Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.464
Filtrar
1.
Theor Appl Genet ; 137(6): 145, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822827

RESUMO

KEY MESSAGE: qLA3.1, controlling leaf angle in tomato, was fine-mapped to an interval of 4.45 kb on chromosome A03, and one gene encoding auxin response factor was identified as a candidate gene. Leaf angle is a crucial trait in plant architecture that plays an important role in achieving optimal plant structure. However, there are limited reports on gene localization, cloning, and the function of plant architecture in horticultural crops, particularly regarding leaf angle. In this study, we selected 'Z3' with erect leaves and 'Heinz1706' with horizontal leaves as the phenotype and cytological observation. We combined bulked segregant analysis and fine genetic mapping to identify a candidate gene, known as, i.e., qLA3.1, which was related to tomato leaf angle. Through multiple analyses, we found that Solyc03g113410 was the most probably candidate for qLA3.1, which encoded the auxin response factor SlARF11 in tomato and was homologous to OsARF11 related to leaf angle in rice. We discovered that silencing SlARF11 resulted in upright leaves, while plants with over-expressed SlARF11 exhibited horizontal leaves. We also found that cultivars with erect leaves had a mutation from base G to base A. Moreover, quantitative analysis of plants treated with hormones indicated that SlARF11 might participate in cell elongation and the activation of genes related to auxin and brassinosteroid pathways. Transcriptome analysis further validated that SlARF11 may regulate leaf angle through hormone signaling pathways. These data support the idea that the auxin response factor SlARF11 may have an important function in tomato leaf petiole angles.


Assuntos
Mapeamento Cromossômico , Fenótipo , Folhas de Planta , Proteínas de Plantas , Locos de Características Quantitativas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
2.
PLoS One ; 19(6): e0304497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870181

RESUMO

Tomato mosaic virus (ToMV), an economically important virus that affects a wide range of crops, is highly contagious, and its transmission is mediated by mechanical means, and through contaminated seeds or planting materials, making its management challenging. To contain its wide distribution, early and accurate detection of infection is required. A survey was conducted between January and May, 2023 in major tomato growing counties in Kenya, namely, Baringo, Kajiado, Kirinyaga and Laikipia, to establish ToMV disease incidence and to collect samples for optimization of the reverse transcription loop-mediated isothermal amplification assay (RT-LAMP) assay. A RT-LAMP assay, utilizing primers targeting the coat protein, was developed and evaluated for its performance. The method was able to detect ToMV in tomato samples within 4:45 minutes, had a 1,000-fold higher sensitivity than conventional reverse transcription polymerase chain reaction (RT-PCR) method and was specific to ToMV. Furthermore, the practical applicability of the assay was assessed using tomato samples and other solanaecous plants. The assay was able to detect the virus in 14 tomato leaf samples collected from the field, compared to 11 samples detected by RT-PCR, further supporting the greater sensitivity of the assay. To make the assay more amenable for on-site ToMV detection, a quick-extraction method based on alkaline polyethylene glycol buffer was evaluated, which permitted the direct detection of the target virus from crude leaf extracts. Due to its high sensitivity, specificity and rapidity, the RT-LAMP method could be valuable for field surveys and quarantine inspections towards a robust management of ToMV infections.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Doenças das Plantas , Solanum lycopersicum , Tobamovirus , Técnicas de Amplificação de Ácido Nucleico/métodos , Solanum lycopersicum/virologia , Doenças das Plantas/virologia , Tobamovirus/genética , Tobamovirus/isolamento & purificação , Transcrição Reversa , Sensibilidade e Especificidade , Quênia , RNA Viral/genética , RNA Viral/análise , RNA Viral/isolamento & purificação , Técnicas de Diagnóstico Molecular
4.
BMC Plant Biol ; 24(1): 503, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38840061

