Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 321(2): H294-H305, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34142884

RESUMO

The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared with controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ethanol at gastrulation, and Hamburger-Hamilton stage 19-20 hearts were dissected for imaging. Cardiac conduction was measured using an optical mapping microscope and we imaged the endocardial cushions using OCT. Our results showed that, compared with controls, ethanol-exposed embryos exhibited abnormally fast AVJ conduction and reduced cushion size. However, this increased conduction velocity (CV) did not strictly correlate with decreased cushion volume and thickness. By matching the CV map to the cushion-size map along the inflow heart tube, we found that the slowest conduction location was consistently at the atrial side of the AVJ, which had the thinner cushions, not at the thickest cushion location at the ventricular side as expected. Our findings reveal regional differences in the AVJ myocardium even at this early stage in heart development. These findings reveal the early steps leading to the heterogeneity and complexity of conduction at the mature AVJ, a site where arrhythmias can be initiated.NEW & NOTEWORTHY To the best of our knowledge, this is the first study investigating the impact of ethanol exposure on the early cardiac conduction system. Our results showed that ethanol-exposed embryos exhibited abnormally fast atrioventricular conduction. In addition, our findings, in CV measurements and endocardial cushion thickness, reveal regional differences in the AVJ myocardium even at this early stage in heart development, suggesting that the differentiation and maturation at this site are complex and warrant further studies.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Coxins Endocárdicos/efeitos dos fármacos , Etanol/farmacologia , Sistema de Condução Cardíaco/efeitos dos fármacos , Animais , Embrião não Mamífero , Coxins Endocárdicos/diagnóstico por imagem , Coxins Endocárdicos/embriologia , Gastrulação , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Coração/embriologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Sistema de Condução Cardíaco/embriologia , Codorniz , Tomografia de Coerência Óptica , Imagens com Corantes Sensíveis à Voltagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-31988140

RESUMO

The cardiac conduction system initiates and propagates each heartbeat. Specialized conducting cells are a well-conserved phenomenon across vertebrate evolution, although mammalian and avian species harbor specific components unique to organisms with four-chamber hearts. Early histological studies in mammals provided evidence for a dominant pacemaker within the right atrium and clarified the existence of the specialized muscular axis responsible for atrioventricular conduction. Building on these seminal observations, contemporary genetic techniques in a multitude of model organisms has characterized the developmental ontogeny, gene regulatory networks, and functional importance of individual anatomical compartments within the cardiac conduction system. This review describes in detail the transcriptional and regulatory networks that act during cardiac conduction system development and homeostasis with a particular emphasis on networks implicated in human electrical variation by large genome-wide association studies. We conclude with a discussion of the clinical implications of these studies and describe some future directions.


Assuntos
Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiologia , Animais , Sistema Nervoso Autônomo/fisiologia , Eletrocardiografia , Junções Comunicantes/fisiologia , Humanos
3.
JCI Insight ; 4(20)2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31619590

RESUMO

Deterioration or inborn malformations of the cardiac conduction system (CCS) interfere with proper impulse propagation in the heart and may lead to sudden cardiac death or heart failure. Patients afflicted with arrhythmia depend on antiarrhythmic medication or invasive therapy, such as pacemaker implantation. An ideal way to treat these patients would be CCS tissue restoration. This, however, requires precise knowledge regarding the molecular mechanisms underlying CCS development. Here, we aimed to identify regulators of CCS development. We performed a compound screen in zebrafish embryos and identified tolterodine, a muscarinic receptor antagonist, as a modifier of CCS development. Tolterodine provoked a lower heart rate, pericardiac edema, and arrhythmia. Blockade of muscarinic M3, but not M2, receptors induced transcriptional changes leading to amplification of sinoatrial cells and loss of atrioventricular identity. Transcriptome data from an engineered human heart muscle model provided additional evidence for the contribution of muscarinic M3 receptors during cardiac progenitor specification and differentiation. Taken together, we found that muscarinic M3 receptors control the CCS already before the heart becomes innervated. Our data indicate that muscarinic receptors maintain a delicate balance between the developing sinoatrial node and the atrioventricular canal, which is probably required to prevent the development of arrhythmia.


