Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
J Agric Food Chem ; 72(22): 12607-12617, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785045

RESUMO

To explore the roles of loops around active pocket in the reuteran type 4,6-α-glucanotransferase (StGtfB) from S. thermophilus, they were individually or simultaneously replaced with those of an isomalto/maltopolysaccharides type 4,6-α-glucanotransferase from L. reuteri. StGtfB with the replaced loops A1, A2 (A1A2) and A1, A2, B (A1A2B), respectively, showed 1.41- and 0.83-fold activities of StGtfB. Two mutants reduced crystallinity and increased starch disorder at 2, 4, and 8 U/g more than StGtfB and increased DP ≤ 5 short branches of starch by 38.01% at 2 U/g, much more than StGtfB by 4.24%. A1A2B modified starches had the lowest retrogradation over 14 days. A1A2 modified starches had the highest percentage of slowly digestible fractions, ranging from 40.32% to 43.34%. StGtfB and its mutants bind substrates by hydrogen bonding and van der Waals forces at their nonidentical amino acid residues, suggesting that loop replacement leads to a different conformation and changes activity and product structure.


Assuntos
Proteínas de Bactérias , Sistema da Enzima Desramificadora do Glicogênio , Amido , Streptococcus thermophilus , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Streptococcus thermophilus/enzimologia , Streptococcus thermophilus/genética , Streptococcus thermophilus/química , Streptococcus thermophilus/metabolismo , Especificidade por Substrato , Amido/metabolismo , Amido/química , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Domínio Catalítico , Cinética , Biocatálise
2.
J Agric Food Chem ; 72(19): 11041-11050, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38700846

RESUMO

The function of polysaccharides is intimately associated with their size, which is largely determined by the processivity of transferases responsible for their synthesis. A tunnel active center architecture has been recognized as a key factor that governs processivity of several glycoside hydrolases (GHs), e.g., cellulases and chitinases. Similar tunnel architecture is also observed in the Limosilactobacillus reuteri 121 GtfB (Lr121 GtfB) α-glucanotransferase from the GH70 family. The molecular element underpinning processivity of these transglucosylases remains underexplored. Here, we report the synthesis of the smallest (α1 → 4)-α-glucan interspersed with linear and branched (α1 → 6) linkages by a novel 4,6-α-glucanotransferase from L. reuteri N1 (LrN1 GtfB) with an open-clefted active center instead of the tunnel structure. Notably, the loop swapping engineering of LrN1 GtfB and Lr121 GtfB based on their crystal structures clarified the impact of the loop-mediated tunnel/cleft structure at the donor subsites -2 to -3 on processivity of these α-glucanotransferases, enabling the tailoring of both product sizes and substrate preferences. This study provides unprecedented insights into the processivity determinants and evolutionary diversification of GH70 α-glucanotransferases and offers a simple route for engineering starch-converting α-glucanotransferases to generate diverse α-glucans for different biotechnological applications.


Assuntos
Proteínas de Bactérias , Glucanos , Limosilactobacillus reuteri , Glucanos/química , Glucanos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Limosilactobacillus reuteri/enzimologia , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/química , Domínio Catalítico , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Engenharia de Proteínas , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/química
3.
JCI Insight ; 9(11)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753465

RESUMO

Glycogen storage disease type III (GSDIII) is a rare metabolic disorder due to glycogen debranching enzyme (GDE) deficiency. Reduced GDE activity leads to pathological glycogen accumulation responsible for impaired hepatic metabolism and muscle weakness. To date, there is no curative treatment for GSDIII. We previously reported that 2 distinct dual AAV vectors encoding for GDE were needed to correct liver and muscle in a GSDIII mouse model. Here, we evaluated the efficacy of rapamycin in combination with AAV gene therapy. Simultaneous treatment with rapamycin and a potentially novel dual AAV vector expressing GDE in the liver and muscle resulted in a synergic effect demonstrated at biochemical and functional levels. Transcriptomic analysis confirmed synergy and suggested a putative mechanism based on the correction of lysosomal impairment. In GSDIII mice livers, dual AAV gene therapy combined with rapamycin reduced the effect of the immune response to AAV observed in this disease model. These data provide proof of concept of an approach exploiting the combination of gene therapy and rapamycin to improve efficacy and safety and to support clinical translation.


