Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131.676
Filtrar
1.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960861

RESUMO

MOTIVATION: The alignment of sequencing reads is a critical step in the characterization of ancient genomes. However, reference bias and spurious mappings pose a significant challenge, particularly as cutting-edge wet lab methods generate datasets that push the boundaries of alignment tools. Reference bias occurs when reference alleles are favoured over alternative alleles during mapping, whereas spurious mappings stem from either contamination or when endogenous reads fail to align to their correct position. Previous work has shown that these phenomena are correlated with read length but a more thorough investigation of reference bias and spurious mappings for ancient DNA has been lacking. Here, we use a range of empirical and simulated palaeogenomic datasets to investigate the impacts of mapping tools, quality thresholds, and reference genome on mismatch rates across read lengths. RESULTS: For these analyses, we introduce AMBER, a new bioinformatics tool for assessing the quality of ancient DNA mapping directly from BAM-files and informing on reference bias, read length cut-offs and reference selection. AMBER rapidly and simultaneously computes the sequence read mapping bias in the form of the mismatch rates per read length, cytosine deamination profiles at both CpG and non-CpG sites, fragment length distributions, and genomic breadth and depth of coverage. Using AMBER, we find that mapping algorithms and quality threshold choices dictate reference bias and rates of spurious alignment at different read lengths in a predictable manner, suggesting that optimized mapping parameters for each read length will be a key step in alleviating reference bias and spurious mappings. AVAILABILITY AND IMPLEMENTATION: AMBER is available for noncommercial use on GitHub (https://github.com/tvandervalk/AMBER.git). Scripts used to generate and analyse simulated datasets are available on Github (https://github.com/sdolenz/refbias_scripts).


Assuntos
DNA Antigo , Análise de Sequência de DNA , DNA Antigo/análise , Humanos , Análise de Sequência de DNA/métodos , Software , Animais , Alinhamento de Sequência/métodos , Biologia Computacional/métodos , Algoritmos
2.
PLoS Comput Biol ; 20(7): e1012181, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968288

RESUMO

In 2020, the WHO launched its first global strategy to accelerate the elimination of cervical cancer, outlining an ambitious set of targets for countries to achieve over the next decade. At the same time, new tools, technologies, and strategies are in the pipeline that may improve screening performance, expand the reach of prophylactic vaccines, and prevent the acquisition, persistence and progression of oncogenic HPV. Detailed mechanistic modelling can help identify the combinations of current and future strategies to combat cervical cancer. Open-source modelling tools are needed to shift the capacity for such evaluations in-country. Here, we introduce the Human papillomavirus simulator (HPVsim), a new open-source software package for creating flexible agent-based models parameterised with country-specific vital dynamics, structured sexual networks, and co-transmitting HPV genotypes. HPVsim includes a novel methodology for modelling cervical disease progression, designed to be readily adaptable to new forms of screening. The software itself is implemented in Python, has built-in tools for simulating commonly-used interventions, includes a comprehensive set of tests and documentation, and runs quickly (seconds to minutes) on a laptop. Performance is greatly enhanced by HPVsim's multiscale modelling functionality. HPVsim is open source under the MIT License and available via both the Python Package Index (via pip install) and GitHub (hpvsim.org).


Assuntos
Infecções por Papillomavirus , Software , Neoplasias do Colo do Útero , Humanos , Feminino , Infecções por Papillomavirus/transmissão , Infecções por Papillomavirus/virologia , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/prevenção & controle , Simulação por Computador , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Papillomaviridae/fisiologia , Biologia Computacional/métodos , Modelos Biológicos
3.
PLoS Comput Biol ; 20(7): e1012243, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968305