Assuntos
Arritmias Cardíacas/tratamento farmacológico , Sistema de Condução Cardíaco/embriologia , Antagonistas Muscarínicos/farmacologia , Organogênese/efeitos dos fármacos , Receptor Muscarínico M3/metabolismo , Tartarato de Tolterodina/farmacologia , Animais , Arritmias Cardíacas/fisiopatologia , Modelos Animais de Doenças , Embrião de Mamíferos , Embrião não Mamífero , Células HEK293 , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Humanos , Camundongos , Camundongos Knockout , Antagonistas Muscarínicos/uso terapêutico , Miócitos Cardíacos , Receptor Muscarínico M3/genética , Tartarato de Tolterodina/uso terapêutico , Xenopus laevis , Peixe-Zebra
4.
Pediatr Cardiol ; 40(7): 1388-1400, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31372681

RESUMO

In this article, we provide a brief summary of work by us and others to discover the molecular underpinnings of early conduction system development and function. We focus on how the multifunctional protein Tbx3 contributes to acquisition and homeostasis of the tissue-specific properties of the sinoatrial and atrioventricular nodes. We also provide unpublished, preliminary findings supporting the role of Tbx3-regulated alternative RNA processing in the developing conduction system.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Sistema de Condução Cardíaco/metabolismo , Animais , Nó Atrioventricular/fisiopatologia , Expressão Gênica , Sistema de Condução Cardíaco/embriologia , Humanos , RNA/metabolismo , Proteínas com Domínio T
5.
Card Electrophysiol Clin ; 11(3): 409-420, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31400866

RESUMO

Embryogenesis of the heart involves the complex cellular differentiation of slow-conducting primary myocardium into the rapidly conducting chamber myocardium of the adult. However, small areas of relatively undifferentiated cells remain to form components of the adult cardiac conduction system (CCS) and nodal tissues. Further investigation has revealed additional areas of nodal-like tissues outside of the established CCS. The embryologic origins of these areas are similar to those of the adult CCS. Under pathologic conditions, these areas can give rise to important clinical arrhythmias. Here, we review the embryologic basis for these proarrhythmic structures within the heart.


Assuntos
Arritmias Cardíacas , Coração Fetal , Sistema de Condução Cardíaco , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Coração Fetal/embriologia , Coração Fetal/crescimento & desenvolvimento , Coração Fetal/fisiologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/crescimento & desenvolvimento , Sistema de Condução Cardíaco/fisiologia , Humanos
6.
Circ Res ; 125(4): 379-397, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31284824

RESUMO

RATIONALE: The cardiac conduction system (CCS) consists of distinct components including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers. Despite an essential role for the CCS in heart development and function, the CCS has remained challenging to interrogate because of inherent obstacles including small cell numbers, large cell-type heterogeneity, complex anatomy, and difficulty in isolation. Single-cell RNA-sequencing allows for genome-wide analysis of gene expression at single-cell resolution. OBJECTIVE: Assess the transcriptional landscape of the entire CCS at single-cell resolution by single-cell RNA-sequencing within the developing mouse heart. METHODS AND RESULTS: Wild-type, embryonic day 16.5 mouse hearts (n=6 per zone) were harvested and 3 zones of microdissection were isolated, including: Zone I-sinoatrial node region; Zone II-atrioventricular node/His region; and Zone III-bundle branch/Purkinje fiber region. Tissue was digested into single-cell suspensions, cells isolated, mRNA reverse transcribed, and barcoded before high-throughput sequencing and bioinformatics analyses. Single-cell RNA-sequencing was performed on over 22 000 cells, and all major cell types of the murine heart were successfully captured including bona fide clusters of cells consistent with each major component of the CCS. Unsupervised weighted gene coexpression network analysis led to the discovery of a host of novel CCS genes, a subset of which were validated using fluorescent in situ hybridization as well as whole-mount immunolabeling with volume imaging (iDISCO+) in 3 dimensions on intact mouse hearts. Further, subcluster analysis unveiled isolation of distinct CCS cell subtypes, including the clinically relevant but poorly characterized transitional cells that bridge the CCS and surrounding myocardium. CONCLUSIONS: Our study represents the first comprehensive assessment of the transcriptional profiles from the entire CCS at single-cell resolution and provides a characterization in the context of development and disease.