Assuntos
Dependovirus , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos , Fígado , Sirolimo , Animais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Dependovirus/genética , Terapia Genética/métodos , Camundongos , Fígado/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Músculo Esquelético/metabolismo , Fenótipo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Humanos , Masculino
4.
N Biotechnol ; 79: 39-49, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38097138

RESUMO

4-α-glucanotransferases (4αGTs, EC 2.4.1.25) from glycoside hydrolase family 77 (GH77) catalyze chain elongation of starch amylopectin chains and can be utilized to structurally modify starch to tailor its gelation properties. The potential relationship between the structural design of 4αGTs and functional starch modification is unknown. Here, family GH77 was mined in silico for enzyme candidates based on sub-grouping guided by Conserved Unique Peptide Patterns (CUPP) bioinformatics categorization. From + 12,000 protein sequences a representative set of 27 4αGTs, representing four different domain architectures, different bacterial origins and diverse CUPP groups, was selected for heterologous expression and further study. Most of the enzymes catalyzed starch modification, but their efficacies varied substantially. Five of the 4αGTs were characterized in detail, and their action was compared to that of the industrial benchmark enzyme, Tt4αGT (CUPP 77_1.2), from Thermus thermophilus. Reaction optima of the five 4αGTs ranged from ∼40-60 °C and pH 7.3-9.0. Several were stable for a minimum 4 h at 70 °C. Domain architecture type A proteins, consisting only of a catalytic domain, had high thermal stability and high starch modification ability. All five novel 4αGTs (and Tt4αGT) induced enhanced gelling of potato starch. One, At4αGT from Azospirillum thermophilum (CUPP 77_2.4), displayed distinct starch modifying abilities, whereas T24αGT from Thermus sp. 2.9 (CUPP 77_1.2) modified the starch similarly to Tt4αGT, but slightly more effectively. T24αGT and At4αGT are thus interesting candidates for industrial starch modification. A model is proposed to explain the link between the 4αGT induced molecular modifications and macroscopic starch gelation.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Solanum tuberosum , Solanum tuberosum/metabolismo , Glicosídeo Hidrolases , Amido , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Peptídeos
5.
Protein J ; 42(5): 502-518, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37464145

RESUMO

The mechanism by which glycoside hydrolases control the reaction specificity through hydrolysis or transglycosylation is a key element embedded in their chemical structures. The determinants of reaction specificity seem to be complex. We looked for structural differences in domain B between the 4-α-glucanotransferase from Thermotoga maritima (TmGTase) and the α-amylase from Thermotoga petrophila (TpAmylase) and found a longer loop in the former that extends towards the active site carrying a W residue at its tip. Based on these differences we constructed the variants W131G and the partial deletion of the loop at residues 120-124/128-131, which showed a 11.6 and 11.4-fold increased hydrolysis/transglycosylation (H/T) ratio relative to WT protein, respectively. These variants had a reduction in the maximum velocity of the transglycosylation reaction, while their affinity for maltose as the acceptor was not substantially affected. Molecular dynamics simulations allow us to rationalize the increase in H/T ratio in terms of the flexibility near the active site and the conformations of the catalytic acid residues and their associated pKas.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Thermotoga maritima , Hidrólise , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , alfa-Amilases , Especificidade por Substrato
6.
Neuropathol Appl Neurobiol ; 49(1): e12865, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36456471