RESUMO

BACKGROUND: Oxygen concentration is a key characteristic of the fruit storage environment determining shelf life and fruit quality. The aim of the work was to identify cell wall components that are related to the response to low oxygen conditions in fruit and to determine the effects of such conditions on the ripening process. Tomato (Solanum lycopersicum) fruits at different stages of the ripening process were stored in an anoxic and hypoxic environment, at 0% and 5% oxygen concentrations, respectively. We used comprehensive and comparative methods: from microscopic immunolabelling and estimation of enzymatic activities to detailed molecular approaches. Changes in the composition of extensin, arabinogalactan proteins, rhamnogalacturonan-I, low methyl-esterified homogalacturonan, and high methyl-esterified homogalacturonan were analysed. RESULTS: In-depth molecular analyses showed that low oxygen stress affected the cell wall composition, i.e. changes in protein content, a significantly modified in situ distribution of low methyl-esterified homogalacturonan, appearance of callose deposits, disturbed native activities of ß-1,3-glucanase, endo-ß-1,4-glucanase, and guaiacol peroxidase (GPX), and disruptions in molecular parameters of single cell wall components. Taken together, the data obtained indicate that less significant changes were observed in fruit in the breaker stage than in the case of the red ripe stage. The first symptoms of changes were noted after 24 h, but only after 72 h, more crucial deviations were visible. The 5% oxygen concentration slows down the ripening process and 0% oxygen accelerates the changes taking place during ripening. CONCLUSIONS: The observed molecular reset occurring in tomato cell walls in hypoxic and anoxic conditions seems to be a result of regulatory and protective mechanisms modulating ripening processes.


Assuntos
Parede Celular , Frutas , Oxigênio , Pectinas , Proteínas de Plantas , Solanum lycopersicum , Parede Celular/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiologia , Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Pectinas/metabolismo , Mucoproteínas/metabolismo
5.
PLoS One ; 19(6): e0304663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843239

RESUMO

The productivity of agricultural ecosystems is heavily influenced by soil-dwelling organisms. To optimize agricultural practices and management, it is critical to know the composition, abundance, and interactions of soil microorganisms. Our study focused on Acrobeles complexus nematodes collected from tomato fields in South Africa and analyzed their associated bacterial communities utilizing metabarcoding analysis. Our findings revealed that A. complexus forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Dechloromonas sp., a bacterial species commonly found in aquatic sediments, Acidovorax temperans, a bacterial species commonly found in activated sludge, and Lactobacillus ruminis, a commensal motile lactic acid bacterium that inhabits the intestinal tracts of humans and animals. Through principal component analysis (PCA), we found that the abundance of A. complexus in the soil is negatively correlated with clay content (r = -0.990) and soil phosphate levels (r = -0.969) and positively correlated with soil sand content (r = 0.763). This study sheds light on the bacterial species associated to free-living nematodes in tomato crops in South Africa and highlights the occurrence of various potentially damaging and beneficial nematode-associated bacteria, which can in turn, impact soil health and tomato production.


Assuntos
Produtos Agrícolas , Nematoides , Microbiologia do Solo , Solanum lycopersicum , Animais , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , África do Sul , Produtos Agrícolas/parasitologia , Produtos Agrícolas/microbiologia , Nematoides/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Solo/parasitologia , RNA Ribossômico 16S/genética , Análise de Componente Principal
6.
PeerJ ; 12: e17466, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827284

RESUMO

Background: Tomato (Solanum lycopersicum) is an annual or perennial herb that occupies an important position in daily agricultural production. It is an essential food crop for humans and its ripening process is regulated by a number of genes. S-adenosyl-l-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) is widespread in organisms and plays an important role in regulating biological methylation reactions. Previous studies have revealed that transgenic tomato that over-express SlSAHH2 ripen earlier than the wild-type (WT). However, the differences in metabolites and the mechanisms driving how these differences affect the ripening cycle are unclear. Objective: To investigate the effects of SlSAHH2 on metabolites in over-expressed tomato and WT tomato. Methods: SlSAHH2 over-expressed tomato fruit (OE-5# and OE-6#) and WT tomato fruit at the breaker stage (Br) were selected for non-targeted metabolome analysis. Results: A total of 733 metabolites were identified by mass spectrometry using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the Human Metabolome database (HMDB). The metabolites were divided into 12 categories based on the superclass results and a comparison with the HMDB. The differences between the two databases were analyzed by PLS-DA. Based on a variable important in projection value >1 and P < 0.05, 103 differential metabolites were found between tomato variety OE-5# and WT and 63 differential metabolites were found between OE-6# and WT. These included dehydrotomatine, L-serine, and gallic acid amongst others. Many metabolites are associated with fruit ripening and eight common metabolites were found between the OE-5# vs. WT and OE-6# vs. WT comparison groups. The low L-tryptophan expression in OE-5# and OE-6# is consistent with previous reports that its content decreases with fruit ripening. A KEGG pathway enrichment analysis of the significantly different metabolites revealed that in the OE-5# and WT groups, up-regulated metabolites were enriched in 23 metabolic pathways and down-regulated metabolites were enriched in 11 metabolic pathways. In the OE-6# and WT groups, up-regulated metabolites were enriched in 29 pathways and down-regulated metabolites were enriched in six metabolic pathways. In addition, the differential metabolite changes in the L-serine to flavonoid transformation metabolic pathway also provide evidence that there is a phenotypic explanation for the changes in transgenic tomato. Discussion: The metabolomic mechanism controlling SlSAHH2 promotion of tomato fruit ripening has been further elucidated.