Assuntos
Sistema de Condução Cardíaco/metabolismo , Transcriptoma , Animais , Sistema de Condução Cardíaco/citologia , Sistema de Condução Cardíaco/embriologia , Camundongos , RNA-Seq , Análise de Célula Única
7.
Am J Cardiol ; 123(10): 1709-1714, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30871745

RESUMO

Doppler-based methods of estimating the atrioventricular interval are commonly used as a surrogate for the electrical PR in fetuses at risk of conduction abnormalities; however, to date, normal values for the fetal atrioventricular interval and an understanding of the evolution of its components in the late first trimester are lacking. We sought to investigate changes in the fetal atrioventricular interval from the first trimester to 40 weeks gestational age, and to explore functional and electrophysiological events that potentially impact its evolution. We prospectively examined healthy pregnancies by fetal echocardiography from 6 to 40 weeks' gestational age. The atrioventricular interval, heart rate, isovolumic contraction time, and A-wave duration were measured from simultaneous ventricular inflow-outflow Doppler tracings. Regression analysis was used to examine relations with gestational age, and linear relations with heart rate were assessed by Pearson's correlation coefficient. Data were collected in 305 fetuses from 279 pregnancies. Atrioventricular interval demonstrated an inverse relation with heart rate (r = -0.45, p <0.0001), dramatically decreasing before 10 weeks and slowly increasing thereafter. Between 6 and 9 weeks, isovolumic contraction time acutely decreased approaching 0, thereafter minimally increasing to term. In contrast, from 6 weeks, the A-wave duration linearly increased through gestation, and negatively correlated with heart rate (r = -0.62, p <0.0001). In conclusion, we have established normal measures of the atrioventricular interval from 6 to 40 weeks' gestational age. Before 10 weeks, a prolonged atrioventricular interval in healthy fetuses largely reflects the lengthened isovolumic contraction time which is likely influenced by the evolution of ventricular function and afterload.


Assuntos
Coração Fetal/diagnóstico por imagem , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca Fetal/fisiologia , Ventrículos do Coração/diagnóstico por imagem , Ultrassonografia Doppler/métodos , Ultrassonografia Pré-Natal/métodos , Estudos Transversais , Feminino , Seguimentos , Idade Gestacional , Sistema de Condução Cardíaco/embriologia , Ventrículos do Coração/embriologia , Humanos , Gravidez , Estudos Prospectivos
8.
Pediatr Cardiol ; 39(6): 1107-1114, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29774393

RESUMO

The components of the cardiac conduction system (CCS) generate and propagate the electrical impulse that initiates cardiac contraction. These interconnected components share properties, such as automaticity, that set them apart from the working myocardium of the atria and ventricles. A variety of tools and approaches have been used to define the CCS lineages. These include genetic labeling of cells expressing lineage markers and fate mapping of dye labeled cells, which we will discuss in this review. We conclude that there is not a single CCS lineage, but instead early cell fate decisions segregate the lineages of the CCS components while they remain interconnected. The latter is relevant for development of therapies for conduction system disease that focus on reprogramming cardiomyocytes or instruction of pluripotent stem cells.