RESUMO

AIMS: Adult polyglucosan body disease (APBD) is a progressive neurogenetic disorder caused by 1,4-alpha-glucan branching enzyme 1 (GBE1) mutation with an accumulation of polyglucosan bodies (PBs) in the central and peripheral nervous systems as a pathological hallmark. Here, we report two siblings in a family with a GBE1 mutation with prominent frontotemporal lobar degeneration with TAR DNA-binding protein 43 (FTLD-TDP) and ageing-related tau astrogliopathy (ARTAG) copathologies with PBs in the central nervous system. METHODS: Whole-genome sequencing (WGS) followed by Sanger sequencing (SS) was performed on three affected and two unaffected siblings in a pedigree diagnosed with familial frontotemporal dementia. Out of the affected siblings, autopsies were conducted on two cases, and brain samples were used for biochemical and histological analyses. Brain sections were stained with haematoxylin and eosin and immunostained with antibodies against ubiquitin, tau, amyloid ß, α-synuclein, TDP-43 and fused in sarcoma (FUS). RESULTS: A novel single nucleotide deletion in GBE1, c.1280delG, was identified, which is predicted to result in a reading frameshift, p.Gly427Glufs*9. This variant segregated with disease in the family, is absent from population databases and is predicted to cause loss of function, a known genetic mechanism for APBD. The affected siblings showed a greater than 50% decrease in GBE protein levels. Immunohistochemical analysis revealed widespread FTLD-TDP (type A) and ARTAG pathologies as well as PBs in the brains of two affected siblings for whom an autopsy was performed. CONCLUSIONS: This is the first report of a family with several individuals with a FTD clinical phenotype and underlying copathologies of APBD, FTLD-TDP and ARTAG with a segregating GBE1 loss-of-function mutation in affected siblings. The finding of copathologies of APBD and FTLD-TDP suggests these processes may share a disease mechanism resulting from this GBE1 mutation.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Sistema da Enzima Desramificadora do Glicogênio , Humanos , Demência Frontotemporal/patologia , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Peptídeos beta-Amiloides/metabolismo , Degeneração Lobar Frontotemporal/patologia , Encéfalo/patologia , Mutação , Proteínas de Ligação a DNA/metabolismo , Proteínas tau/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo
7.
J Agric Food Chem ; 70(41): 13358-13366, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36217266

RESUMO

Some thermophilic enzymes not only exhibit high thermostability at high temperatures but also have an activation effect by thermal incubation. However, the correlations between temperature-induced structural modulation and thermal activation are still unclear. In this study, we selected a thermophilic glycogen-debranching enzyme from Saccharolobus solfataricus STB09 (SsGDE), which was a promising starch-debranching enzyme with a thermal activation property at temperatures ranging from 50 to 70 °C, to explore the thermal activation mechanism. Molecular dynamics simulations were performed for SsGDE at 30, 50, or 70 °C to reveal the temperature dependence of structure modulation and catalytic function. The results revealed that four loops (loop1 313-337, loop2 399-418, loop3 481-513, and loop4 540-574) in SsGDE were reshaped, which made the catalytic cavity more open. The internal residues, including the catalytic triad Asp3631, Glu399, and Asp471, could be exposed, due to the structural modulation, to exert catalytic functions. We proposed that the thermal activation effect of SsGDE was closely associated with the temperature-induced modulation of the catalytic cavity, which paved the way for further engineering enzymes to achieve higher catalytic performance and stability.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Estabilidade Enzimática , Catálise , Glicogênio , Amido
8.
Curr Microbiol ; 79(7): 202, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35604453