Assuntos
Frutas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , Frutas/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Adenosil-Homocisteinase/metabolismo , Adenosil-Homocisteinase/genética , Metaboloma , Metabolômica
7.
PeerJ ; 12: e17473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827312

RESUMO

Background: Zinc (Zn) is a vital micronutrient essential for plant growth and development. Transporter proteins of the ZRT/IRT-like protein (ZIP) family play crucial roles in maintaining Zn homeostasis. Although the acquisition, translocation, and intracellular transport of Zn are well understood in plant roots and leaves, the genes that regulate these pathways in fruits remain largely unexplored. In this study, we aimed to investigate the function of SlZIP11 in regulating tomato fruit development. Methods: We used Solanum lycopersicum L. 'Micro-Tom' SlZIP11 (Solanum lycopersicum) is highly expressed in tomato fruit, particularly in mature green (MG) stages. For obtaining results, we employed reverse transcription-quantitative polymerase chain reaction (RT-qPCR), yeast two-hybrid assay, bimolecular fluorescent complementation, subcellular localization assay, virus-induced gene silencing (VIGS), SlZIP11 overexpression, determination of Zn content, sugar extraction and content determination, and statistical analysis. Results: RT-qPCR analysis showed elevated SlZIP11 expression in MG tomato fruits. SlZIP11 expression was inhibited and induced by Zn deficiency and toxicity treatments, respectively. Silencing SlZIP11 via the VIGS technology resulted in a significant increase in the Zn content of tomato fruits. In contrast, overexpression of SlZIP11 led to reduced Zn content in MG fruits. Moreover, both silencing and overexpression of SlZIP11 caused alterations in the fructose and glucose contents of tomato fruits. Additionally, SlSWEEET7a interacted with SlZIP11. The heterodimerization between SlSWEET7a and SlZIP11 affected subcellular targeting, thereby increasing the amount of intracellularly localized oligomeric complexes. Overall, this study elucidates the role of SlZIP11 in mediating Zn accumulation and sugar transport during tomato fruit ripening. These findings underscore the significance of SlZIP11 in regulating Zn levels and sugar content, providing insights into its potential implications for plant physiology and agricultural practices.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum lycopersicum , Zinco , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Zinco/metabolismo , Zinco/análise , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831110

RESUMO

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Assuntos
Bacillus subtilis , Endófitos , Raízes de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/classificação , Rosmarinus/química , Rosmarinus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal , Germinação , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Fixação de Nitrogênio , Fosfatos/metabolismo
9.
Physiol Plant ; 176(3): e14374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837422

RESUMO

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Assuntos
Frutas , Resposta ao Choque Térmico , Complexo de Proteína do Fotossistema II , Folhas de Planta , Proteínas de Plantas , Plastídeos , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Complexo de Proteína do Fotossistema II/genética , Resposta ao Choque Térmico/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Plastídeos/metabolismo , Plastídeos/genética , Clorofila/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/genética , Plantas Geneticamente Modificadas , Senescência Vegetal/genética , Regulação da Expressão Gênica de Plantas , Malondialdeído/metabolismo
10.
BMC Plant Biol ; 24(1): 495, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831411