RESUMO

Computational models of musculoskeletal systems are essential tools for understanding how muscles, tendons, bones, and actuation signals generate motion. In particular, the OpenSim family of models has facilitated a wide range of studies on diverse human motions, clinical studies of gait, and even non-human locomotion. However, biological structures with many joints, such as fingers, necks, tails, and spines, have been a longstanding challenge to the OpenSim modeling community, especially because these structures comprise numerous bones and are frequently actuated by extrinsic muscles that span multiple joints-often more than three-and act through a complex network of branching tendons. Existing model building software, typically optimized for limb structures, makes it difficult to build OpenSim models that accurately reflect these intricacies. Here, we introduce ArborSim, customized software that efficiently creates musculoskeletal models of highly jointed structures and can build branched muscle-tendon architectures. We used ArborSim to construct toy models of articulated structures to determine which morphological features make a structure most sensitive to branching. By comparing the joint kinematics of models constructed with branched and parallel muscle-tendon units, we found that among various parameters-the number of tendon branches, the number of joints between branches, and the ratio of muscle fiber length to muscle tendon unit length-the number of tendon branches and the number of joints between branches are most sensitive to branching modeling method. Notably, the differences between these models showed no predictable pattern with increased complexity. As the proportion of muscle increased, the kinematic differences between branched and parallel models units also increased. Our findings suggest that stress and strain interactions between distal tendon branches and proximal tendon and muscle greatly affect the overall kinematics of a musculoskeletal system. By incorporating complex muscle-tendon branching into OpenSim models using ArborSim, we can gain deeper insight into the interactions between the axial and appendicular skeleton, model the evolution and function of diverse animal tails, and understand the mechanics of more complex motions and tasks.


Assuntos
Articulações , Músculo Esquelético , Software , Tendões , Tendões/fisiologia , Tendões/anatomia & histologia , Humanos , Fenômenos Biomecânicos , Articulações/fisiologia , Articulações/anatomia & histologia , Músculo Esquelético/fisiologia , Músculo Esquelético/anatomia & histologia , Modelos Biológicos , Biologia Computacional , Simulação por Computador , Animais
5.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38991828

RESUMO

MOTIVATION: Sanger sequencing of taxonomic marker genes (e.g. 16S/18S/ITS/rpoB/cpn60) represents the leading method for identifying a wide range of microorganisms including bacteria, archaea, and fungi. However, the manual processing of sequence data and limitations associated with conventional BLAST searches impede the efficient generation of strain libraries essential for cataloging microbial diversity and discovering novel species. RESULTS: isolateR addresses these challenges by implementing a standardized and scalable three-step pipeline that includes: (1) automated batch processing of Sanger sequence files, (2) taxonomic classification via global alignment to type strain databases in accordance with the latest international nomenclature standards, and (3) straightforward creation of strain libraries and handling of clonal isolates, with the ability to set customizable sequence dereplication thresholds and combine data from multiple sequencing runs into a single library. The tool's user-friendly design also features interactive HTML outputs that simplify data exploration and analysis. Additionally, in silico benchmarking done on two comprehensive human gut genome catalogues (IMGG and Hadza hunter-gather populations) showcase the proficiency of isolateR in uncovering and cataloging the nuanced spectrum of microbial diversity, advocating for a more targeted and granular exploration within individual hosts to achieve the highest strain-level resolution possible when generating culture collections. AVAILABILITY AND IMPLEMENTATION: isolateR is available at: https://github.com/bdaisley/isolateR.


Assuntos
Bactérias , Software , Bactérias/genética , Bactérias/classificação , Análise de Sequência de DNA/métodos , Humanos , Archaea/genética , Fungos/genética , Biblioteca Gênica
6.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38995731

RESUMO

MOTIVATION: Sidechain rotamer libraries of the common amino acids of a protein are useful for folded protein structure determination and for generating ensembles of intrinsically disordered proteins (IDPs). However, much of protein function is modulated beyond the translated sequence through the introduction of post-translational modifications (PTMs). RESULTS: In this work, we have provided a curated set of side chain rotamers for the most common PTMs derived from the RCSB PDB database, including phosphorylated, methylated, and acetylated sidechains. Our rotamer libraries improve upon existing methods such as SIDEpro, Rosetta, and AlphaFold3 in predicting the experimental structures for PTMs in folded proteins. In addition, we showcase our PTM libraries in full use by generating ensembles with the Monte Carlo Side Chain Entropy (MCSCE) for folded proteins, and combining MCSCE with the Local Disordered Region Sampling algorithms within IDPConformerGenerator for proteins with intrinsically disordered regions. AVAILABILITY AND IMPLEMENTATION: The codes for dihedral angle computations and library creation are available at https://github.com/THGLab/ptm_sc.git.


