Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89.383
Filtrar
1.
Sci Rep ; 14(1): 12854, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834735

RESUMO

Salinity stress significantly impacts crops, disrupting their water balance and nutrient uptake, reducing growth, yield, and overall plant health. High salinity in soil can adversely affect plants by disrupting their water balance. Excessive salt levels can lead to dehydration, hinder nutrient absorption, and damage plant cells, ultimately impairing growth and reducing crop yields. Gallic acid (GA) and zinc ferrite (ZnFNP) can effectively overcome this problem. GA can promote root growth, boost photosynthesis, and help plants absorb nutrients efficiently. However, their combined application as an amendment against drought still needs scientific justification. Zinc ferrite nanoparticles possess many beneficial properties for soil remediation and medical applications. That's why the current study used a combination of GA and ZnFNP as amendments to wheat. There were 4 treatments, i.e., 0, 10 µM GA, 15 µM GA, and 20 µM GA, without and with 5 µM ZnFNP applied in 4 replications following a completely randomized design. Results exhibited that 20 µM GA + 5 µM ZnFNP caused significant improvement in wheat shoot length (28.62%), shoot fresh weight (16.52%), shoot dry weight (11.38%), root length (3.64%), root fresh weight (14.72%), and root dry weight (9.71%) in contrast to the control. Significant enrichment in wheat chlorophyll a (19.76%), chlorophyll b (25.16%), total chlorophyll (21.35%), photosynthetic rate (12.72%), transpiration rate (10.09%), and stomatal conductance (15.25%) over the control validate the potential of 20 µM GA + 5 µM ZnFNP. Furthermore, improvement in N, P, and K concentration in grain and shoot verified the effective functioning of 20 µM GA + 5 µM ZnFNP compared to control. In conclusion, 20 µM GA + 5 µM ZnFNP can potentially improve the growth, chlorophyll contents and gas exchange attributes of wheat cultivated in salinity stress. More investigations are suggested to declare 20 µM GA + 5 µM ZnFNP as the best amendment for alleviating salinity stress in different cereal crops.


Assuntos
Compostos Férricos , Ácido Gálico , Estresse Salino , Triticum , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Triticum/metabolismo , Ácido Gálico/metabolismo , Zinco/metabolismo , Fotossíntese/efeitos dos fármacos , Nanopartículas/química , Clorofila/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Salinidade , Solo/química
2.
Commun Biol ; 7(1): 686, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834864

RESUMO

Microbial necromass carbon (MNC) can reflect soil carbon (C) sequestration capacity. However, changes in the reserves of MNC in response to warming in alpine grasslands across the Tibetan Plateau are currently unclear. Based on large-scale sampling and published observations, we divided eco-clusters based on dominant phylotypes, calculated their relative abundance, and found that their averaged importance to MNC was higher than most other environmental variables. With a deep learning model based on stacked autoencoder, we proved that using eco-cluster relative abundance as the input variable of the model can accurately predict the overall distribution of MNC under current and warming conditions. It implied that warming could lead to an overall increase in the MNC in grassland topsoil across the Tibetan Plateau, with an average increase of 7.49 mg/g, a 68.3% increase. Collectively, this study concludes that alpine grassland has the tendency to increase soil C sequestration capacity on the Tibetan Plateau under future warming.


Assuntos
Pradaria , Microbiologia do Solo , Tibet , Sequestro de Carbono , Carbono/metabolismo , Aquecimento Global , Solo/química , Mudança Climática
3.
BMC Plant Biol ; 24(1): 498, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834982