RESUMO

BACKGROUND: Phosphorus (P) and iron (Fe) deficiencies are relevant plants nutritional disorders, prompting responses such as increased root exudation to aid nutrient uptake, albeit at an energy cost. Reacquiring and reusing exudates could represent an efficient energy and nitrogen saving strategy. Hence, we investigated the impact of plant development, Fe and P deficiencies on this process. Tomato seedlings were grown hydroponically for 3 weeks in Control, -Fe, and -P conditions and sampled twice a week. We used Isotope Ratio Mass-Spectrometry to measure δ13C in roots and shoots after a 2-h exposure to 13C-labeled glycine (0, 50, or 500 µmol L-1). Plant physiology was assessed with an InfraRed Gas Analyzer and ionome with an Inductively Coupled Plasma Mass-Spectrometry. RESULTS: Glycine uptake varied with concentration, suggesting an involvement of root transporters with different substrate affinities. The uptake decreased over time, with -Fe and -P showing significantly higher values as compared to the Control. This highlights its importance during germination and in nutrient-deficient plants. Translocation to shoots declined over time in -P and Control but increased in -Fe plants, suggesting a role of Gly in the Fe xylem transport. CONCLUSIONS: Root exudates, i.e. glycine, acquisition and their subsequent shoot translocation depend on Fe and P deficiency. The present findings highlight the importance of this adaptation to nutrient deficiencies, that can potentially enhance plants fitness. A thorough comprehension of this trait holds potential significance for selecting cultivars that can better withstand abiotic stresses.


Assuntos
Glicina , Fósforo , Raízes de Plantas , Solanum lycopersicum , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Glicina/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Fósforo/metabolismo , Fósforo/deficiência , Deficiências de Ferro , Ferro/metabolismo , Transporte Biológico , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento
11.
PLoS One ; 19(6): e0304039, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38865327

RESUMO

Methylglyoxal (MG) is a highly cytotoxic molecule produced in all biological systems, which could be converted into non-toxic D-lactate by an evolutionarily conserved glyoxalase pathway. Glutathione-dependent glyoxalase I (GLYI) and glyoxalase II (GLYII) are responsible for the detoxification of MG into D-lactate in sequential reactions, while DJ-1 domain containing glyoxalase III (GLYIII) catalyzes the same reaction in a single step without glutathione dependency. Afterwards, D-lactate dehydrogenase (D-LDH) converts D-lactate into pyruvate, a metabolically usable intermediate. In the study, a comprehensive genome-wide investigation has been performed in one of the important vegetable plants, tomato to identify 13 putative GLYI, 4 GLYII, 3 GLYIII (DJ-1), and 4 D-LDH genes. Expression pattern analysis using microarray data confirmed their ubiquitous presence in different tissues and developmental stages. Moreover, stress treatment of tomato seedlings and subsequent qRT-PCR demonstrated upregulation of SlGLYI-2, SlGLYI-3, SlGLYI-6A, SlGLYII-1A, SlGLYII-3B, SlDJ-1A, SlDLDH-1 and SlDLDH-4 in response to different abiotic stresses, whereas SlGLYI-6B, SlGLYII-1B, SlGLYII-3A, SlDJ-1D and SlDLDH-2 were downregulated. Expression data also revealed SlGLYII-1B, SlGLYI-1A, SlGLYI-2, SlDJ-1D, and SlDLDH-4 were upregulated in response to various pathogenic infections, indicating the role of MG detoxifying enzymes in both plant defence and stress modulation. The functional characterization of each of these members could lay the foundation for the development of stress and disease-resistant plants promoting sustainable agriculture and production.


Assuntos
Regulação da Expressão Gênica de Plantas , Aldeído Pirúvico , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Aldeído Pirúvico/metabolismo , Perfilação da Expressão Gênica , Genoma de Planta , Filogenia , Evolução Molecular , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Lactoilglutationa Liase/genética , Lactoilglutationa Liase/metabolismo , Estresse Fisiológico/genética
12.
Fungal Biol ; 128(4): 1847-1858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876537

RESUMO

Post-harvest decay of fresh agricultural produce is a major threat to food security globally. Synthetic fungicides, commonly used in practice for managing the post-harvest losses, have negative impacts on consumers' health. Studies have reported the effectiveness of fungal isolates from plants as biocontrol agents of post-harvest diseases, although this is still poorly established in tomatoes (Solanum lycopersicum L. cv. Jasmine). In this study, 800 endophytic fungi were isolated from mature green and ripe untreated and fungicide-treated tomato fruits grown in open soil and hydroponics systems. Of these, five isolates (Aureobasidium pullulans SUG4.1, Coprinellus micaceus SUG4.3, Epicoccum nigrum SGT8.6, Fusarium oxysporum HTR8.4, Preussia africana SUG3.1) showed antagonistic properties against selected post-harvest pathogens of tomatoes (Alternaria alternata, Fusarium solani, Fusarium oxysporum, Geotrichum candidum, Rhizopus stolonifera, Rhizoctonia solani), with Lactiplantibacillus plantarum as a positive control. P. africana SUG3.1 and C. micaceus SUG4.3 significantly inhibited growth of all the pathogens, with antagonistic capabilities comparable to that exhibited by L. plantarum. Furthermore, the isolates produced an array of enzymes, including among others, amylase, cellulose and protease; and were able to utilize several carbohydrates (glucose, lactose, maltose, mannitol, sucrose). In conclusion, P. africana SUG3.1 and C. micaceus SUG4.3 may complement L. plantarum as biocontrol agents against post-harvest pathogens of tomatoes.


