progression of cancer. Nevertheless, the regulatory mechanisms of glutamine metabolism in endometrial cancer (EC) remains elusive. In this research, we found that elevated expression of CENPA and solute carrier family 38 member 1 (SLC38A1) were firmly associated with worse clinical stage and unfavorable outcomes in EC patients. In addition, ectopic overexpression or silencing of CENPA could either enhance or diminish glutamine metabolism and tumor progression in EC. Mechanistically, CENPA directly regulated the transcriptional activity of the target gene, SLC38A1, leading to enhanced glutamine uptake and metabolism, thereby promoting EC progression. Notably, a prognostic model utilizing the expression levels of CENPA and SLC38A1 genes independently emerged as a prognostic factor for EC. More importantly, CENPA and SLC38A1 were significantly elevated and positively correlated, as well as indicative of poor prognosis in multiple cancers. In brief, our study confirmed that CENPA is a critical transcription factor involved in glutamine metabolism and tumor progression through modulating SLC38A1. This revelation suggests that targeting CENPA could be an appealing therapeutic approach to address pan-cancer glutamine addiction.


Assuntos
Sistema A de Transporte de Aminoácidos , Proteína Centromérica A , Neoplasias do Endométrio , Glutamina , Feminino , Humanos , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Glutamina/metabolismo , Histonas , Fatores de Transcrição/metabolismo , Proteína Centromérica A/metabolismo
5.
Cancer Biol Ther ; 25(1): 2315651, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38390840

RESUMO

Metabolic reprogramming plays a critical role in hepatocarcinogenesis. However, the mechanisms regulating metabolic reprogramming in primary liver cancer (PLC) are unknown. Differentially expressed miRNAs between PLC and normal tissues were identified using bioinformatic analysis. RT-qPCR was used to determine miR-10b-5p and SCL38A2 expression levels. IHC, WB, and TUNEL assays were used to assess the proliferation and apoptosis of the tissues. The proliferation, migration, invasion, and apoptosis of PLC cells were determined using the CCK-8 assay, Transwell assay, and flow cytometry. The interaction between miR-10b-5p and SLC38A2 was determined using dual-luciferase reporter assay. A PLC xenograft model in BALB/c nude mice was established, and tumorigenicity and SLC38A2 expression were estimated. Finally, liquid chromatography - mass spectrometry (LC-MS) untargeted metabolomics was used to analyze the metabolic profiles of xenograft PLC tissues in nude mice. miR-10b-5p was a key molecule in the regulation of PLC. Compared with para-carcinoma tissues, miR-10b-5p expression was increased in tumor tissues. miR-10b-5p facilitated proliferation, migration, and invasion of PLC cells. Mechanistically, miR-10b-5p targeted SLC38A2 to promote PLC tumor growth. Additionally, miR-10b-5p altered the metabolic features of PLC in vivo. Overexpression of miR-10b-5p resulted in remarkably higher amounts of lumichrome, folic acid, octanoylcarnitine, and Beta-Nicotinamide adenine dinucleotide, but lower levels of 2-methylpropanal, glycyl-leucine, and 2-hydroxycaproic acid. miR-10b-5p facilitates the metabolic reprogramming of PLC by targeting SLC38A2, which ultimately boosts the proliferation, migration, and invasion of PLC cells. Therefore, miR-10b-5p and SLC38A2 are potential targets for PLC diagnosis and treatment.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Animais , Camundongos , Humanos , Camundongos Nus , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Carcinogênese , Proliferação de Células , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Apoptose , Sistema A de Transporte de Aminoácidos/metabolismo
6.
Mol Biol Rep ; 51(1): 336, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393484

RESUMO

BACKGROUND: SLC38A2 is a ubiquitously expressed Na+-dependent transporter specific for small and medium neutral amino acids. It is involved in human pathologies, such as type II diabetes and cancer. Despite its relevance in human physio-pathology, structure/function relationship studies and identification of ligands with regulatory roles are still in infancy. METHODS AND RESULTS: The cDNA coding for SLC38A2 was cloned in the pET-28-Mistic vector, and the BL21 codon plus RIL strain was transformed with the recombinant construct. 0.5% glucose and oxygen availability were crucial for protein expression. The over-expressed hSNAT2-Mistic chimera was cleaved on column and purified by nickel-chelating affinity chromatography, with a yield of about 60 mg/Liter cell culture. The purified hSNAT2 was reconstituted in proteoliposomes in an active form with a right-side-out orientation with respect to the native membrane. CONCLUSIONS: The addition of a Mistic tag at the N-terminus of the SNAT2 protein was crucial for its over-expression and purification. The purified protein was functionally active, representing a powerful tool for performing structure/function studies and testing ligands as inhibitors and/or activators.