RESUMO

Biochar (BC) is an organic compound formed by the pyrolysis of organic wastes. Application of BCs as soil amendments has many benefits including carbon sequestration, enhanced soil fertility and sustainable agriculture production. In the present study, we acidified the different BCs prepared from rice straw, rice husk, wheat straw, cotton stalk, poultry manure, sugarcane press mud and vegetable waste; following which, we applied them in a series of pot experiments. Comparisons were made between acidified and non- acidified BCs for their effects on seed germination, soil properties (EC, pH) nutrient contents (P, K, Na) and organic matter. The treatments comprised of a control, and all above-described BCs (acidified as well as non-acidified) applied to soil at the rate of 1% (w/w). The maize crop was selected as a test crop. The results showed that acidified poultry manure BC significantly improved germination percentage, shoot length, and biomass of maize seedlings as compared to other BCs and their respective control plants. However, acidified BCs caused a significant decrease in nutrient contents (P, K, Na) of soil,maize seedlings, and the soil organic matter contents as compared to non- acidified BCs. But when compared with control treatments, all BCs treatments (acidified and non-acidified) delivered higher levels of nutrients and organic matter contents. It was concluded that none of the BCs (acidified and non-acidified) had caused negative effect on soil conditions and growth of maize. In addition, the acidification of BC prior to its application to alkaline soils might had altered soil chemistry and delivered better maize growth. Moving forward, more research is needed to understand the long-term effects of modified BCs on nutrient dynamics in different soils. In addition, the possible effects of BC application timings, application rates, particle size, and crop species have to be evaluated systemtically.


Assuntos
Carvão Vegetal , Germinação , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Solo/química , Germinação/efeitos dos fármacos , Nutrientes/metabolismo , Esterco , Agricultura/métodos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
4.
Water Environ Res ; 96(6): e11054, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38828755

RESUMO

The land application of sewage sludge from wastewater treatment plants has been recognized as a major source of microplastic contamination in soil. Nevertheless, the fate and behavior of microplastics in soil remain uncertain, particularly their distribution and transport, which are poorly understood. This study does a bibliometric analysis and visualization of relevant research publications using the CiteSpace software. It explores the limited research available on the topic, highlighting the potential for it to emerge as a research hotspot in the future. Chinese researchers and institutions are paying great attention to this field and are promoting close academic cooperation among international organizations. Current research hot topics mainly involve microplastic pollution caused by the land application of sewage sludge, as well as the detection, environmental fate, and removal of microplastics in soil. The presence of microplastics in sludge, typically ranging from tens of thousands to hundreds of thousands of particles (p)/kg, inevitably leads to their introduction into soil upon land application. In China, the estimated annual accumulation of microplastics in the soil due to sludge use is approximately 1.7 × 1013 p. In European countries, the accumulation ranges from 8.6 to 71 × 1013 p. Sludge application has significantly elevated soil microplastic concentrations, with higher application rates and frequencies resulting in up to several-fold increases. The primary forms of microplastics found in soils treated with sludge are fragments and fibers, primarily in white color. These microplastics consist primarily of components such as polyamide, polyethylene, and polypropylene. The vertical transport behavior of microplastics is influenced by factors such as tillage, wind, rainfall, bioturbation, microplastic characteristics (e.g., fraction, particle size, and shape), and soil physicochemical properties (e.g., organic matter, porosity, electrical conductivity, and pH). Research indicates that microplastics can penetrate up to 90 cm into the soil profile and persist for decades. Microplastics in sewage sludge-amended soils pose potential long-term threats to soil ecosystems and even human health. Future research should focus on expanding the theoretical understanding of microplastic behavior in these soils, enabling the development of comprehensive risk assessments and informed decision-making for sludge management practices. PRACTITIONER POINTS: Microplastics in sewage sludge range from tens to hundreds of thousands per kilogram. Sludge land application contributes significantly to soil microplastic pollution. The main forms of microplastics in sludge-amended soils are fragments and fibers. Microplastics are mainly composed of polyamide, polyethylene, and polypropylene. Microplastics can penetrate up to 90 cm into the soil profile and persist for decades.


Assuntos
Microplásticos , Esgotos , Poluentes do Solo , Solo , Esgotos/química , Microplásticos/análise , Poluentes do Solo/análise , Solo/química , Bibliometria , Monitoramento Ambiental
5.
Environ Monit Assess ; 196(7): 593, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829441

RESUMO

Coal power activities could cause regional fluctuations of trace elements, but the distribution information of these trace elements in arid and semi-arid areas is insufficient. In this study, the soil trace elements (As, B, Be, Cd, Co, Cr, Cu, Fe, Ga, Ge, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, Tl, and Zn) of Ningdong Coal Power Production Base in China were monitored. Results showed that the concentrations of B, Tl, Mn, Pb, Cr, K, Cu, and Co exceeded background values. The maximum risk index reached 265.66, while the trace elements posed a cancer risk to children. Combining correlation analyses (CA), principal component analysis (PCA), and positive matrix factorization (PMF) techniques, it indicated that trace elements were mainly coming from coal combustion (34.15%), livestock farming (17.44%), traffic emissions (12.42%), and natural factors (35.99%). This study reveals the sources and potential ecological risks of soil trace elements in the Ningdong Coal and Power Production Base. It provides a scientific basis for developing targeted environmental management measures and reducing human health risks.