RESUMO

4-α-glucanotransferase (4GT, EC 2.4.1.25) catalyzes the breakdown of the α-1,4 glycosidic bonds of the starch main chain and forms new α-1,4 glycosidic bonds in the side chain, which is often used to optimize the physical and chemical properties of starch and to improve the quality of starch-based food. However, the low enzyme activity of 4GT limits its production and widespread application. Herein, the 4GT gene encoding 500 amino acids from Thermus thermophilus HB8 was cloned and expressed in Escherichia coli. The purified 4GT exhibited maximum activity at pH 7.0 and 60 °C and had a good stability at pH 6.0-8.0 and 30-60 °C. It was confirmed that 4GT possessed the catalytic function of extending the branch length of potato starch. Furthermore, the 4GT gene was successfully expressed extracellularly in Bacillus subtilis. Then, the enzyme yield of 4GT increased by 4.1 times through screening of different plasmids and hosts. Additionally, the fermentation conditions were optimized to enhance 4GT extracellular enzyme yield. Finally, a recombinant Bacillus subtilis with 299.9 U/mL enzyme yield of 4GT was obtained under the optimized fermentation process. In conclusion, this study provides a valuable reference for characterization and expression of food-grade enzymes.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Thermus thermophilus , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Amido , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
9.
Int J Biol Macromol ; 210: 315-323, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35545138

RESUMO

4,6-α-Glucanotransferases (4,6-α-GTs) hold great potential for applications in the food and medical industries because of their efficient transglycosylation ability. However, it is relatively difficult to achieve high soluble expression because of their high molecular weight and multidomain nature. In this study, 4,6-α-GT of Burkholderia sp. (GtfR2) was successfully expressed in E. coli, and the activity attained 1.55 × 104 U/mL by traditional fermentation optimization. However, a large number of inactive inclusion bodies of GtfR2 were still present due to aggregation and precipitation. The trehalose-mediated strategy was first proposed and applied in the fermentation process of GtfR2. Trehalose addition significantly reduced inclusion bodies, resulting in an increase in GtfR2 activity (6.48 × 104 U/mL), which was 4.20 times higher than that of the control group. Our molecular dynamics simulations revealed that trehalose could spontaneously stabilize the conformational dynamics of GtfR2 by binding to the groove, loop, α-helix and N-terminal unstable regions on the surface. This strategy was also available to enhance the soluble expression of other 4,6/4,3-α-GTs, which were increased by 3.03-77.19 times. This study is the first to observe that trehalose can inhibit the aggregation and precipitation of GtfR2, which provides a new perspective for the recombinant expression of 4,6/4,3-α-GTs.


Assuntos
Escherichia coli , Sistema da Enzima Desramificadora do Glicogênio , Escherichia coli/genética , Escherichia coli/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Corpos de Inclusão/metabolismo , Trealose/metabolismo , Trealose/farmacologia
10.
J Microbiol ; 60(4): 375-386, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35157220

RESUMO

Vibrio vulnificus MO6-24/O has three genes annotated as debranching enzymes or pullulanase genes. Among them, the gene encoded by VVMO6_03032 (vvde1) shares a higher similarity at the amino acid sequence level to the glycogen debranching enzymes, AmyX of Bacillus subtilis (40.5%) and GlgX of Escherichia coli (55.5%), than those encoded by the other two genes. The vvde1 gene encoded a protein with a molecular mass of 75.56 kDa and purified Vvde1 efficiently hydrolyzed glycogen and pullulan to shorter chains of maltodextrin and maltotriose (G3), respectively. However, it hydrolyzed amylopectin and soluble starch far less efficiently, and ß-cyclodextrin (ß-CD) only rarely. The optimal pH and temperature of Vvde1 was 6.5 and 25°C, respectively. Vvde1 was a cold-adapted debranching enzyme with more than 60% residual activity at 5°C. It could maintain stability for 2 days at 25°C and 1 day at 35°C, but it destabilized drastically at 40°C. The Vvde1 activity was inhibited considerably by Cu2+, Hg2+, and Zn2+, while it was slightly enhanced by Co2+, Ca2+, Ni2+, and Fe2+. The vvde1 knock-out mutant accumulated more glycogen than the wild-type in media supplemented with 1.0% maltodextrin; however, the side chain length distribution of glycogen was similar to that of the wild-type except G3, which was much more abundant in the mutant. Therefore, Vvde1 seemed to debranch glycogen with the degree of polymerization 3 (DP3) as the specific target branch length. Virulence of the pathogen against Caenorhabditis elegans was attenuated significantly by the vvde1 mutation. These results suggest that Vvde1 might be a unique glycogen debranching enzyme that is involved in both glycogen utilization and shaping of glycogen molecules, and contributes toward virulence of the pathogen.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Vibrio vulnificus , Amilopectina/metabolismo , Glicogênio/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Vibrio vulnificus/metabolismo , Virulência/genética
11.
World J Microbiol Biotechnol ; 38(2): 36, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34993677