Assuntos
Sistema A de Transporte de Aminoácidos , Humanos , Sistema A de Transporte de Aminoácidos/biossíntese , Proteínas de Membrana Transportadoras
7.
Nat Commun ; 14(1): 8158, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071217

RESUMO

Insulin secretion from pancreatic ß cells is regulated by multiple stimuli, including nutrients, hormones, neuronal inputs, and local signalling. Amino acids modulate insulin secretion via amino acid transporters expressed on ß cells. The granin protein VGF has dual roles in ß cells: regulating secretory granule formation and functioning as a multiple peptide precursor. A VGF-derived peptide, neuroendocrine regulatory peptide-4 (NERP-4), increases Ca2+ influx in the pancreata of transgenic mice expressing apoaequorin, a Ca2+-induced bioluminescent protein complex. NERP-4 enhances glucose-stimulated insulin secretion from isolated human and mouse islets and ß-cell-derived MIN6-K8 cells. NERP-4 administration reverses the impairment of ß-cell maintenance and function in db/db mice by enhancing mitochondrial function and reducing metabolic stress. NERP-4 acts on sodium-coupled neutral amino acid transporter 2 (SNAT2), thereby increasing glutamine, alanine, and proline uptake into ß cells and stimulating insulin secretion. SNAT2 deletion and inhibition abolish the protective effects of NERP-4 on ß-cell maintenance. These findings demonstrate a novel autocrine mechanism of ß-cell maintenance and function that is mediated by the peptide-amino acid transporter axis.


Assuntos
Sistema A de Transporte de Aminoácidos , Células Secretoras de Insulina , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistemas Neurossecretores/metabolismo , Peptídeos/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo
8.
Cell Commun Signal ; 21(1): 326, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957724

RESUMO

BACKGROUND: The placentas from newborns that are small for gestational age (SGA; birth weight < -2 SD for gestational age) may display multiple pathological characteristics. A key determinant of fetal growth and, therefore, birth weight is placental amino acid transport, which is under the control of the serine/threonine kinase mechanistic target of rapamycin (mTOR). The effects of endoplasmic reticulum (ER) stress on the mTOR pathway and the levels of amino acid transporters are not well established. METHODS: Placentas from SGA and appropriate for gestational age (AGA) newborns and the human placental BeWo cell line exposed to the ER stressor tunicamycin were used. RESULTS: We detected a significant increase in the levels of C/EBP homologous protein (CHOP) in the placentas from SGA newborns compared with those from AGA newborns, while the levels of other ER stress markers were barely affected. In addition, placental mTOR Complex 1 (mTORC1) activity and the levels of the mature form of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) were also reduced in the SGA group. Interestingly, CHOP has been reported to upregulate growth arrest and DNA damage-inducible protein 34 (GADD34), which in turn suppresses mTORC1 activity. The GADD34 inhibitor guanabenz attenuated the increase in CHOP protein levels and the reduction in mTORC1 activity caused by the ER stressor tunicamycin in the human placental cell line BeWo, but it did not recover mature SNAT2 protein levels, which might be reduced as a result of defective glycosylation. CONCLUSIONS: Collectively, these data reveal that GADD34A activity and glycosylation are key factors controlling mTORC1 signaling and mature SNAT2 levels in trophoblasts, respectively, and might contribute to the SGA condition. Video Abstract.