Assuntos
Carvão Mineral , Monitoramento Ambiental , Poluentes do Solo , Solo , Oligoelementos , China , Oligoelementos/análise , Poluentes do Solo/análise , Solo/química , Centrais Elétricas , Humanos
6.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822559

RESUMO

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Assuntos
Secas , Ecossistema , Ciclo do Nitrogênio , Isótopos de Nitrogênio , Solo , Solo/química , Isótopos de Nitrogênio/análise , China , Nitrogênio/análise , Nitrogênio/metabolismo , Clima Desértico
7.
Water Sci Technol ; 89(10): 2685-2702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38822608

RESUMO

This paper evaluates the performance and potential of a full-scale hybrid multi-soil-layering (MSL) system for the treatment of domestic wastewater for landscape irrigation reuse. The system integrates a solar septic tank and sequential vertical flow MSL and horizontal flow MSL components with alternating layers of gravel and soil-based material. It operates at a hydraulic loading rate of 250 L/m2/day. Results show significant removal of pollutants and pathogens, including total suspended solids (TSS) (97%), chemical oxygen demand (COD) (88.57%), total phosphorus (TP) (79.93%), and total nitrogen (TN) (88.49%), along with significant reductions in fecal bacteria indicators (4.21 log for fecal coliforms and 3.90 log for fecal streptococci) and the pathogen Staphylococcus sp. (2.43 log). The principal component analysis confirms the effectiveness of the system in reducing the concentrations of NH4, COD, TP, PO4, fecal coliforms, fecal streptococci, and fecal staphylococci, thus supporting the reliability of the study. This work highlights the promising potential of the hybrid MSL technology for the treatment of domestic wastewater, especially in arid regions such as North Africa and the Middle East, to support efforts to protect the environment and facilitate the reuse of wastewater for landscape irrigation and agriculture.


Assuntos
Águas Residuárias , Marrocos , Águas Residuárias/microbiologia , Eliminação de Resíduos Líquidos/métodos , Solo/química , Fósforo/análise , Purificação da Água/métodos , Nitrogênio/análise , Cidades , Poluentes Químicos da Água
8.
Glob Chang Biol ; 30(6): e17354, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822629

RESUMO

Wildfires directly emit 2.1 Pg carbon (C) to the atmosphere annually. The net effect of wildfires on the C cycle, however, involves many interacting source and sink processes beyond these emissions from combustion. Among those, the role of post-fire enhanced soil organic carbon (SOC) erosion as a C sink mechanism remains essentially unquantified. Wildfires can greatly enhance soil erosion due to the loss of protective vegetation cover and changes to soil structure and wettability. Post-fire SOC erosion acts as a C sink when off-site burial and stabilization of C eroded after a fire, together with the on-site recovery of SOC content, exceed the C losses during its post-fire transport. Here we synthesize published data on post-fire SOC erosion and evaluate its overall potential to act as longer-term C sink. To explore its quantitative importance, we also model its magnitude at continental scale using the 2017 wildfire season in Europe. Our estimations show that the C sink ability of SOC water erosion during the first post-fire year could account for around 13% of the C emissions produced by wildland fires. This indicates that post-fire SOC erosion is a quantitatively important process in the overall C balance of fires and highlights the need for more field data to further validate this initial assessment.