Assuntos
Bases de Dados de Proteínas , Proteínas Intrinsicamente Desordenadas , Processamento de Proteína Pós-Traducional , Proteínas , Proteínas/química , Proteínas/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Algoritmos , Dobramento de Proteína , Método de Monte Carlo , Conformação Proteica , Aminoácidos/química , Aminoácidos/metabolismo , Software
7.
JCO Clin Cancer Inform ; 8: e2400007, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013121

RESUMO

PURPOSE: Longitudinal patient tolerability data collected as part of randomized controlled trials are often summarized in a way that loses information and does not capture the treatment experience. To address this, we developed an interactive web application to empower clinicians and researchers to explore and visualize patient tolerability data. METHODS: We used adverse event (AE) data (Common Terminology Criteria for Adverse Events) and patient-reported outcomes (PROs) from the NSABP-B35 phase III clinical trial, which compared anastrozole with tamoxifen for breast cancer-free survival, to demonstrate the tools. An interactive web application was developed using R and the Shiny web application framework that generates Sankey diagrams to visualize AEs and PROs using four tools: AE Explorer, PRO Explorer, Cohort Explorer, and Custom Explorer. RESULTS: To illustrate how users can use the interactive tool, examples for each of the four applications are presented using data from the NSABP-B35 phase III trial and the NSABP-B30 trial for the Custom Explorer. In the AE and PRO explorers, users can select AEs or PROs to visualize within specified time periods and compare across treatments. In the cohort explorer, users can select a subset of patients with a specific symptom, severity, and treatment received to visualize the trajectory over time within a specified time interval. With the custom explorer, users can upload and visualize structured longitudinal toxicity and tolerability data. CONCLUSION: We have created an interactive web application and tool for clinicians and researchers to explore and visualize clinical trial tolerability data. This adaptable tool can be extended for other clinical trial data visualization and incorporated into future patient-clinician interactions regarding treatment decisions.


Assuntos
Neoplasias da Mama , Internet , Humanos , Neoplasias da Mama/tratamento farmacológico , Feminino , Medidas de Resultados Relatados pelo Paciente , Tamoxifeno/uso terapêutico , Tamoxifeno/efeitos adversos , Interface Usuário-Computador , Software
8.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39013383

RESUMO

Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitation has resulted into underdevelopment of plant regulatory research and rampant use of Arabidopsis-like model species, generating misleading results. Here, we report a revolutionary transformers-based deep-learning approach, PTFSpot, which learns from TF structures and their binding regions' co-variability to bring a universal TF-DNA interaction model to detect TFBR with complete freedom from TF and species-specific models' limitations. During a series of extensive benchmarking studies over multiple experimentally validated data, it not only outperformed the existing software by >30% lead but also delivered consistently >90% accuracy even for those species and TF families that were never encountered during the model-building process. PTFSpot makes it possible now to accurately annotate TFBRs across any plant genome even in the total lack of any TF information, completely free from the bottlenecks of species and TF-specific models.


Assuntos
Aprendizado Profundo , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Sítios de Ligação , Software , Arabidopsis/metabolismo , Arabidopsis/genética , Genoma de Planta , Biologia Computacional/métodos , Plantas/metabolismo , Plantas/genética
9.
Nat Commun ; 15(1): 5983, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013860

RESUMO

Single-cell sequencing is frequently affected by "omission" due to limitations in sequencing throughput, yet bulk RNA-seq may contain these ostensibly "omitted" cells. Here, we introduce the single cell trajectory blending from Bulk RNA-seq (BulkTrajBlend) algorithm, a component of the OmicVerse suite that leverages a Beta-Variational AutoEncoder for data deconvolution and graph neural networks for the discovery of overlapping communities. This approach effectively interpolates and restores the continuity of "omitted" cells within single-cell RNA sequencing datasets. Furthermore, OmicVerse provides an extensive toolkit for both bulk and single cell RNA-seq analysis, offering seamless access to diverse methodologies, streamlining computational processes, fostering exquisite data visualization, and facilitating the extraction of significant biological insights to advance scientific research.


