Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 591(7849): 327-331, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33597752

RESUMO

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2-5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6-8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Animais , Encéfalo/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/ultraestrutura , Cloretos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Transportador 1 de Aminoácido Excitatório/química , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/ultraestrutura , Feminino , Ácido Glutâmico/metabolismo , Humanos , Modelos Moleculares , Mutação , Oócitos , Conformação Proteica , Xenopus laevis
2.
Glia ; 56(12): 1353-67, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18551624

RESUMO

Recent findings suggest that synaptic-type glutamate signaling operates between axons and their supporting glial cells. Glutamate reuptake will be a necessary component of such a system. Evidence for glutamate-mediated damage of oligodendroglia somata and processes in white matter suggests that glutamate regulation in white matter structures is also of clinical importance. The expression of glutamate transporters was examined in postnatal Day 14-17 (P14-17) mouse and in mature mouse and rat optic nerve using immuno-histochemistry and immuno-electron microscopy. EAAC1 was the major glutamate transporter detected in oligodendroglia cell membranes in both developing and mature optic nerve, while GLT-1 was the most heavily expressed transporter in the membranes of astrocytes. Both EAAC1 and GLAST were also seen in adult astrocytes, but there was little membrane expression of either at P14-17. GLAST, EAAC1, and GLT-1 were expressed in P14-17 axons with marked GLT-1 expression in the axolemma, while in mature axons EAAC1 was abundant at the node of Ranvier. Functional glutamate transport was probed in P14-17 mouse optic nerve revealing Na+-dependent, TBOA-blockable uptake of D-aspartate in astrocytes, axons, and oligodendrocytes. The data show that in addition to oligodendroglia and astrocytes, axons represent a potential source for extracellular glutamate in white matter during ischaemic conditions, and have the capacity for Na(+)-dependent glutamate uptake. The findings support the possibility of functional synaptic-type glutamate release from central axons, an event that will require axonal glutamate reuptake.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/fisiologia , Axônios/metabolismo , Ácido Glutâmico/metabolismo , Neuroglia/metabolismo , Nervo Óptico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Animais , Axônios/ultraestrutura , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neuroglia/ultraestrutura , Nervo Óptico/ultraestrutura , Transporte Proteico/fisiologia
3.
Rev. neurol. (Ed. impr.) ; 45(6): 341-352, 16 sept., 2007. ilus, tab
Artigo em Es | IBECS | ID: ibc-65348

RESUMO

Se enfatizan las características estructurales generales, las propiedades funcionales y la distribución de los transportadores de glutamato, así como la participación de éstos en la epilepsia y el estrés oxidativo. Desarrollo. Los transportadores de aminoácidos como el glutamato se consideran proteínas de suma importancia en el sistema nervioso central,ya que participan en la captura del neurotransmisor posterior a su liberación en la hendidura sináptica para finalizar de esta manera su efecto y limitar la excitabilidad mediada por el glutamato. Estas proteínas se incluyen en la familia de lostransportadores dependientes de Na+/K+. Numerosas evidencias demuestran la participación de los transportadores en variostrastornos neuronales, como la epilepsia y la isquemia cerebral. A este respecto se considera que algún defecto en la estructura de los transportadores podría afectar su función y, por tanto, favorecer la hiperexcitabilidad producida por el glutamato, de tal manera que conduzca a las alteraciones patológicas que se presentan en la epilepsia. Conclusiones. El estudio detalladode la estructura y función de estos transportadores, así como del papel que desempeñan en las enfermedades neurológicas más comunes como la epilepsia, permitirá visualizar con claridad nuevas alternativas terapéuticas para combatir este tipo de afecciones neuronales en el futuro


The article highlights the general structural characteristics, functional properties and distribution of glutamate transporters, as well as the role they play in epilepsy and oxidative stress. Development. Transporters of amino acids such as glutamate are considered to be proteins that are extremely important in the central nervous system because theyparticipate in the capture of the neurotransmitter following its release in the synaptic cleft, thus putting an end to its effect and limiting glutamate-mediated excitability. These proteins belong to the family of Na+/K+ dependent transporters. A growingbody of evidence has been gathered to show that these transporters are involved in several neuronal disorders, such as epilepsy and cerebral ischaemia. In this regard, it is considered that some defect in the structure of the transporters could affect their functioning and, therefore, favour the hyperexcitability produced by glutamate; this in turn would lead to thepathological disorders that are found in epilepsy. Conclusions. A detailed study of the structure and functioning of these transporters, as well as the role they play in the more common neurological diseases, such as epilepsy, would afford us a clearer view of new therapeutic alternatives with which to fight this kind of neuronal disorder in the future


Assuntos
Humanos , Epilepsia/etiologia , Estresse Oxidativo , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/farmacocinética
4.
J Comp Neurol ; 475(4): 518-30, 2004 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-15236233