Assuntos
Sistema A de Transporte de Aminoácidos , Placenta , Serina-Treonina Quinases TOR , Fator de Transcrição CHOP , Feminino , Humanos , Recém-Nascido , Gravidez , Peso ao Nascer , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/metabolismo , Idade Gestacional , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Placenta/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Tunicamicina/farmacologia , Regulação para Cima , Fator de Transcrição CHOP/genética , Sistema A de Transporte de Aminoácidos/genética
9.
J Cancer Res Clin Oncol ; 149(17): 15879-15898, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37673823

RESUMO

Although hepatocellular carcinoma (HCC) is rather frequent, little is known about the molecular pathways underlying its development, progression, and prognosis. In the current study, we comprehensively analyzed the deferentially expressed metabolism-related genes (MRGs) in HCC based on TCGA datasets attempting to discover the potentially prognostic genes in HCC. The up-regulated MRGs were further subjected to analyze their prognostic values and protein expressions. Twenty-seven genes were identified because their high expressions were significant in OS, PFS, DFS, DSS, and HCC tumor samples. They were then used for GO, KEGG, methylation, genetics changes, immune infiltration analyses. Moreover, we established a prognostic model in HCC using univariate assays and LASSO regression based on these MRGs. Additionally, we also found that SLC38A1, an amino acid metabolism closely related transporter, was a potential prognostic gene in HCC, and its function in HCC was further studied using experiments. We found that the knockdown of SLC38A1 notably suppressed the growth and migration of HCC cells. Further studies revealed that SLC38A1 modulated the development of HCC cells by regulating PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism. In conclusion, this study identified the potentially prognostic MRGs in HCC and uncovered that SLC38A1 regulated HCC development and progression by regulating PI3K/AKT/mTOR signaling via glutamine mediated energy metabolism, which might provide a novel marker and potential therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Glutamina/metabolismo , Neoplasias Hepáticas/patologia , Proliferação de Células/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Metabolismo Energético , Linhagem Celular Tumoral , Sistema A de Transporte de Aminoácidos/metabolismo
10.
Nature ; 620(7972): 200-208, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37407815

RESUMO

Cancer cells evade T cell-mediated killing through tumour-immune interactions whose mechanisms are not well understood1,2. Dendritic cells (DCs), especially type-1 conventional DCs (cDC1s), mediate T cell priming and therapeutic efficacy against tumours3. DC functions are orchestrated by pattern recognition receptors3-5, although other signals involved remain incompletely defined. Nutrients are emerging mediators of adaptive immunity6-8, but whether nutrients affect DC function or communication between innate and adaptive immune cells is largely unresolved. Here we establish glutamine as an intercellular metabolic checkpoint that dictates tumour-cDC1 crosstalk and licenses cDC1 function in activating cytotoxic T cells. Intratumoral glutamine supplementation inhibits tumour growth by augmenting cDC1-mediated CD8+ T cell immunity, and overcomes therapeutic resistance to checkpoint blockade and T cell-mediated immunotherapies. Mechanistically, tumour cells and cDC1s compete for glutamine uptake via the transporter SLC38A2 to tune anti-tumour immunity. Nutrient screening and integrative analyses show that glutamine is the dominant amino acid in promoting cDC1 function. Further, glutamine signalling via FLCN impinges on TFEB function. Loss of FLCN in DCs selectively impairs cDC1 function in vivo in a TFEB-dependent manner and phenocopies SLC38A2 deficiency by eliminating the anti-tumour therapeutic effect of glutamine supplementation. Our findings establish glutamine-mediated intercellular metabolic crosstalk between tumour cells and cDC1s that underpins tumour immune evasion, and reveal glutamine acquisition and signalling in cDC1s as limiting events for DC activation and putative targets for cancer treatment.


Assuntos
Sistema A de Transporte de Aminoácidos , Células Dendríticas , Glutamina , Neoplasias , Transdução de Sinais , Sistema A de Transporte de Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glutamina/metabolismo , Neoplasias/imunologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
11.
Cancer Biomark ; 37(1): 39-52, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005877