Assuntos
Sistema de Condução Cardíaco/embriologia , Miocárdio/citologia , Animais , Diferenciação Celular , Sistema de Condução Cardíaco/citologia , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Humanos , Miócitos Cardíacos
9.
Sci Rep ; 8(1): 6939, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720615

RESUMO

Patients born with congenital heart defects frequently encounter arrhythmias due to defects in the ventricular conduction system (VCS) development. Although recent studies identified transcriptional networks essential for the heart development, there is scant information on the mechanisms regulating VCS development. Based on the association of atrial natriuretic peptide (ANP) expression with VCS forming regions, it was reasoned that ANP could play a critical role in differentiation of cardiac progenitor cells (CPCs) and cardiomyocytes (CMs) toward a VCS cell lineage. The present study showed that treatment of embryonic ventricular cells with ANP or cell permeable 8-Br-cGMP can induce gene expression of important VCS markers such as hyperpolarization-activated cyclic nucleotide-gated channel-4 (HCN4) and connexin 40 (Cx40). Inhibition of protein kinase G (PKG) via Rp-8-pCPT-cGMPS further confirmed the role of ANP/NPRA/cGMP/PKG pathway in the regulation of HCN4 and Cx40 gene expression. Additional experiments indicated that ANP may regulate VCS marker gene expression by modulating levels of miRNAs that are known to control the stability of transcripts encoding HCN4 and Cx40. Genetic ablation of NPRA revealed significant decreases in VCS marker gene expression and defects in Purkinje fiber arborisation. These results provide mechanistic insights into the role of ANP/NPRA signaling in VCS formation.


Assuntos
Fator Natriurético Atrial/metabolismo , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Diferenciação Celular , Células Cultivadas , Conexinas/genética , Conexinas/metabolismo , Imunofluorescência , Expressão Gênica , Genes Reporter , Genótipo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Inibidores de Proteínas Quinases/farmacologia
10.
Elife ; 72018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565246

RESUMO

Mammals and birds have a specialized cardiac atrioventricular conduction system enabling rapid activation of both ventricles. This system may have evolved together with high heart rates to support their endothermic state (warm-bloodedness) and is seemingly lacking in ectothermic vertebrates from which first mammals then birds independently evolved. Here, we studied the conduction system in crocodiles (Alligator mississippiensis), the only ectothermic vertebrates with a full ventricular septum. We identified homologues of mammalian conduction system markers (Tbx3-Tbx5, Scn5a, Gja5, Nppa-Nppb) and show the presence of a functional atrioventricular bundle. The ventricular Purkinje network, however, was absent and slow ventricular conduction relied on trabecular myocardium, as it does in other ectothermic vertebrates. We propose the evolution of the atrioventricular bundle followed full ventricular septum formation prior to the development of high heart rates and endothermy. In contrast, the evolution of the ventricular Purkinje network is strongly associated with high heart rates and endothermy.


Assuntos
Jacarés e Crocodilos/fisiologia , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca/fisiologia , Coração/fisiologia , Jacarés e Crocodilos/embriologia , Jacarés e Crocodilos/genética , Animais , Fascículo Atrioventricular/embriologia , Fascículo Atrioventricular/metabolismo , Fascículo Atrioventricular/fisiologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Sistema de Condução Cardíaco/embriologia , Frequência Cardíaca/genética , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Hibridização In Situ , Modelos Cardiovasculares , Ramos Subendocárdicos/embriologia , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/fisiologia , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Septo Interventricular/embriologia , Septo Interventricular/metabolismo , Septo Interventricular/fisiologia
11.
Tohoku J Exp Med ; 244(3): 177-186, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29503396

RESUMO

The formation and conduction of electrocardiosignals and the synchronous contraction of atria and ventricles with rhythmicity are both triggered and regulated by the cardiac conduction system (CCS). Defect of this system will lead to various types of cardiac arrhythmias. In recent years, the research progress of molecular genetics and developmental biology revealed a clearer understanding of differentiation and development of the cardiac conduction system and their regulatory mechanisms. Short stature homeobox 2 (Shox2) transcription factor, encoded by Shox2 gene in the mouse, is crucial in the formation and differentiation of the sinoatrial node (SAN). Shox2 drives embryonic development processes and is widely expressed in the appendicular skeleton, palate, temporomandibular joints, and heart. Mutations of Shox2 can lead to dysembryoplasia and abnormal phenotypes, including bradycardiac arrhythmia. In this review, we provide a summary of the latest research progress on the regulatory effects of the Shox2 gene in differentiation and development processes of the cardiac conduction system, hoping to deepen the knowledge and understanding of this systematic process based on the cardiac conduction system. Overall, the Shox2 gene is intimately involved in the differentiation and development of cardiac conduction system, especially sinoatrial node. We also summarize the current information about human SHOX2. This review article provides a new direction in biological pacemaker therapies.