RESUMO

4α-Glucanotransferase (4α-GTase) is unique in its ability to form cyclic oligosaccharides, some of which are of industrial importance. Generally, low amount of enzymes is produced by or isolated from their natural sources: animals, plants, and microorganisms. Heterologous expressions of these enzymes, in an attempt to increase their production for applicable uses, have been widely studied since 1980s; however, the expressions are mostly performed in the prokaryotic bacteria, mostly Escherichia coli. Site-directed mutagenesis has added more value to these expressed enzymes to display the desired properties beneficial for their applications. The search for further suitable properties for food application leads to an extended research in expression by another group of host organism, the generally-recognized as safe host including the Bacillus and the eukaryotic yeast systems. Herein, our review focuses on two types of 4α-GTase: the cyclodextrin glycosyltransferase and amylomaltase. The updated studies on the general structure and properties of the two enzymes with emphasis on heterologous expression, mutagenesis for property improvement, and their industrial applications are provided.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Bacillus/enzimologia , Bacillus/genética , Bactérias/enzimologia , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Oligossacarídeos , Leveduras/enzimologia , Leveduras/genética , Leveduras/metabolismo
12.
Carbohydr Polym ; 275: 118685, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742415

RESUMO

Starch molecules are first degraded to slowly digestible α-limit dextrins (α-LDx) and rapidly hydrolyzable linear malto-oligosaccharides (LMOs) by salivary and pancreatic α-amylases. In this study, we designed a slowly digestible highly branched α-LDx with maximized α-1,6 linkages using 4,6-α-glucanotransferase (4,6-αGT), which creates a short length of α-1,4 side chains with increasing branching points. The results showed that a short length of external chains mainly composed of 1-8 glucosyl units was newly synthesized in different amylose contents of corn starches, and the α-1,6 linkage ratio of branched α-LDx after the chromatographical purification was significantly increased from 4.6% to 22.1%. Both in vitro and in vivo studies confirmed that enzymatically modified α-LDx had improved slowly digestible properties and extended glycemic responses. Therefore, 4,6-αGT treatment enhanced the slowly digestible properties of highly branched α-LDx and promises usefulness as a functional ingredient to attenuate postprandial glucose homeostasis.


Assuntos
Dextrinas/química , Dextrinas/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Streptococcus thermophilus/enzimologia , Amilose/metabolismo , Digestão , Glucose/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/química , Humanos , Hidrólise , Peso Molecular , alfa-Amilases Pancreáticas/metabolismo , Amido/química , alfa-Glucosidases/metabolismo
13.
Carbohydr Polym ; 275: 118705, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742430

RESUMO

A variety of glucosaccharides composed of glucosyl residues can be classified into α- and ß-type and have wide application in food and medicine areas. Among these glucosaccharides, ß-type, such as cellulose and α-type, such as starch and starch derivatives, both contain 1 â†’ 4 linkages and are well studied. Notably, in past decades also α1 â†’ 6 glucosaccharides obtained increasing attention for unique physiochemical and biological properties. Especially in recent years, α1 â†’ 6 glucosaccharides of different molecular weight distribution have been created and proved to be functional. However, compared to ß- type and α1 â†’ 4 glucosaccharides, only few articles provide a systematic overview of α1 â†’ 6 glucosaccharides. This motivated, the present first comprehensive review on structure, function and synthesis of these α1 â†’ 6 glucosaccharides, aiming both at improving understanding of traditional α1 â†’ 6 glucosaccharides, such as isomaltose, isomaltooligosaccharides and dextrans, and to draw the attention to newly explored α1 â†’ 6 glucosaccharides and their derivatives, such as cycloisomaltooligosaccharides, isomaltomegalosaccharides, and isomalto/malto-polysaccharides.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Oligossacarídeos/biossíntese , Oligossacarídeos/metabolismo , Configuração de Carboidratos , Oligossacarídeos/química
14.
Biomolecules ; 11(9)2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34572549