Assuntos
Algoritmos , Análise de Sequência de RNA , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Análise de Sequência de RNA/métodos , Biologia Computacional/métodos , RNA-Seq/métodos , Redes Neurais de Computação , Software , Sequenciamento de Nucleotídeos em Larga Escala/métodos
10.
F1000Res ; 13: 556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38984017

RESUMO

Background: Determining the appropriate computational requirements and software performance is essential for efficient genomic surveillance. The lack of standardized benchmarking complicates software selection, especially with limited resources. Methods: We developed a containerized benchmarking pipeline to evaluate seven long-read assemblers-Canu, GoldRush, MetaFlye, Strainline, HaploDMF, iGDA, and RVHaplo-for viral haplotype reconstruction, using both simulated and experimental Oxford Nanopore sequencing data of HIV-1 and other viruses. Benchmarking was conducted on three computational systems to assess each assembler's performance, utilizing QUAST and BLASTN for quality assessment. Results: Our findings show that assembler choice significantly impacts assembly time, with CPU and memory usage having minimal effect. Assembler selection also influences the size of the contigs, with a minimum read length of 2,000 nucleotides required for quality assembly. A 4,000-nucleotide read length improves quality further. Canu was efficient among de novo assemblers but not suitable for multi-strain mixtures, while GoldRush produced only consensus assemblies. Strainline and MetaFlye were suitable for metagenomic sequencing data, with Strainline requiring high memory and MetaFlye operable on low-specification machines. Among reference-based assemblers, iGDA had high error rates, RVHaplo showed the best runtime and accuracy but became ineffective with similar sequences, and HaploDMF, utilizing machine learning, had fewer errors with a slightly longer runtime. Conclusions: The HIV-64148 pipeline, containerized using Docker, facilitates easy deployment and offers flexibility to select from a range of assemblers to match computational systems or study requirements. This tool aids in genome assembly and provides valuable information on HIV-1 sequences, enhancing viral evolution monitoring and understanding.


Assuntos
Biologia Computacional , Genômica , HIV-1 , Software , HIV-1/genética , Biologia Computacional/métodos , Genômica/métodos , Humanos , Genoma Viral/genética
11.
Genome Biol ; 25(1): 188, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010145

RESUMO

BACKGROUND: Structural variation (SV) detection methods using third-generation sequencing data are widely employed, yet accurately detecting SVs remains challenging. Different methods often yield inconsistent results for certain SV types, complicating tool selection and revealing biases in detection. RESULTS: This study comprehensively evaluates 53 SV detection pipelines using simulated and real data from PacBio (CLR: Continuous Long Read, CCS: Circular Consensus Sequencing) and Nanopore (ONT) platforms. We assess their performance in detecting various sizes and types of SVs, breakpoint biases, and genotyping accuracy with various sequencing depths. Notably, pipelines such as Minimap2-cuteSV2, NGMLR-SVIM, PBMM2-pbsv, Winnowmap-Sniffles2, and Winnowmap-SVision exhibit comparatively higher recall and precision. Our findings also show that combining multiple pipelines with the same aligner, like pbmm2 or winnowmap, can significantly enhance performance. The individual pipelines' detailed ranking and performance metrics can be viewed in a dynamic table: http://pmglab.top/SVPipelinesRanking . CONCLUSIONS: This study comprehensively characterizes the strengths and weaknesses of numerous pipelines, providing valuable insights that can improve SV detection in third-generation sequencing data and inform SV annotation and function prediction.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Variação Estrutural do Genoma , Software , Análise de Sequência de DNA/métodos
12.
Orphanet J Rare Dis ; 19(1): 265, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010138