RESUMO

OBJECTIVE: This study attempts to investigate whether hsa_circRNA_001859 (circ_001859) could regulate the proliferation and invasion of pancreatic cancer through the miR-21-5p/SLC38A2 pathway. METHODS: GSE79634 microarray was analyzed with R package. The expression of circ_001859 in pancreatic cancer tissues and cells was verified by qRT-PCR. After the overexpression of circ_001859, cell proliferation, cell migration and invasion were verified by colony formation and transwell assay. The targeting relationship between miR-21-5p and circ_001859 was predicted by TargetScan and was verified by dual luciferase reporter assay, RNA pull down and qRT-PCR. The effect of miR-21-5p on cell proliferation, migration and invasion were investigated by colony formation and transwell assay respectively. Similarly, the targeting relationship between miR-21-5p and SLC38A2 was predicted by TargetScan and was verified by dual luciferase reporter assay, western blot and qRT-PCR. The effect of SLC38A2 on cell proliferation was investigated by colony formation. RESULTS: Circ_001859 was lowly expressed in pancreatic cancer tissues and cells. In vitro assays showed that overexpression of circ_001859 could inhibit the proliferation, migration and invasion of pancreatic cancer. In addition, this effect was also confirmed in xenograft transplantation model. Circ_001859 could be bind to miR-21-5p and sponge its expression in pancreatic cancer cells. Overexpression of miR-21-5p enhanced the proliferation, migration and invasion ability of pancreatic cancer cells, while the inhibition of miR-21-5p expression suppressed these abilities. Moreover, miR-21-5p directly targeted at SLC38A2 and inhibited SLC38A2 expression levels while circ_001859 up-regulated SLC38A2 levels. SLC38A2 expression knockdown enhanced cell proliferation but SLC38A2 overexpression resulted in decreased proliferation, and effects of SLC38A2 could be rescued by miR-21-5p and circ_001859. In addition, both QRT-PCR and immunofluorescence confirmed that circ_001859 could regulate tumor epithelial-mesenchymal transition (EMT) through the miR-21-5p/SLC38A2 pathway. CONCLUSIONS: This study suggests that circ_001859 may inhibit the proliferation, invasion and EMT of pancreatic cancer through the miR-21-5p/SLC38A2 pathway.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pancreáticas/genética , Proliferação de Células/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Sistema A de Transporte de Aminoácidos , Neoplasias Pancreáticas
12.
Cancer Lett ; 562: 216171, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37054944

RESUMO

The mechanisms underlying the functional impairment and metabolic reprogramming of T lymphocytes in multiple myeloma (MM) have not been fully elucidated. In this study, single-cell RNA sequencing was used to compare gene expression profiles in T cells in bone marrow and peripheral blood of 10 newly diagnosed MM patients versus 3 healthy donors. Unbiased bioinformatics analysis revealed 9 cytotoxic T cell clusters. All 9 clusters in MM had higher expression of senescence markers (e.g., KLRG1 and CTSW) than the healthy control; some had higher expression of exhaustion-related markers (e.g., LAG3 and TNFRSF14). Pathway enrichment analyses showed downregulated amino acid metabolism and upregulated unfolded protein response (UPR) pathways, along with absent expression of glutamine transporter SLC38A2 and increased expression of UPR hallmark XBP1 in cytotoxic T cells in MM. In vitro studies revealed that XBP1 inhibited SLC38A2 by directly binding to its promoter, and silencing SLC38A2 resulted in decreased glutamine uptake and immune dysfunction of T cells. This study provided a landscape description of the immunosuppressive and metabolic features in T lymphocytes in MM, and suggested an important role of XBP1-SLC38A2 axis in T cell function.


Assuntos
Mieloma Múltiplo , Linfócitos T Citotóxicos , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Mieloma Múltiplo/genética , Glutamina , Análise de Sequência de RNA , Proteína 1 de Ligação a X-Box/genética , Sistema A de Transporte de Aminoácidos/genética
13.
BMC Gastroenterol ; 23(1): 74, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918802