Assuntos
Endófitos , Frutas , Fungos , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Frutas/microbiologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Endófitos/classificação , Fungos/isolamento & purificação , Fungos/fisiologia , Fungos/classificação , Fungos/efeitos dos fármacos , Antibiose , Agentes de Controle Biológico , Fungicidas Industriais/farmacologia
13.
Food Res Int ; 189: 114495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876585

RESUMO

The texture of tomato products can be modified by choice of variety, their growing conditions and/or processing method, but no clear explanation exists of the mechanisms that transform fruit tissue, how they act on texture, or whether genetics and processing impact the same physical parameters. We therefore conducted a study that processed 4 varieties produced under low/high nitrogen supply, into puree using both hot and cold break processes. No specific rheological signature allows discrimination between cultivar-induced or process-induced textural changes, but that they can be distinguished by sensory analysis. Growth conditions impacted but was not sensory distinguished. Both caused significant variations in 7 of 11 physico-chemical parameters, but the order of importance of these traits controlling texture varied, depending on whether the cause was genetic or process-related. Analysis of alcohol insoluble solids revealed a specific signature in pectin composition and conformation that could be linked to particle aggregation in the presence of lycopene-rich particles.


Assuntos
Manipulação de Alimentos , Frutas , Reologia , Solanum lycopersicum , Solanum lycopersicum/química , Viscosidade , Manipulação de Alimentos/métodos , Frutas/química , Pectinas/química , Licopeno/análise , Paladar , Carotenoides/análise , Carotenoides/química , Humanos
14.
Nat Commun ; 15(1): 5102, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877009

RESUMO

Tomato (Solanum lycopersicum) is one of the world's most important food crops, and as such, its production needs to be protected from infectious diseases that can significantly reduce yield and quality. Here, we survey the effector-triggered immunity (ETI) landscape of tomato against the bacterial pathogen Pseudomonas syringae. We perform comprehensive ETI screens in five cultivated tomato varieties and two wild relatives, as well as an immunodiversity screen on a collection of 149 tomato varieties that includes both wild and cultivated varieties. The screens reveal a tomato ETI landscape that is more limited than what was previously found in the model plant Arabidopsis thaliana. We also demonstrate that ETI eliciting effectors can protect tomato against P. syringae infection when the effector is delivered by a non-virulent strain either prior to or simultaneously with a virulent strain. Overall, our findings provide a snapshot of the ETI landscape of tomatoes and demonstrate that ETI can be used as a biocontrol treatment to protect crop plants.


Assuntos
Doenças das Plantas , Imunidade Vegetal , Pseudomonas syringae , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/imunologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Plantas/imunologia , Virulência , Regulação da Expressão Gênica de Plantas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/imunologia
15.
Nat Commun ; 15(1): 5103, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877035

RESUMO

Cytosine base editors (CBEs) and adenine base editors (ABEs) enable precise C-to-T and A-to-G edits. Recently, ABE8e, derived from TadA-8e, enhances A-to-G edits in mammalian cells and plants. Interestingly, TadA-8e can also be evolved to confer C-to-T editing. This study compares engineered CBEs derived from TadA-8e in rice and tomato cells, identifying TadCBEa, TadCBEd, and TadCBEd_V106W as efficient CBEs with high purity and a narrow editing window. A dual base editor, TadDE, promotes simultaneous C-to-T and A-to-G editing. Multiplexed base editing with TadCBEa and TadDE is demonstrated in transgenic rice, with no off-target effects detected by whole genome and transcriptome sequencing, indicating high specificity. Finally, two crop engineering applications using TadDE are shown: introducing herbicide resistance alleles in OsALS and creating synonymous mutations in OsSPL14 to resist OsMIR156-mediated degradation. Together, this study presents TadA-8e derived CBEs and a dual base editor as valuable additions to the plant editing toolbox.