RESUMO

BACKGROUND: Globally, researchers are working on projects aiming to enhance the availability of data for rare disease research. While data sharing remains critical, developing suitable methods is challenging due to the specific sensitivity and uniqueness of rare disease data. This creates a dilemma, as there is a lack of both methods and necessary data to create appropriate approaches initially. This work contributes to bridging this gap by providing synthetic datasets that can form the foundation for such developments. METHODS: Using a hierarchical data generation approach parameterised with publicly available statistics, we generated datasets reflecting a random sample of rare disease patients from the United States (US) population. General demographics were obtained from the US Census Bureau, while information on disease prevalence, initial diagnosis, survival rates as well as race and sex ratios were obtained from the information provided by the US Centers for Disease Control and Prevention as well as the scientific literature. The software, which we have named SynthMD, was implemented in Python as open source using libraries such as Faker for generating individual data points. RESULTS: We generated three datasets focusing on three specific rare diseases with broad impact on US citizens, as well as differences in affected genders and racial groups: Sickle Cell Disease, Cystic Fibrosis, and Duchenne Muscular Dystrophy. We present the statistics used to generate the datasets and study the statistical properties of output data. The datasets, as well as the code used to generate them, are available as Open Data and Open Source Software. CONCLUSION: The results of our work can serve as a starting point for researchers and developers working on methods and platforms that aim to improve the availability of rare disease data. Potential applications include using the datasets for testing purposes during the implementation of information systems or tailored privacy-enhancing technologies.


Assuntos
Doenças Raras , Software , Humanos , Estados Unidos , Masculino , Feminino
13.
Curr Protoc ; 4(7): e1099, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024028

RESUMO

With the ever-expanding toolkit of molecular viewers, the ability to visualize macromolecular structures has never been more accessible. Yet, the idiosyncratic technical intricacies across tools and the integration complexities associated with handling structure annotation data present significant barriers to seamless interoperability and steep learning curves for many users. The necessity for reproducible data visualizations is at the forefront of the current challenges. Recently, we introduced MolViewSpec (homepage: https://molstar.org/mol-view-spec/, GitHub project: https://github.com/molstar/mol-view-spec), a specification approach that defines molecular visualizations, decoupling them from the varying implementation details of different molecular viewers. Through the protocols presented herein, we demonstrate how to use MolViewSpec and its 3D view-building Python library for creating sophisticated, customized 3D views covering all standard molecular visualizations. MolViewSpec supports representations like cartoon and ball-and-stick with coloring, labeling, and applying complex transformations such as superposition to any macromolecular structure file in mmCIF, BinaryCIF, and PDB formats. These examples showcase progress towards reusability and interoperability of molecular 3D visualization in an era when handling molecular structures at scale is a timely and pressing matter in structural bioinformatics as well as research and education across the life sciences. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Creating a MolViewSpec view using the MolViewSpec Python package Basic Protocol 2: Creating a MolViewSpec view with reference to MolViewSpec annotation files Basic Protocol 3: Creating a MolViewSpec view with labels and other advanced features Support Protocol 1: Computing rotation and translation vectors Support Protocol 2: Creating a MolViewSpec annotation file.


Assuntos
Software , Imageamento Tridimensional , Substâncias Macromoleculares/química , Modelos Moleculares
14.
Gen Physiol Biophys ; 43(4): 347-351, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38953576

RESUMO

Since the acid growth theory was introduced in plant physiology and mainframe computers became more widely available in the mid-20th century, there has been a growing need to accurately predict plant cell morphological parameters during growth. This article presents a computer program that uses an original numerical method to solve a highly nonlinear growth equation. The program is written in Python, a popular open-source scientific software environment called CoCalc or SAGE. This program can be used to determine the growth of an individual plant cell or multicellular organ, such as a coleoptile or hypocotyl segment, at the non-meristemic limit. This standalone program is designed to be user-friendly and accessible to all readers, without barriers. With only a few key parameters, including pH and temperature, this program provides a practical set of tools for comparing growth-related experimental data across various areas of plant biology. Additionally, it could be useful in predicting plant growth during assisted migration, particularly in the face of climate change.


Assuntos
Desenvolvimento Vegetal , Software , Desenvolvimento Vegetal/fisiologia , Modelos Biológicos , Simulação por Computador , Algoritmos
15.
PeerJ ; 12: e17470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948230