RESUMO

BACKGROUND: Solute carrier family 38 member 2 (SLC38A2) has previously been reported to participate in carcinogenesis. However, its expression and function in gastric cancer (GC) remain unclear. The present study aimed to investigate the role of SLC38A2 in GC. METHODS: The prognostic value and expression of SLC38A2 in GC was analyzed by combining bioinformatics and experimental analyses. Colony formation, Cell Counting Kit-8, wound healing, Transwell and tumor formation assays were performed to assess the biological function of SLC38A2. The cBioPortal, GeneMANIA and LinkedOmics databases were mined to determine the underlying regulatory mechanisms of SLC38A2. The role of SLC38A2 in tumor immune infiltration was explored using the TIMER database. RESULTS: Our results demonstrated that SLC38A2 was upregulated and was correlated with a poor prognosis in GC patients. SLC38A2 downregulation significantly inhibited the proliferation, invasion and migration of GC cells. Abnormal genetic alteration and epigenetic regulation may contribute to the upregulation of SLC38A2 expression levels in GC. The results of enrichment analysis demonstrated that SLC38A2 was associated with 'hippo signaling' and 'ubiquitinyl hydrolase activity'. The results also indicated that SLC38A2 may be a key factor in GC immune infiltration and M2 macrophage polarization. CONCLUSION: Overall, these data identified that SLC38A2 may serve as a potential prognostic biomarker and therapeutic target in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Epigênese Genética , Movimento Celular/genética , Proliferação de Células/genética , Prognóstico , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo
14.
Viruses ; 15(2)2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36851539

RESUMO

Persistent high-risk human papillomavirus infection is the main risk factor for cervical cancer establishment, where the viral oncogenes E6 and E7 promote a cancerous phenotype. Metabolic reprogramming in cancer involves alterations in glutamine metabolism, also named glutaminolysis, to provide energy for supporting cancer processes including migration, proliferation, and production of reactive oxygen species, among others. The aim of this work was to analyze the effect of HPV16 E6 and E7 oncoproteins on the regulation of glutaminolysis and its contribution to cell proliferation. We found that the E6 and E7 oncoproteins exacerbate cell proliferation in a glutamine-dependent manner. Both oncoproteins increased the levels of transporter SNAT1, as well as GLS2 and GS enzymes; E6 also increased LAT1 transporter protein levels, while E7 increased ASCT2 and xCT. Some of these alterations are also regulated at a transcriptional level. Consistently, the amount of SNAT1 protein decreased in Ca Ski cells when E6 and E7 expression was knocked down. In addition, we demonstrated that cell proliferation was partially dependent on SNAT1 in the presence of glutamine. Interestingly, SNAT1 expression was higher in cervical cancer compared with normal cervical cells. The high expression of SNAT1 was associated with poor overall survival of cervical cancer patients. Our results indicate that HPV oncoproteins exacerbate glutaminolysis supporting the malignant phenotype.


Assuntos
Glutamina , Neoplasias do Colo do Útero , Feminino , Humanos , Proliferação de Células , Papillomavirus Humano 16/genética , Proteínas E7 de Papillomavirus/genética , Sistema A de Transporte de Aminoácidos/metabolismo
15.
Gut Liver ; 17(2): 267-279, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36148577

RESUMO

Background/Aims: We aimed to investigate the role and working mechanism of Homo sapiens circular RNA_0003602 (hsa_circ_0003602) in colorectal cancer (CRC) development. Methods: The expression of circ_0003602, miR-149-5p, and solute carrier family 38 member 1 (SLC38A1) was detected by quantitative real-time polymerase chain reaction. RNase R assays were conducted to determine the characteristics of circ_0003602. CCK-8 assays, flow cytometry analysis, transwell invasion assays, wound healing assays and tube formation assays were employed to evaluate cell viability, apoptosis, invasion, migration, and angiogenesis. All protein levels were examined by Western blot or immunohistochemistry assay. The glutamine metabolism was monitored by corresponding glutamine, α-ketoglutarate and glutamate assay kits. Dual-luciferase reporter assay was utilized to confirm the targeted combination between miR-149-5p and circ_0003602 or SLC38A1. A xenograft tumor model was established to analyze the role of circ_0003602 in CRC tumor growth in vivo. Results: Circ_0003602 was upregulated in CRC tissues and cell lines. Circ_0003602 silencing suppressed CRC cell viability, migration, invasion, angiogenesis, and glutaminolysis; induced cell apoptosis in vitro; and blocked tumor growth in vivo. Moreover, circ_0003602 directly interacted with miR-149-5p to negatively regulate its expression, and circ_0003602 knockdown suppressed the malignant behaviors of CRC cells largely by upregulating miR-149-5p. MiR-149-5p directly bound to the 3' untranslated region of SLC38A1 to induce its degradation, and miR-149-5p overexpression reduced the malignant potential of CRC cells largely by downregulating SLC38A1. Circ_0003602 positively regulated SLC38A1 expression by sponging miR-149-5p in CRC cells. Conclusions: Circ_0003602 knockdown impedes CRC development by targeting the miR-149-5p/SLC38A1 axis, which provides a novel theoretical basis and new insights for CRC treatment.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Animais , Glutamina , Modelos Animais de Doenças , Neoplasias Colorretais/genética , MicroRNAs/genética , Proliferação de Células/genética , Sistema A de Transporte de Aminoácidos
16.
Front Endocrinol (Lausanne) ; 13: 961744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213288