RESUMO

Vesicular transporters play an essential role in the packaging of glutamate for synaptic release and so are of particular importance in the retina, where glutamate serves as the neurotransmitter for photoreceptors, bipolar cells, and ganglion cells. In the present study, we have examined the distribution of the three known isoforms of vesicular glutamate transporter (VGLUT) in the cat retina. VGLUT1 was localized to all photoreceptor and bipolar cells, whereas VGLUT2 was found in ganglion cells. This basic pattern of complementary distribution for the two transporters among known populations of glutamatergic cells is similar to previous findings in the brain and spinal cord. However, the axon terminals of S-cone photoreceptors were found to express both VGLUT1 and VGLUT2 and some ganglion cells labeled for both VGLUT2 and VGLUT3. Such colocalizations suggest the existence of dual modes of regulation of vesicular glutamate transport in these neurons. Staining for VGLUT2 was also present in a small number of varicose processes, which were seen to ramify throughout the inner plexiform layer. These fibers may represent axon collaterals of ganglion cells. The most prominent site of VGLUT3 immunoreactivity was in a population of amacrine cells; the axon terminals of B-type horizontal cells were also labeled at their contacts with rod spherules. The presence of the VGLUT3 transporter at sites not otherwise implicated in glutamate release may indicate novel modes of glutamate signaling or additional roles for the transporter molecule.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/fisiologia , Proteínas de Membrana Transportadoras , Retina/anatomia & histologia , Retina/fisiologia , Proteínas de Transporte Vesicular , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/ultraestrutura , Animais , Proteínas de Transporte/fisiologia , Proteínas de Transporte/ultraestrutura , Gatos , Imuno-Histoquímica , Microscopia Eletrônica , Neurônios/citologia , Neurônios/fisiologia , Neurônios/ultraestrutura , Retina/ultraestrutura , Proteína Vesicular 1 de Transporte de Glutamato , Proteína Vesicular 2 de Transporte de Glutamato
5.
Cereb Cortex ; 13(10): 1110-21, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12967927

RESUMO

In the adult nervous system, glutamatergic neurotransmission is tightly controlled by neuron-glia interactions through glial glutamate reuptake by the specific transporters GLT-1 and GLAST. Here, we have explored the role of these transporters in the structural and functional maturation of the somatosensory cortex of the mouse. We provide evidence that GLT-1 and GLAST are early and selectively expressed in barrels from P5 to P10. Confocal and electron microscopy confirm that the expression is restricted to the astroglial membrane. By P12, and despite an increased global expression as observed by immunoblotting, the barrel pattern of GLAST and GLT-1 staining is no longer evident. In P10 GLT-1 -/- and GLAST -/- mice, the cytoarchitectural segregation of the barrels is preserved. However, at P9-10, the functional response to whisker stimulation, measured by deoxyglucose uptake, is markedly decreased in GLT-1 -/- and GLAST -/- mice. The role of GLAST is transient since the metabolic response is already restored at P11-12 in GLAST -/- mice and remains unchanged in adulthood. However, deletion of GLT-1 seems to impair the functional metabolic response until adulthood. Our data suggest that astrocyte-neuron interactions via the glial glutamate transporters are involved in the functional maturation of the whisker representation in the somatosensory cortex.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/biossíntese , Transportador 2 de Aminoácido Excitatório/biossíntese , Neuroglia/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Animais , Animais Recém-Nascidos , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/ultraestrutura , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/química , Neuroglia/ultraestrutura , Gravidez , Córtex Somatossensorial/química , Córtex Somatossensorial/ultraestrutura
6.
Cereb Cortex ; 12(5): 515-25, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11950769

RESUMO

Several isoenzymes of the Na(+),K(+)-ATPase are expressed in brain but their specific roles are poorly understood. Recently, it was suggested that an isoenzyme of the Na(+),K(+)-ATPase containing the alpha(2) subunit, together with the glutamate transporters GLAST and GLT-1, participate in a coupling mechanism between neuronal activity and energy metabolism taking place in astrocytes. To substantiate this hypothesis, we compared the distribution of alpha(2), GLAST and/or GLT-1 in the rat cerebral cortex using double immunofluorescence and confocal microscopy, and immunocytochemistry at the electron microscopic level. We also investigated the relationship between alpha(2), GLAST or GLT-1 and asymmetrical synaptic junctions (largely glutamatergic) and GABAergic nerve terminals. Results show that the alpha(2) subunit has an exclusive astroglial localization, and that it is almost completely co-distributed with GLAST and GLT-1 when evaluated by confocal microscopy. This similar distribution was confirmed at the ultrastructural level, which further showed that the vast majority of the alpha(2) staining (73% of all labelled elements), like that of GLAST and GLT-1, was located in glial leaflets surrounding dendritic spines and the dendritic and/or axonal elements of asymmetrical (glutamatergic) axo-dendritic synapses. Synapses ensheathed by alpha(2), GLAST or GLT-1 virtually never included (

Assuntos
Sistema X-AG de Transporte de Aminoácidos/análise , Transportador 2 de Aminoácido Excitatório/análise , Neuroglia/química , ATPase Trocadora de Sódio-Potássio/análise , Córtex Somatossensorial/química , Sinapses/química , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Animais , Transportador 2 de Aminoácido Excitatório/ultraestrutura , Masculino , Neuroglia/ultraestrutura , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...