RESUMO

Amylomaltases (4-α-glucanotransferases, E.C. 2.4.1.25) are enzymes which can perform a double-step catalytic process, resulting in a transglycosylation reaction. They hydrolyse glucosidic bonds of α-1,4'-d-glucans and transfer the glucan portion with the newly available anomeric carbon to the 4'-position of an α-1,4'-d-glucan acceptor. The intramolecular reaction produces a cyclic α-1,4'-glucan. Amylomaltases can be found only in prokaryotes, where they are involved in glycogen degradation and maltose metabolism. These enzymes are being studied for possible biotechnological applications, such as the production of (i) sugar substitutes; (ii) cycloamyloses (molecules larger than cyclodextrins), which could potentially be useful as carriers and encapsulating agents for hydrophobic molecules and also as effective protein chaperons; and (iii) thermoreversible starch gels, which could be used as non-animal gelatin substitutes. Extremophilic prokaryotes have been investigated for the identification of amylomaltases to be used in the starch modifying processes, which require high temperatures or extreme conditions. The aim of this article is to present an updated overview of studies on amylomaltases from extremophilic Bacteria and Archaea, including data about their distribution, activity, potential industrial application and structure.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Extremófilos/enzimologia , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Sequência de Aminoácidos , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Modelos Moleculares , Mutação/genética
15.
Int J Mol Sci ; 22(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34281256

RESUMO

Plants are often challenged by an array of unfavorable environmental conditions. During cold exposure, many changes occur that include, for example, the stabilization of cell membranes, alterations in gene expression and enzyme activities, as well as the accumulation of metabolites. In the presented study, the carbohydrate metabolism was analyzed in the very early response of plants to a low temperature (2 °C) in the leaves of 5-week-old potato plants of the Russet Burbank cultivar during the first 12 h of cold treatment (2 h dark and 10 h light). First, some plant stress indicators were examined and it was shown that short-term cold exposure did not significantly affect the relative water content and chlorophyll content (only after 12 h), but caused an increase in malondialdehyde concentration and a decrease in the expression of NDA1, a homolog of the NADH dehydrogenase gene. In addition, it was shown that the content of transitory starch increased transiently in the very early phase of the plant response (3-6 h) to cold treatment, and then its decrease was observed after 12 h. In contrast, soluble sugars such as glucose and fructose were significantly increased only at the end of the light period, where a decrease in sucrose content was observed. The availability of the monosaccharides at constitutively high levels, regardless of the temperature, may delay the response to cold, involving amylolytic starch degradation in chloroplasts. The decrease in starch content, observed in leaves after 12 h of cold exposure, was preceded by a dramatic increase in the transcript levels of the key enzymes of starch degradation initiation, the α-glucan, water dikinase (GWD-EC 2.7.9.4) and the phosphoglucan, water dikinase (PWD-EC 2.7.9.5). The gene expression of both dikinases peaked at 9 h of cold exposure, as analyzed by real-time PCR. Moreover, enhanced activities of the acid invertase as well as of both glucan phosphorylases during exposure to a chilling temperature were observed. However, it was also noticed that during the light phase, there was a general increase in glucan phosphorylase activities for both control and cold-stressed plants irrespective of the temperature. In conclusion, a short-term cold treatment alters the carbohydrate metabolism in the leaves of potato, which leads to an increase in the content of soluble sugars.