RESUMO

Thyroid hormones, T3 (triiodothyronine) and T4 (thyroxine), induce a variety of long-term effects on important physiological functions, ranging from development and growth to metabolism regulation, by interacting with specific nuclear or cytosolic receptors. Extranuclear or nongenomic effects of thyroid hormones are mediated by plasma membrane or cytoplasmic receptors, mainly by αvß3 integrin, and are independent of protein synthesis. A wide variety of nongenomic effects have now been recognized to be elicited through the binding of thyroid hormones to this receptor, which is mainly involved in angiogenesis, as well as in cell cancer proliferation. Several signal transduction pathways are modulated by thyroid hormone binding to αvß3 integrin: protein kinase C, protein kinase A, Src, or mitogen-activated kinases. Thyroid hormone-activated nongenomic effects are also involved in the regulation of Na+-dependent transport systems, such as glucose uptake, Na+/K+-ATPase, Na+/H+ exchanger, and amino acid transport System A. Of note, the modulation of these transport systems is cell-type and developmental stage-dependent. In particular, dysregulation of Na+/K+-ATPase activity is involved in several pathological situations, from viral infection to cancer. Therefore, this transport system represents a promising pharmacological tool in these pathologies.


Assuntos
Neoplasias , Tri-Iodotironina , Adenosina Trifosfatases/metabolismo , Sistema A de Transporte de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucose , Humanos , Integrinas/metabolismo , Mitógenos , Neoplasias/metabolismo , Proteína Quinase C/metabolismo , Hormônios Tireóideos/metabolismo , Tiroxina/metabolismo , Tri-Iodotironina/fisiologia
17.
Anticancer Drugs ; 33(9): 826-839, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066402

RESUMO

Lung cancer is devastating cancer that ranks as the leading cause of cancer-related death. Long noncoding RNA (lncRNA) opioid growth factor receptor pseudogene 1 (OGFRP1) was recognized as an oncogene in many cancers. However, the molecular mechanism of OGFRP1 in lung cancer is still poorly understood. The expression of target RNAs and genes was detected by quantitative real-time PCR and western blot. The interaction between miR-299-3p and OGFRP1 or solute carrier family 38 member 1 (SLC38A1) was predicted by StarbaseV3.0 and verified by dual-luciferase reporter assay and Pearson's correlation coefficient. Besides, a transplantation model of human lung cancer in nude mice was established to evaluate the role of OGFRP1 in lung cancer. OGFRP1 and SLC38A1 were overexpressed, whereas miR-299-3p was lowly expressed in lung cancer tumors and cells. OGFRP1 knockdown suppressed cell proliferation and facilitated ferroptosis by promoting lipid peroxidation and iron accumulation in lung cancer. Besides, Furthermore, miR-299-3p inhibitor or SLC38A1 overexpression attenuated OGFRP1 depletion-induced suppression on cell proliferation and ferroptosis in lung cancer. Animal experiments indicated that OGFRP1 deficiency restrained tumor growth in vivo by regulating the miR-299-3p/SLC38A1 axis. OGFRP1 regulated cell proliferation and ferroptosis in lung cancer by inhibiting miR-299-3p to enhance SLC38A1 expression, providing a novel therapeutic strategy for lung cancer.