Assuntos
Ciclo do Carbono , Incêndios Florestais , Erosão do Solo , Carbono/análise , Europa (Continente) , Solo/química , Sequestro de Carbono , Incêndios , Modelos Teóricos
9.
Glob Chang Biol ; 30(6): e17349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822665

RESUMO

Priming of soil organic matter (SOM) decomposition by microorganisms is a key phenomenon of global carbon (C) cycling. Soil pH is a main factor defining priming effects (PEs) because it (i) controls microbial community composition and activities, including enzyme activities, (ii) defines SOM stabilization and destabilization mechanisms, and (iii) regulates intensities of many biogeochemical processes. In this critical review, we focus on prerequisites and mechanisms of PE depending on pH and assess the global change consequences for PE. The highest PEs were common in soils with pH between 5.5 and 7.5, whereas low molecular weight organic compounds triggered PE mainly in slightly acidic soils. Positive PEs up to 20 times of SOM decomposition before C input were common at pH around 6.5. Negative PEs were common at soil pH below 4.5 or above 7 reflecting a suboptimal environment for microorganisms and specific SOM stabilization mechanisms at low and high pH. Short-term soil acidification (in rhizosphere, after fertilizer application) affects PE by: mineral-SOM complexation, SOM oxidation by iron reduction, enzymatic depolymerization, and pH-dependent changes in nutrient availability. Biological processes of microbial metabolism shift over the short-term, whereas long-term microbial community adaptations to slow acidification are common. The nitrogen fertilization induced soil acidification and land use intensification strongly decrease pH and thus boost the PE. Concluding, soil pH is one of the strongest but up to now disregarded factors of PE, defining SOM decomposition through short-term metabolic adaptation of microbial groups and long-term shift of microbial communities.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Concentração de Íons de Hidrogênio , Ciclo do Carbono , Carbono/análise , Carbono/metabolismo
10.
Environ Geochem Health ; 46(6): 210, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822873

RESUMO

The presence of heavy metals in soil has gained considerable attention due to their potential risks to ecosystems and human health. In this study, a thorough soil investigation was performed in the hilly region of central Hainan, which was formerly regarded as an area with the highest ecological environmental quality. A total of 7094 soil samples were systematically collected with high density over a large area. Simultaneously, a detailed investigation was conducted on the surrounding environment of each sampling point, including environmental factors such as soil, land use and crop types. The soil samples were analysed for heavy metals, pH, organic matter, and other parameters. The soil heavy metal pollution level, ecological risk and health risk were evaluated using the geo-accumulation index and the potential ecological risk index. The findings showed that the average contents of the heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in the soil were 1.68, 0.042, 24.2, 6.49, 0.0319, 7.06, 29.6 and 49.8 mg·kg-1 respectively. Except for Hg, the mean values of the other heavy metals were either lower than or similar to the background values of Hainan. Also, only a few localised areas showed contamination by heavy metals. The primary sources of heavy metals, identified by a positive matrix factorisation model, could be categorised into four types: natural sources related to the soil formation process from acidic intrusive rocks (such as granite); natural sources primarily influenced by atmospheric deposition; anthropogenic sources associated with agricultural activities; and natural sources related to the soil formation process from middle-mafic intrusive rocks and black shales. The correlation analysis and variance analysis findings suggested that the content of heavy metals in the soil was primarily associated with the parent rock. The study area generally had low heavy metal levels and was not significantly polluted. However, agricultural activities still affected the enrichment of heavy metals. Therefore, it is imperative to remain vigilant about the ecological risks linked to soil heavy metals while continuing land development and expanding agricultural activities in the future. These findings indicate that conducting high-density soil surveys can enhance our understanding of regional soil heavy metals and enable reliable recommendations for agricultural planning. Whether in areas with low pollution risk or potential pollution risk, it is recommended that high-density soil surveys be conducted provide scientific guidance for further agricultural development.


Assuntos
Monitoramento Ambiental , Metais Pesados , Poluentes do Solo , Solo , Metais Pesados/análise , China , Poluentes do Solo/análise , Medição de Risco , Solo/química , Humanos
11.
Environ Monit Assess ; 196(7): 596, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839676