Assuntos
Metabolismo dos Carboidratos , Resposta ao Choque Frio/fisiologia , Solanum tuberosum/metabolismo , Amilases/metabolismo , Metabolismo dos Carboidratos/genética , Clorofila/metabolismo , Temperatura Baixa/efeitos adversos , Resposta ao Choque Frio/genética , Complexo I de Transporte de Elétrons/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Malondialdeído/metabolismo , Fosforilases/metabolismo , Fosfotransferases (Aceptores Pareados)/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Água/metabolismo , beta-Frutofuranosidase/metabolismo
16.
Food Chem ; 362: 130203, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091172

RESUMO

In the crumb of fresh white wheat bread, starch is fully gelatinized. Its molecular and three-dimensional structure are major factors limiting the rate of its digestion. The aim of this study was to in situ modify starch during bread making with starch-modifying enzymes (maltogenic amylase and amylomaltase) and to investigate the impact thereof on bread characteristics, starch retrogradation and digestibility. Maltogenic amylase treatment increased the relative content of short amylopectin chains (degree of polymerization ≤ 8). This resulted in lower starch retrogradation and crumb firmness upon storage, and reduced extent (up to 18%) of in vitro starch digestion for fresh and stored breads. Amylomaltase only modestly shortened amylose chains and had no measurable impact on amylopectin structure. Modification with this enzyme led to slower bread crumb firming but did not influence starch digestibility.


Assuntos
Pão , Sistema da Enzima Desramificadora do Glicogênio/química , Glicosídeo Hidrolases/química , Amido/farmacocinética , Triticum , Amilopectina/química , Amilopectina/metabolismo , Amilose/química , Liofilização , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Glicosídeo Hidrolases/metabolismo , Amido/química , Triticum/química
17.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33945503

RESUMO

BACKGROUNDDeciphering the function of the many genes previously classified as uncharacterized open reading frame (ORF) would complete our understanding of a cell's function and its pathophysiology.METHODSWhole-exome sequencing, yeast 2-hybrid and transcriptome analyses, and molecular characterization were performed in this study to uncover the function of the C2orf69 gene.RESULTSWe identified loss-of-function mutations in the uncharacterized C2orf69 gene in 8 individuals with brain abnormalities involving hypomyelination and microcephaly, liver dysfunction, and recurrent autoinflammation. C2orf69 contains an N-terminal signal peptide that is required and sufficient for mitochondrial localization. Consistent with mitochondrial dysfunction, the patients showed signs of respiratory chain defects, and a CRISPR/Cas9-KO cell model of C2orf69 had similar respiratory chain defects. Patient-derived cells revealed alterations in immunological signaling pathways. Deposits of periodic acid-Schiff-positive (PAS-positive) material in tissues from affected individuals, together with decreased glycogen branching enzyme 1 (GBE1) activity, indicated an additional impact of C2orf69 on glycogen metabolism.CONCLUSIONSOur study identifies C2orf69 as an important regulator of human mitochondrial function and suggests that this gene has additional influence on other metabolic pathways.


Assuntos
Glicogênio/metabolismo , Mutação com Perda de Função , Microcefalia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Fases de Leitura Aberta , Animais , Linhagem Celular , Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Humanos , Camundongos , Camundongos Knockout , Microcefalia/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética
18.
Food Funct ; 12(13): 5745-5754, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34018517

RESUMO

In this study, a glucanotransferase from prokaryotic Azotobacter chroococcum NCIMB 8003 was recombinantly expressed and its biochemical characteristics and bioconversion ability for starch were investigated. The purified enzyme has the optimum activity at 55 °C and pH 6.5-7.0, as well as a melting temperature of 62 °C. The double-charged ion Ca2+ stimulated the activity of the enzyme by approximately 2.4 times. The kinetic parameters and specificity analysis revealed that this glucanotransferase had a higher affinity for high-amylose starch. During the transglycosylation reaction, the starch molecule was converted into a relatively small polymer with a narrow size distribution. For the enzyme modification of high-amylose starch for 72 h, the amount of α-1,6 linkages increased from 1.9% to 22.7% and the content of resistant starch (RS) increased from 3.18% to 17.83%. In addition, the fine structure displayed the reuteran-like highly branched glucan linked by single linear α-1,6 linkages and α-1,4/6 branching points. These results revealed that a promising prebiotic dietary fiber was synthesized from starch with glucanotransferase modification.