Assuntos
Ferroptose , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Ferro/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
18.
Dis Markers ; 2022: 6582357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837487

RESUMO

The genetic pathogenesis of selective intrauterine growth restriction (sIUGR) remains elusive, with evidence suggesting an important role of epigenetic factors such as microRNAs. In this study, we explored the relevance of miR-373-3p to the occurrence of sIUGR. Hypoxia enhanced the levels of miR-373-3p and hypoxia-inducible factor (HIF)-1α, while HIF-1α knockdown not only boosted the migration and proliferation of HTR8 cells but also suppressed the hypoxia-induced upregulation of miR-373-3p and SLC38A1. By contrast, HIF-1α overexpression induced miR-373-3p downregulation and SLC38A1 upregulation, reducing cell growth and migration, which could be reversed by a miR-373-3p inhibitor. Importantly, the miR-373-3p inhibitor and mimic reproduced phenomena similar to those induced by HIF-1α downregulation and overexpression, respectively (including altered SLC38A1 expression, mTOR activation, cell growth, and migration). Mechanistically, the miRNA regulated cell behaviors and related mTOR signaling by targeting SLC38A1 expression through an interaction with the 3'-untranslated region of SLC38A1. The placental tissues of smaller sIUGR fetuses exhibited miR-373-3p and HIF-1α upregulation, SLC38A1 downregulation, and activated mTOR. Overall, miR-373-3p appears to restrict the growth and migration of HTR8 trophoblast cells by targeting SLC38A1, as observed in the placental tissues associated with smaller sIUGR fetuses, and it could have utility in the diagnosis and treatment of this disorder.


Assuntos
MicroRNAs , Placenta , Regiões 3' não Traduzidas , Sistema A de Transporte de Aminoácidos/genética , Proliferação de Células/genética , Feminino , Humanos , Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Placenta/metabolismo , Gravidez , Serina-Treonina Quinases TOR/metabolismo
19.
Cell Rep ; 40(3): 111092, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858571

RESUMO

The integrated stress response (ISR) plays a pivotal role in adaptation of translation machinery to cellular stress. Here, we demonstrate an ISR-independent osmoadaptation mechanism involving reprogramming of translation via coordinated but independent actions of mTOR and plasma membrane amino acid transporter SNAT2. This biphasic response entails reduced global protein synthesis and mTOR signaling followed by translation of SNAT2. Induction of SNAT2 leads to accumulation of amino acids and reactivation of mTOR and global protein synthesis, paralleled by partial reversal of the early-phase, stress-induced translatome. We propose SNAT2 functions as a molecular switch between inhibition of protein synthesis and establishment of an osmoadaptive translation program involving the formation of cytoplasmic condensates of SNAT2-regulated RNA-binding proteins DDX3X and FUS. In summary, we define key roles of SNAT2 in osmotolerance.


Assuntos
Sistema A de Transporte de Aminoácidos , Aminoácidos , Sistema A de Transporte de Aminoácidos/genética , Sistema A de Transporte de Aminoácidos/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo
20.
Oxid Med Cell Longev ; 2022: 4832611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663198

RESUMO

Alcoholic steatohepatitis (ASH) is asymptomatic in the early stages and is typically advanced at the time of diagnosis. With the global rise in alcohol abuse, ASH is currently among the most detrimental diseases around the world. Hepatocellular carcinoma (HCC) is one of the final outcomes of numerous liver diseases. However, at present, HCC screening is mostly focused on liver cancer development. Moreover, there is no effective biomarker to predict the prognosis and recurrence of liver cancer. Meanwhile, there are limited studies on the prognosis and recurrence of HCC patients complicated with ASH. In this study, using bioinformatic analysis as well as cellular and animal models, we screened the differentially expressed (DE) miRNA-432 and SLC38A1 gene in ASH. Based on our analysis, miRNA-432 targeted SLC38A1, and the levels of miRNA-432 and SLC38A1 could accurately predict the overall survival (OS) and relapse free survival (RFS) in patients with liver cancer. Hence, these two genetic elements have the potential to synergistically predict the prognosis and recurrence of HCC complicated with ASH.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso Alcoólico , Neoplasias Hepáticas , MicroRNAs/genética , Sistema A de Transporte de Aminoácidos , Carcinoma Hepatocelular/complicações , Carcinoma Hepatocelular/genética , Fígado Gorduroso Alcoólico/complicações , Fígado Gorduroso Alcoólico/genética , Humanos , Neoplasias Hepáticas/complicações , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Recidiva Local de Neoplasia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...