Assuntos
Sistema de Condução Cardíaco/metabolismo , Proteínas de Homeodomínio/metabolismo , Nó Sinoatrial/citologia , Nó Sinoatrial/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Relógios Biológicos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Sistema de Condução Cardíaco/embriologia , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Camundongos
12.
Pediatr Cardiol ; 39(6): 1090-1098, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29594502

RESUMO

The cardiac conduction system is a network of distinct cell types necessary for the coordinated contraction of the cardiac chambers. The distal portion, known as the ventricular conduction system, allows for the rapid transmission of impulses from the atrio-ventricular node to the ventricular myocardium and plays a central role in cardiac function as well as disease when perturbed. Notably, its patterning during embryogenesis is intimately linked to that of ventricular wall formation, including trabeculation and compaction. Here, we review our current understanding of the underlying mechanisms responsible for the development and maturation of these interdependent processes.


Assuntos
Sistema de Condução Cardíaco/embriologia , Ventrículos do Coração/embriologia , Animais , Nó Atrioventricular/fisiologia , Doença do Sistema de Condução Cardíaco/etiologia , Doença do Sistema de Condução Cardíaco/genética , Sistema de Condução Cardíaco/fisiologia , Ventrículos do Coração/anatomia & histologia , Humanos , Camundongos , Miocárdio/metabolismo , Fatores de Transcrição/metabolismo
13.
Dev Cell ; 39(6): 724-739, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27997827

RESUMO

While gene regulatory networks involved in cardiogenesis have been characterized, the role of bioenergetics remains less studied. Here we show that until midgestation, myocardial metabolism is compartmentalized, with a glycolytic signature restricted to compact myocardium contrasting with increased mitochondrial oxidative activity in the trabeculae. HIF1α regulation mirrors this pattern, with expression predominating in compact myocardium and scarce in trabeculae. By midgestation, the compact myocardium downregulates HIF1α and switches toward oxidative metabolism. Deletion of the E3 ubiquitin ligase Vhl results in HIF1α hyperactivation, blocking the midgestational metabolic shift and impairing cardiac maturation and function. Moreover, the altered glycolytic signature induced by HIF1 trabecular activation precludes regulation of genes essential for establishment of the cardiac conduction system. Our findings reveal VHL-HIF-mediated metabolic compartmentalization in the developing heart and the connection between metabolism and myocardial differentiation. These results highlight the importance of bioenergetics in ventricular myocardium specialization and its potential relevance to congenital heart disease.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miocárdio/metabolismo , Organogênese , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Compartimento Celular , Regulação para Baixo/genética , Metabolismo Energético , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Glicólise , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/metabolismo , Insuficiência Cardíaca/embriologia , Insuficiência Cardíaca/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mutação/genética , Contração Miocárdica , Oxirredução , Gravidez , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo
14.
Eur J Obstet Gynecol Reprod Biol ; 203: 152-5, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27289381

RESUMO

OBJECTIVE: The aims of this study were to investigate the time intervals of each component of cardiac flow velocity waveforms (FVWs) in fetuses with fetal growth restriction (FGR) and to compare these with those of normal fetuses using reference ranges. METHODS: The durations of atrioventricular (AV) valve opening (AVVO), AV valve closure (AVVC), total E- (total-E) and A- (total-A) waves, total ejection time (total-ET), acceleration time (acc-E for E-wave, acc-A for A-wave, and acc-ET for ejection time), and deceleration time (dec-E for E-wave, dec-A for A-wave, and dec-ET for ejection time) were measured in fetuses with FGR. All variables were analyzed using z-scores. RESULTS: Measurements of 17 growth-restricted fetuses were obtained. The time intervals between the last Doppler examination and delivery ranged from 0 to 6 days, with a median of 1 day. Significant increases were observed in AVVO, total-E, dec-E, and acc-A of the left heart. acc-E, acc-ET and AVVC of the left heart were significantly decreased. In the right heart, AVVO, total-E and dec-E were significantly increased. CONCLUSION: A prolonged time interval between early ventricular inflow and atrial contraction, as well as increased duration of AV valve opening, may reflect hemodynamic alterations in FGR fetuses.