RESUMO

TIN-X (Target Importance and Novelty eXplorer) is an interactive visualization tool for illuminating associations between diseases and potential drug targets and is publicly available at newdrugtargets.org. TIN-X uses natural language processing to identify disease and protein mentions within PubMed content using previously published tools for named entity recognition (NER) of gene/protein and disease names. Target data is obtained from the Target Central Resource Database (TCRD). Two important metrics, novelty and importance, are computed from this data and when plotted as log(importance) vs. log(novelty), aid the user in visually exploring the novelty of drug targets and their associated importance to diseases. TIN-X Version 3.0 has been significantly improved with an expanded dataset, modernized architecture including a REST API, and an improved user interface (UI). The dataset has been expanded to include not only PubMed publication titles and abstracts, but also full-text articles when available. This results in approximately 9-fold more target/disease associations compared to previous versions of TIN-X. Additionally, the TIN-X database containing this expanded dataset is now hosted in the cloud via Amazon RDS. Recent enhancements to the UI focuses on making it more intuitive for users to find diseases or drug targets of interest while providing a new, sortable table-view mode to accompany the existing plot-view mode. UI improvements also help the user browse the associated PubMed publications to explore and understand the basis of TIN-X's predicted association between a specific disease and a target of interest. While implementing these upgrades, computational resources are balanced between the webserver and the user's web browser to achieve adequate performance while accommodating the expanded dataset. Together, these advances aim to extend the duration that users can benefit from TIN-X while providing both an expanded dataset and new features that researchers can use to better illuminate understudied proteins.


Assuntos
Interface Usuário-Computador , Humanos , Processamento de Linguagem Natural , PubMed , Software
16.
BMJ Open ; 14(6): e086736, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950987

RESUMO

INTRODUCTION: Spirometry is a point-of-care lung function test that helps support the diagnosis and monitoring of chronic lung disease. The quality and interpretation accuracy of spirometry is variable in primary care. This study aims to evaluate whether artificial intelligence (AI) decision support software improves the performance of primary care clinicians in the interpretation of spirometry, against reference standard (expert interpretation). METHODS AND ANALYSIS: A parallel, two-group, statistician-blinded, randomised controlled trial of primary care clinicians in the UK, who refer for, or interpret, spirometry. People with specialist training in respiratory medicine to consultant level were excluded. A minimum target of 228 primary care clinician participants will be randomised with a 1:1 allocation to assess fifty de-identified, real-world patient spirometry sessions through an online platform either with (intervention group) or without (control group) AI decision support software report. Outcomes will cover primary care clinicians' spirometry interpretation performance including measures of technical quality assessment, spirometry pattern recognition and diagnostic prediction, compared with reference standard. Clinicians' self-rated confidence in spirometry interpretation will also be evaluated. The primary outcome is the proportion of the 50 spirometry sessions where the participant's preferred diagnosis matches the reference diagnosis. Unpaired t-tests and analysis of covariance will be used to estimate the difference in primary outcome between intervention and control groups. ETHICS AND DISSEMINATION: This study has been reviewed and given favourable opinion by Health Research Authority Wales (reference: 22/HRA/5023). Results will be submitted for publication in peer-reviewed journals, presented at relevant national and international conferences, disseminated through social media, patient and public routes and directly shared with stakeholders. TRIAL REGISTRATION NUMBER: NCT05933694.


Assuntos
Inteligência Artificial , Atenção Primária à Saúde , Espirometria , Humanos , Espirometria/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Software , Reino Unido , Sistemas de Apoio a Decisões Clínicas
17.
Commun Biol ; 7(1): 796, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951162

RESUMO

The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified "skeleton" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.


Assuntos
Microscopia Eletrônica , Fibras Nervosas , Sinapses , Animais , Camundongos , Microscopia Eletrônica/métodos , Fibras Nervosas/ultraestrutura , Sinapses/ultraestrutura , Axônios/ultraestrutura , Dendritos/ultraestrutura , Encéfalo/ultraestrutura , Córtex Somatossensorial/ultraestrutura , Camundongos Endogâmicos C57BL , Masculino , Software , Hipocampo/ultraestrutura , Hipocampo/citologia , Microscopia Eletrônica de Volume
18.
Sci Rep ; 14(1): 15000, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951578