Assuntos
Sistemas CRISPR-Cas , Citosina , Edição de Genes , Oryza , Plantas Geneticamente Modificadas , Edição de Genes/métodos , Citosina/metabolismo , Oryza/genética , Solanum lycopersicum/genética , Adenina/análogos & derivados , Adenina/metabolismo , Resistência a Herbicidas/genética , Genoma de Planta
16.
Nat Commun ; 15(1): 5096, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877047

RESUMO

CRISPR/Cas9 is widely used for precise mutagenesis through targeted DNA double-strand breaks (DSBs) induction followed by error-prone repair. A better understanding of this process requires measuring the rates of cutting, error-prone, and precise repair, which have remained elusive so far. Here, we present a molecular and computational toolkit for multiplexed quantification of DSB intermediates and repair products by single-molecule sequencing. Using this approach, we characterize the dynamics of DSB induction, processing and repair at endogenous loci along a 72 h time-course in tomato protoplasts. Combining this data with kinetic modeling reveals that indel accumulation is determined by the combined effect of the rates of DSB induction processing of broken ends, and precise versus error repair. In this study, 64-88% of the molecules were cleaved in the three targets analyzed, while indels ranged between 15-41%. Precise repair accounts for most of the gap between cleavage and error repair, representing up to 70% of all repair events. Altogether, this system exposes flux in the DSB repair process, decoupling induction and repair dynamics, and suggesting an essential role of high-fidelity repair in limiting the efficiency of CRISPR-mediated mutagenesis.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Edição de Genes/métodos , Protoplastos/metabolismo , Mutação INDEL , Cinética
17.
Pestic Biochem Physiol ; 202: 105959, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879341

RESUMO

ε-Poly-l-lysine (ε-PL) is an effective antimicrobial peptide for controlling fungal plant diseases, exhibiting significant antifungal activity and safety. Despite its known efficacy, the potential of ε-PL in combating plant bacterial diseases remains underexplored. This study evaluated the effectiveness of ε-PL and its nanomaterial derivative in managing tomato bacterial spot disease caused by Pseudomonas syringae pv. tomato. Results indicated that ε-PL substantially inhibited the growth of Pseudomonas syringae pv. tomato. Additionally, when ε-PL was loaded onto attapulgite (encoded as ATT@PL), its antibacterial effect was significantly enhanced. Notably, the antibacterial efficiency of ATT@PL containing 18.80 µg/mL ε-PL was even close to that of 100 µg/mL pure ε-PL. Further molecular study results showed that, ATT@PL stimulated the antioxidant system and the salicylic acid signaling pathway in tomatoes, bolstering the plants disease resistance. Importantly, the nanocomposite demonstrated no negative effects on both seed germination and plant growth, indicating its safety and aligning with sustainable agricultural practices. This study not only confirmed the effectiveness of ε-PL in controlling tomato bacterial spot disease, but also introduced an innovative high antibacterial efficiency ε-PL composite with good bio-safety. This strategy we believe can also be used in improving other bio-pesticides, and has high applicability in agriculture practice.


Assuntos
Antibacterianos , Doenças das Plantas , Polilisina , Pseudomonas syringae , Compostos de Silício , Solanum lycopersicum , Pseudomonas syringae/efeitos dos fármacos , Solanum lycopersicum/microbiologia , Polilisina/farmacologia , Polilisina/química , Antibacterianos/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos de Silício/farmacologia , Compostos de Silício/química , Compostos de Magnésio
18.
Nat Commun ; 15(1): 5125, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879580

RESUMO

The plant health status is determined by the interplay of plant-pathogen-microbiota in the rhizosphere. Here, we investigate this tripartite system focusing on the pathogen Fusarium oxysporum f. sp. lycopersici (FOL) and tomato plants as a model system. First, we explore differences in tomato genotype resistance to FOL potentially associated with the differential recruitment of plant-protective rhizosphere taxa. Second, we show the production of fusaric acid by FOL to trigger systemic changes in the rhizosphere microbiota. Specifically, we show this molecule to have opposite effects on the recruitment of rhizosphere disease-suppressive taxa in the resistant and susceptible genotypes. Last, we elucidate that FOL and fusaric acid induce changes in the tomato root exudation with direct effects on the recruitment of specific disease-suppressive taxa. Our study unravels a mechanism mediating plant rhizosphere assembly and disease suppression by integrating plant physiological responses to microbial-mediated mechanisms in the rhizosphere.