Assuntos
Arritmias Cardíacas/diagnóstico por imagem , Circulação Coronária , Retardo do Crescimento Fetal/fisiopatologia , Sistema de Condução Cardíaco/diagnóstico por imagem , Adulto , Arritmias Cardíacas/embriologia , Arritmias Cardíacas/etiologia , Peso ao Nascer , China , Ecocardiografia Doppler , Feminino , Idade Gestacional , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Hospitais Municipais , Hospitais Universitários , Humanos , Recém-Nascido , Masculino , Gravidez , Volume Sistólico , Fatores de Tempo , Ultrassonografia Pré-Natal , Adulto Jovem
15.
Differentiation ; 91(4-5): 90-103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26856662

RESUMO

The avian embryo has long been a popular model system in developmental biology. The easy accessibility of the embryo makes it particularly suitable for in ovo microsurgery and manipulation. Re-incubation of the embryo allows long-term follow-up of these procedures. The current review focuses on the variety of techniques available to study development of the cardiac conduction system in avian embryos. Based on the large amount of relevant data arising from experiments in avian embryos, we conclude that the avian embryo has and will continue to be a powerful model system to study development in general and the developing cardiac conduction system in particular.


Assuntos
Biologia do Desenvolvimento/métodos , Desenvolvimento Embrionário/genética , Sistema de Condução Cardíaco/embriologia , Animais , Embrião de Galinha , Modelos Biológicos
17.
Circ Res ; 116(3): 398-406, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25599332

RESUMO

RATIONALE: Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. OBJECTIVE: To determine the role of canonical Wnt signaling in the myocardium during AVC development. METHODS AND RESULTS: We used a novel allele of ß-catenin that preserves ß-catenin's cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that the loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with the loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiological criteria. Aberrant AVC development can lead to ventricular pre-excitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of ß-catenin protein levels can rescue Notch-mediated ventricular pre-excitation and dysregulated ion channel gene expression. CONCLUSIONS: Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electric programming upstream of Tbx3. Our data further suggest that ventricular pre-excitation may require both morphological patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue.


Assuntos
Átrios do Coração/metabolismo , Sistema de Condução Cardíaco/metabolismo , Ventrículos do Coração/metabolismo , Atresia Tricúspide/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Átrios do Coração/embriologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/fisiopatologia , Camundongos , Miocárdio/metabolismo , Receptores Notch/metabolismo , Proteínas com Domínio T/metabolismo , Atresia Tricúspide/genética , Atresia Tricúspide/fisiopatologia , beta Catenina/genética
18.
PLoS One ; 9(9): e107041, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25269082

RESUMO

The heart is the first organ required to function during embryonic development and is absolutely necessary for embryo survival. Cardiac activity is dependent on both the sinoatrial node (SAN), which is the pacemaker of heart's electrical activity, and the cardiac conduction system which transduces the electrical signal though the heart tissue, leading to heart muscle contractions. Defects in the development of cardiac electrical function may lead to severe heart disorders. The Erbb2 (Epidermal Growth Factor Receptor 2) gene encodes a member of the EGF receptor family of receptor tyrosine kinases. The Erbb2 receptor lacks ligand-binding activity but forms heterodimers with other EGF receptors, stabilising their ligand binding and enhancing kinase-mediated activation of downstream signalling pathways. Erbb2 is absolutely necessary in normal embryonic development and homozygous mouse knock-out Erbb2 embryos die at embryonic day (E)10.5 due to severe cardiac defects. We have isolated a mouse line, l11Jus8, from a random chemical mutagenesis screen, which carries a hypomorphic missense mutation in the Erbb2 gene. Homozygous mutant embryos exhibit embryonic lethality by E12.5-13. The l11Jus8 mutants display cardiac haemorrhage and a failure of atrial function due to defects in atrial electrical signal propagation, leading to an atrial-specific conduction block, which does not affect ventricular conduction. The l11Jus8 mutant phenotype is distinct from those reported for Erbb2 knockout mouse mutants. Thus, the l11Jus8 mouse reveals a novel function of Erbb2 during atrial conduction system development, which when disrupted causes death at mid-gestation.