RESUMO

The issue of soil acidification in tea plantations has become a critical concern due to its potential impact on tea quality and plant health. Understanding the factors contributing to soil acidification is essential for implementing effective soil management strategies in tea-growing regions. In this study, a field study was conducted to investigate the effects of tea plantations on soil acidification and the associated acid-base buffering capacity (pHBC). We assessed acidification, pHBC, nutrient concentrations, and cation contents in the top 0-20 cm layer of soil across forty tea gardens of varying stand ages (0-5, 5-10, 10-20, and 20-40 years old) in Anji County, Zhejiang Province, China. The results revealed evident soil acidification due to tea plantation activities, with the lowest soil pH observed in tea gardens aged 10-20 and 20-40 years. Higher levels of soil organic matter (SOM), total nitrogen (TN), Olsen phosphorus (Olsen-P), available iron (Fe), and exchangeable hydrogen (H+) were notably recorded in 10-20 and 20-40 years old tea garden soils, suggesting an increased risk of soil acidification with prolonged tea cultivation. Furthermore, prolonged tea cultivation correlated with increased pHBC, which amplified with tea stand ages. The investigation of the relationship between soil pHBC and various parameters highlighted significant influences from soil pH, SOM, cation exchange capacity, TN, available potassium, Olsen-P, exchangeable acids (including H+ and aluminum), available Fe, and available zinc. Consequently, these findings underscore a substantial risk of soil acidification in tea gardens within the monitored region, with SOM and TN content being key driving factors influencing pHBC.


Assuntos
Camellia sinensis , Monitoramento Ambiental , Nitrogênio , Solo , Solo/química , Camellia sinensis/química , Nitrogênio/análise , China , Concentração de Íons de Hidrogênio , Ecossistema , Fósforo/análise , Chá/química , Agricultura
12.
J Am Coll Cardiol ; 83(23): 2308-2323, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38839205

RESUMO

Various forms of pollution carry a substantial burden with respect to increasing the risk of causing and exacerbating noncommunicable diseases, especially cardiovascular disease. The first part of this 2-part series on pollution and cardiovascular disease provided an overview of the impact of global warming and air pollution. This second paper provides an overview of the impact of water, soil, noise, and light pollution on the cardiovascular system. This review discusses the biological mechanisms underlying these effects and potential environmental biometrics of exposure. What is clear from both these pollution papers is that significant efforts and redoubled urgency are needed to reduce the sources of pollution in our environment, to incorporate environmental risk factors into medical education, to provide resources for research, and, ultimately, to protect those who are particularly vulnerable and susceptible.


Assuntos
Doenças Cardiovasculares , Poluição Ambiental , Humanos , Doenças Cardiovasculares/prevenção & controle , Poluição Ambiental/efeitos adversos , Ruído/efeitos adversos , Solo , Exposição Ambiental/efeitos adversos , Poluição da Água
13.
Sci Rep ; 14(1): 12641, 2024 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825663

RESUMO

In many countries with wastewater irrigation and intensive use of fertilizers (minerals and organics), heavy metal deposition by crops is regarded as a major environmental concern. A study was conducted to determine the impact of mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse on soil's trace Pb content and edible parts of vegetables. It also evaluated the risk of lead (Pb) contamination in water, soil, and food crops. Six vegetables (Daucus carota, Brassica oleracea, Pisum sativum, Solanum tuberosum, Raphanus sativus, and Spinacia oleracea) were grown in the field under twelve treatments with different nutrient and water inputs. The lead concentrations in soil, vegetables for all treatments and water samples ranged from 1.038-10.478, 0.09346-9.0639 mg/kg and 0.036-0.26448 mg/L, The concentration of lead in soil treated with wastewater in treatment (T6) and vegetable samples was significantly higher, exceeding the WHO's permitted limit. Mineral and organic fertilizers combined with wastewater treatment reduced lead (Pb) concentrations in vegetables compared to wastewater application without organic fertilizers. Health risk indexes for all treatments except wastewater treatment (T6) were less than one. Pb concentrations in mineral fertilizers, cow manure, poultry manure, leaf litter, and sugarcane bagasse treated were determined to pose no possible risk to consumers.