Assuntos
Carboidratos da Dieta , Fibras na Dieta , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Amido/química , Amilose/química , Azotobacter , Glucanos , Peso Molecular , Prebióticos , Zea mays/química
19.
Int J Biol Macromol ; 181: 762-768, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33798574

RESUMO

Starch-based isomalto/malto-polysaccharides (IMMPs) are soluble dietary fibres produced by the incubation of α-(1 → 4) linked glucans with the 4,6-α-glucanotransferase (GTFB) enzyme. In this study, we investigated the reaction dynamics of the GTFB enzyme by using isoamylase debranched starches as simplified linear substrates. Modification of α-glucans by GTFB was investigated over time and analysed with 1H NMR, HPSEC, HPAEC combined with glucose release measurements. We demonstrate that GTFB modification of linear substrates followed a substrate/acceptor model, in which α-(1 → 4) linked glucans DP ≥ 6 functioned as donor substrate, and α-(1 → 4) linked malto-oligomers DP < 6 functioned as acceptor. The presence of α-(1 → 4) linked malto-oligomers DP < 6 resulted in higher GTFB transferase activity, while their absence resulted in higher GTFB hydrolytic activity. The information obtained in this study provides a better insight into GTFB reaction dynamics and will be useful for α-glucan selection for the targeted synthesis of IMMPs in the future.


Assuntos
Glucanos/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Isomaltose/biossíntese , Polissacarídeos/biossíntese , Hidrólise , Especificidade por Substrato
20.
Biochimie ; 186: 59-72, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895247

RESUMO

The protist Trichomonas vaginalis is an obligate parasite of humans and the causative agent of trichomoniasis, a common sexually transmitted infection. The organism has long been known to accumulate glycogen, a branched polymer of glucose, and to mobilize this reserve in response to carbohydrate limitation. However, the enzymes required for the synthesis and degradation of glycogen by T. vaginalis have been little studied. Previously, we characterized T. vaginalis glycogen synthase and glycogen phosphorylase, the key enzymes of glycogen synthesis and degradation, respectively. We determined that their regulatory properties differed from those of well-characterized animal and fungal enzymes. Here, we turn our attention to how glycogen attains its branched structure. We first determined that the glycogen from T. vaginalis resembled that from a related organism, T. gallinae. To determine how the branched structure of T. vaginalis glycogen arose, we identified open reading frames encoding putative T. vaginalis branching and debranching enzymes. When the open reading frames TVAG_276310 and TVAG_330630 were expressed recombinantly in bacteria, the resulting proteins exhibited branching and debranching activity, respectively. Specifically, recombinant TVAG_276310 had affinity for polysaccharides with long outer branches and could add branches to both amylose and amylopectin. TVAG_330630 displayed both 4-α-glucanotransferase and α1,6-glucosidase activity and could efficiently debranch phosphorylase limit dextrin. Furthermore, expression of TVAG_276310 and TVAG_330630 in yeast cells lacking endogenous glycogen branching or debranching enzyme activity, restored normal glycogen accumulation and branched structure. We now have access to the suite of enzymes required for glycogen synthesis and degradation in T. vaginalis.


Assuntos
Amilopectina/química , Amilose/química , Clonagem Molecular , Sistema da Enzima Desramificadora do Glicogênio , Proteínas de Protozoários , Trichomonas vaginalis , Sistema da Enzima Desramificadora do Glicogênio/química , Sistema da Enzima Desramificadora do Glicogênio/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trichomonas vaginalis/enzimologia , Trichomonas vaginalis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...