RESUMO

The primary objective of analyzing the data obtained in a mass spectrometry-based proteomic experiment is peptide and protein identification, or correct assignment of the tandem mass spectrum to one amino acid sequence. Comparison of empirical fragment spectra with the theoretical predicted one or matching with the collected spectra library are commonly accepted strategies of proteins identification and defining of their amino acid sequences. Although these approaches are widely used and are appreciably efficient for the well-characterized model organisms or measured proteins, they cannot detect novel peptide sequences that have not been previously annotated or are rare. This study presents PowerNovo tool for de novo sequencing of proteins using tandem mass spectra acquired in a variety of types of mass analyzers and different fragmentation techniques. PowerNovo involves an ensemble of models for peptide sequencing: model for detecting regularities in tandem mass spectra, precursors, and fragment ions and a natural language processing model, which has a function of peptide sequence quality assessment and helps with reconstruction of noisy sequences. The results of testing showed that the performance of PowerNovo is comparable and even better than widely utilized PointNovo, DeepNovo, Casanovo, and Novor packages. Also, PowerNovo provides complete cycle of processing (pipeline) of mass spectrometry data and, along with predicting the peptide sequence, involves the peptide assembly and protein inference blocks.


Assuntos
Peptídeos , Análise de Sequência de Proteína , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Análise de Sequência de Proteína/métodos , Peptídeos/química , Peptídeos/análise , Sequência de Aminoácidos , Software , Proteômica/métodos , Algoritmos
19.
Genome Biol ; 25(1): 170, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951884

RESUMO

Microbial pangenome analysis identifies present or absent genes in prokaryotic genomes. However, current tools are limited when analyzing species with higher sequence diversity or higher taxonomic orders such as genera or families. The Roary ILP Bacterial core Annotation Pipeline (RIBAP) uses an integer linear programming approach to refine gene clusters predicted by Roary for identifying core genes. RIBAP successfully handles the complexity and diversity of Chlamydia, Klebsiella, Brucella, and Enterococcus genomes, outperforming other established and recent pangenome tools for identifying all-encompassing core genes at the genus level. RIBAP is a freely available Nextflow pipeline at github.com/hoelzer-lab/ribap and zenodo.org/doi/10.5281/zenodo.10890871.


Assuntos
Genoma Bacteriano , Anotação de Sequência Molecular , Software , Brucella/genética , Brucella/classificação , Bactérias/genética , Bactérias/classificação , Chlamydia/genética , Enterococcus/genética , Klebsiella/genética
20.
Microbiome ; 12(1): 117, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951915

RESUMO

BACKGROUND: Shotgun metagenomics for microbial community survey recovers enormous amount of information for microbial genomes that include their abundances, taxonomic, and phylogenetic information, as well as their genomic makeup, the latter of which then helps retrieve their function based on annotated gene products, mRNA, protein, and metabolites. Within the context of a specific hypothesis, additional modalities are often included, to give host-microbiome interaction. For example, in human-associated microbiome projects, it has become increasingly common to include host immunology through flow cytometry. Whilst there are plenty of software approaches available, some that utilize marker-based and assembly-based approaches, for downstream statistical analyses, there is still a dearth of statistical tools that help consolidate all such information in a single platform. By virtue of stringent computational requirements, the statistical workflow is often passive with limited visual exploration. RESULTS: In this study, we have developed a Java-based statistical framework ( https://github.com/KociOrges/cviewer ) to explore shotgun metagenomics data, which integrates seamlessly with conventional pipelines and offers exploratory as well as hypothesis-driven analyses. The end product is a highly interactive toolkit with a multiple document interface, which makes it easier for a person without specialized knowledge to perform analysis of multiomics datasets and unravel biologically relevant patterns. We have designed algorithms based on frequently used numerical ecology and machine learning principles, with value-driven from integrated omics tools which not only find correlations amongst different datasets but also provide discrimination based on case-control relationships. CONCLUSIONS: CViewer was used to analyse two distinct metagenomic datasets with varying complexities. These include a dietary intervention study to understand Crohn's disease changes during a dietary treatment to include remission, as well as a gut microbiome profile for an obesity dataset comparing subjects who suffer from obesity of different aetiologies and against controls who were lean. Complete analyses of both studies in CViewer then provide very powerful mechanistic insights that corroborate with the published literature and demonstrate its full potential. Video Abstract.


Assuntos
Metagenômica , Software , Metagenômica/métodos , Humanos , Microbiota/genética , Microbioma Gastrointestinal/genética , Biologia Computacional/métodos , Metagenoma , Doença de Crohn/microbiologia , Doença de Crohn/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...