Assuntos
Ácido Fusárico , Fusarium , Microbiota , Doenças das Plantas , Exsudatos de Plantas , Raízes de Plantas , Rizosfera , Solanum lycopersicum , Ácido Fusárico/metabolismo , Fusarium/patogenicidade , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/metabolismo , Doenças das Plantas/microbiologia , Exsudatos de Plantas/metabolismo , Microbiologia do Solo , Resistência à Doença , Genótipo
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124538, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833885

RESUMO

Growth period determination and color coordinates prediction are essential for comparing postharvest fruit quality. This paper proposes a tomato growth period judgment and color coordinates prediction model based on hyperspectral imaging technology. It utilizes the most effective color coordinates prediction model to obtain a color visual image. Firstly, hyperspectral images were taken of tomatoes at different growth periods (green-ripe, color-changing, half-ripe, and full-ripe), and color coordinates (L*, a*, b*, c, h) were obtained using a colorimeter. The sample set was divided by the sample set partitioning based on joint X-Y distances (SPXY). The support vector machine (SVM), K-nearest neighbors (KNN), and linear discriminant analysis (LDA) were used to discriminate growth period. Results show that the LDA model has the best prediction effect with a prediction set accuracy of 93.1%. In addition, effective wavelengths were selected using competitive adaptive reweighted sampling (CARS) and successive projections algorithm (SPA), and chromaticity prediction models were established using partial least squares regression (PLSR), multiple linear regression (MLR), principal component regression (PCR) and support vector machine regression (SVR) Finally, the color of each pixel of the tomato is calculated using the optimal model, generating a visual distribution image of the color coordinate. The results showed that hyperspectral imaging can non-destructively detect tomatoes' growth stage and color coordinates, providing great significance for designing a tomato quality grading system.


Assuntos
Cor , Frutas , Imageamento Hiperespectral , Solanum lycopersicum , Máquina de Vetores de Suporte , Solanum lycopersicum/crescimento & desenvolvimento , Imageamento Hiperespectral/métodos , Análise Discriminante , Frutas/crescimento & desenvolvimento , Frutas/química , Análise dos Mínimos Quadrados , Análise de Componente Principal , Algoritmos , Modelos Lineares
20.
Food Res Int ; 188: 114512, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823883

RESUMO

Several studies have linked the intake of lycopene and/or tomato products with improved metabolic health under obesogenic regime. The aim was to evaluate the differential impact of supplementations with several tomato genotypes differing in carotenoid content and subjected to different irrigation levels on obesity-associated disorders in mice. In this study, 80 male C57BL/6JRj mice were assigned into 8 groups to receive: control diet, high fat diet, high fat diet supplemented at 5 % w/w with 4 tomato powders originating from different tomato genotypes cultivated under control irrigation: H1311, M82, IL6-2, IL12-4. Among the 4 genotypes, 2 were also cultivated under deficit irrigation, reducing the irrigation water supply by 50 % from anthesis to fruit harvest. In controlled irrigation treatment, all genotypes significantly improved fasting glycemia and three of them significantly lowered liver lipids content after 12 weeks of supplementation. In addition, IL6-2 genotype, rich in ß-carotene, significantly limited animal adiposity, body weight gain and improved glucose homeostasis as highlighted in glucose and insulin tolerance tests. No consistent beneficial or detrimental impact of deficit irrigation to tomato promoting health benefits was found. These findings imply that the choice of tomato genotype can significantly alter the composition of fruit carotenoids and phytochemicals, thereby influencing the anti-obesogenic effects of the fruit. In contrast, deficit irrigation appears to have an overall insignificant impact on enhancing the health benefits of tomato powder in this context, particularly when compared to the genotype-related variations in carotenoid content.


Assuntos
Dieta Hiperlipídica , Genótipo , Camundongos Endogâmicos C57BL , Obesidade , Solanum lycopersicum , Solanum lycopersicum/genética , Animais , Masculino , Obesidade/genética , Obesidade/metabolismo , Camundongos , Carotenoides/metabolismo , Frutas , Água , Irrigação Agrícola/métodos , Glicemia/metabolismo , Adiposidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...