Assuntos
Átrios do Coração/metabolismo , Cardiopatias Congênitas/genética , Receptor ErbB-2/genética , Potenciais de Ação , Animais , Função Atrial , Átrios do Coração/embriologia , Átrios do Coração/fisiopatologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação de Sentido Incorreto , Receptor ErbB-2/metabolismo
19.
Circ Res ; 115(4): 432-41, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24963028

RESUMO

RATIONALE: The evolutionary conserved Tbx3/Tbx5 gene cluster encodes T-box transcription factors that play crucial roles in the development and homeostasis of the cardiac conduction system in human and mouse. Both genes are expressed in overlapping patterns and function in strictly tissue-specific and dose-dependent manners, yet, their regulation is poorly understood. OBJECTIVE: To analyze the mechanism underlying the complex regulation of the Tbx3/Tbx5 cluster. METHODS AND RESULTS: By probing the 3-dimensional architecture of the Tbx3/Tbx5 cluster using high-resolution circular chromosome conformation capture sequencing in vivo, we found that its regulatory landscape is in a preformed conformation similar in embryonic heart, limbs, and brain. Tbx3 and its flanking gene desert form a 1 Mbp loop between CCCTC-binding factor (CTCF)-binding sites that is separated from the neighboring Tbx5 loop. However, Ctcf inactivation did not result in transcriptional regulatory interaction between Tbx3 and Tbx5. Multiple sites within the Tbx3 locus contact the promoter, including sites corresponding to regions known to contain variations in the human genome influencing conduction. We identified an atrioventricular-specific enhancer and a pan-cardiac enhancer that contact the promoter and each other and synergize to activate transcription in the atrioventricular conduction system. CONCLUSIONS: We provide a high-resolution model of the 3-dimensional structure and function of the Tbx3/Tbx5 locus and show that the locus is organized in a preformed, permissive structure. The Tbx3 locus forms a CTCF-independent autonomous regulatory domain with multiple combinatorial regulatory elements that control the precise pattern of Tbx3 in the cardiac conduction system.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Sistema de Condução Cardíaco/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Região 3'-Flanqueadora , Animais , Sítios de Ligação , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Fator de Ligação a CCCTC , Cromossomos Artificiais Bacterianos , DNA Circular/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Sistema de Condução Cardíaco/embriologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Morfogênese , Família Multigênica , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional
20.
Prog Biophys Mol Biol ; 115(2-3): 261-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24954141

RESUMO

Differentiation and conduction properties of the cardiomyocytes are critically dependent on physical conditioning both in vitro and in vivo. Historically, various techniques were introduced to study dynamic events such as electrical currents and changes in ionic concentrations in live cells, multicellular preparations, or entire hearts. Here we review this technological progress demonstrating how each improvement in spatial or temporal resolution provided answers to old and provoked new questions. We further demonstrate how high-speed optical mapping of voltage and calcium can uncover pacemaking potential within the outflow tract myocardium, providing a developmental explanation of ectopic beats originating from this region in the clinical settings.


Assuntos
Mapeamento Potencial de Superfície Corporal/métodos , Sinalização do Cálcio/fisiologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiologia , Miócitos Cardíacos/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Potenciais de Ação/fisiologia , Animais , Humanos , Condução Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...