Assuntos
Fertilizantes , Chumbo , Esterco , Verduras , Águas Residuárias , Fertilizantes/análise , Verduras/metabolismo , Verduras/química , Esterco/análise , Águas Residuárias/química , Águas Residuárias/análise , Chumbo/análise , Chumbo/metabolismo , Animais , Poluentes do Solo/análise , Solo/química , Bovinos , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/química , Minerais/análise
14.
Glob Chang Biol ; 30(6): e17338, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822535

RESUMO

Nitrogen (N) immobilization (Nim, including microbial N assimilation) and plant N uptake (PNU) are the two most important pathways of N retention in soils. The ratio of Nim to PNU (hereafter Nim:PNU ratio) generally reflects the degree of N limitation for plant growth in terrestrial ecosystems. However, the key factors driving the pattern of Nim:PNU ratio across global ecosystems remain unclear. Here, using a global data set of 1018 observations from 184 studies, we examined the relative importance of mycorrhizal associations, climate, plant, and soil properties on the Nim:PNU ratio across terrestrial ecosystems. Our results show that mycorrhizal fungi type (arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi) in combination with soil inorganic N mainly explain the global variation in the Nim:PNU ratio in terrestrial ecosystems. In AM fungi-associated ecosystems, the relationship between Nim and PNU displays a weaker negative correlation (r = -.06, p < .001), whereas there is a stronger positive correlation (r = .25, p < .001) in EM fungi-associated ecosystems. Our meta-analysis thus suggests that the AM-associated plants display a weak interaction with soil microorganisms for N absorption, while EM-associated plants cooperate with soil microorganisms. Furthermore, we find that the Nim:PNU ratio for both AM- and EM-associated ecosystems gradually converge around a stable value (13.8 ± 0.5 for AM- and 12.1 ± 1.2 for EM-associated ecosystems) under high soil inorganic N conditions. Our findings highlight the dependence of plant-microbial interaction for N absorption on both plant mycorrhizal association and soil inorganic N, with the stable convergence of the Nim:PNU ratio under high soil N conditions.


Assuntos
Micorrizas , Nitrogênio , Microbiologia do Solo , Solo , Micorrizas/fisiologia , Micorrizas/metabolismo , Nitrogênio/metabolismo , Solo/química , Plantas/metabolismo , Plantas/microbiologia , Ecossistema
15.
PLoS One ; 19(6): e0304663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843239

RESUMO

The productivity of agricultural ecosystems is heavily influenced by soil-dwelling organisms. To optimize agricultural practices and management, it is critical to know the composition, abundance, and interactions of soil microorganisms. Our study focused on Acrobeles complexus nematodes collected from tomato fields in South Africa and analyzed their associated bacterial communities utilizing metabarcoding analysis. Our findings revealed that A. complexus forms associations with a wide range of bacterial species. Among the most abundant species identified, we found Dechloromonas sp., a bacterial species commonly found in aquatic sediments, Acidovorax temperans, a bacterial species commonly found in activated sludge, and Lactobacillus ruminis, a commensal motile lactic acid bacterium that inhabits the intestinal tracts of humans and animals. Through principal component analysis (PCA), we found that the abundance of A. complexus in the soil is negatively correlated with clay content (r = -0.990) and soil phosphate levels (r = -0.969) and positively correlated with soil sand content (r = 0.763). This study sheds light on the bacterial species associated to free-living nematodes in tomato crops in South Africa and highlights the occurrence of various potentially damaging and beneficial nematode-associated bacteria, which can in turn, impact soil health and tomato production.


Assuntos
Produtos Agrícolas , Nematoides , Microbiologia do Solo , Solanum lycopersicum , Animais , Solanum lycopersicum/microbiologia , Solanum lycopersicum/parasitologia , África do Sul , Produtos Agrícolas/parasitologia , Produtos Agrícolas/microbiologia , Nematoides/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Solo/parasitologia , RNA Ribossômico 16S/genética , Análise de Componente Principal
16.
J Environ Sci (China) ; 145: 205-215, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844320

RESUMO

Thermal treatment can effectively decontaminate soils but alter their properties. Previous research mainly focused on volatile organic compounds and metals, i.e. Hg, neglecting non-volatile metal(loid)s. This study aimed to investigate Cd and As transformation during aerobic and anaerobic calcination. The results showed that both aerobic and anaerobic calcination increased soil pH by reducing soil organic matter (SOM) content, which also influenced the cation exchange capacity (CEC) and the leaching behavior of Cd and As in the soil. The total concentrations of Cd and As in the calcined soils varied depending on the calcination temperature and atmosphere. When the aerobic calcination temperature exceeded 700 °C, Cd volatilized as CdCl2, while anaerobic calcination at relatively low temperatures (600 °C) involved reductive reactions, resulting in the formation of metallic Cd with a lower boiling point. Similarly, As volatilized at 800 °C aerobically and 600 °C anaerobically. The formation of As-based minerals, particularly Ca3(AsO4)2, hindered its gasification, whereas anaerobic calcination promoted volatilization efficiency through the generation of C-As(III) based gaseous components with lower boiling points. Contrasting trends were observed in the TCLP-extractable Cd and As contents of the calcined soils. Over 70% of TCLP-extractable Cd contents were suppressed after thermal treatment, attributed to the elevated pH and reduced CEC of the soil, as well as volatilization. However, TCLP-extractable As contents increased with elevated temperatures, likely due to the desorption of AsO43- and re-adsorption of gaseous As2O3 during cooling. These findings have implications for assessing the environmental impact of thermal treatment and provide insights for remediation strategies concerning Cd and As-contaminated soils.


Assuntos
Arsênio , Cádmio , Poluentes do Solo , Solo , Cádmio/química , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/química , Arsênio/análise , Arsênio/química , Solo/química , Recuperação e Remediação Ambiental/métodos , Temperatura Alta
17.
J Environ Sci (China) ; 145: 88-96, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38844326

RESUMO

Conventionally, soil cadmium (Cd) measurements in the laboratory are expensive and time-consuming, involving complex processes of sample preparation and chemical analysis. This study aimed to identify the feasibility of using sensor data of visible near-infrared reflectance (Vis-NIR) spectroscopy and portable X-ray fluorescence spectrometry (PXRF) to estimate regional soil Cd concentration in a time- and cost-saving manner. The sensor data of Vis-NIR and PXRF, and Cd concentrations of 128 surface soils from Yunnan Province, China, were measured. Outer-product analysis (OPA) was used for synthesizing the sensor data and Granger-Ramanathan averaging (GRA) was applied to fuse the model results. Artificial neural network (ANN) models were built using Vis-NIR data, PXRF data, and OPA data, respectively. Results showed that: (1) ANN model based on PXRF data performed better than that based on Vis-NIR data for soil Cd estimation; (2) Fusion methods of both OPA and GRA had higher predictive power (R2) = 0.89, ratios of performance to interquartile range (RPIQ) = 4.14, and lower root mean squared error (RMSE) = 0.06, in ANN model based on OPA fusion; R2 = 0.88, RMSE = 0.06, and RPIQ = 3.53 in GRA model) than those based on either Vis-NIR data or PXRF data. In conclusion, there exists a great potential for the combination of OPA fusion and ANN to estimate soil Cd concentration rapidly and accurately.


Assuntos
Cádmio , Monitoramento Ambiental , Poluentes do Solo , Solo , Espectroscopia de Luz Próxima ao Infravermelho , Cádmio/análise , Poluentes do Solo/análise , Solo/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , China , Monitoramento Ambiental/métodos , Espectrometria por Raios X/métodos , Redes Neurais de Computação , Estudos de Viabilidade
18.
Ecol Lett ; 27(6): e14442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38844373

RESUMO

Highly diverse and abundant organisms coexist in soils. However, the contribution of biotic interactions between soil organisms to microbial community assembly remains to be explored. Here, we assess the extent to which soil fauna can shape microbial community assembly using an exclusion experiment in a grassland field to sort soil biota based on body size. After 1 year, the exclusion of larger fauna favoured phagotrophic protists, with increases up to 32% in their proportion compared to the no-mesh treatment. In contrast, members of the bacterial community and to a lesser extent of the fungal community were negatively impacted. Shifts in bacterial but not in fungal communities were best explained by the response of the protistan community to exclusion. Our findings provide empirical evidence of top-down control on the soil microbial communities and underline the importance of integrating higher trophic levels for a better understanding of the soil microbiome assembly.


Assuntos
Bactérias , Fungos , Pradaria , Microbiota , Microbiologia do Solo , Fungos/fisiologia , Animais , Eucariotos/fisiologia , Solo/química , Tamanho Corporal
19.
Nat Commun ; 15(1): 4826, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844502

RESUMO

During extensive periods without rain, known as dry-downs, decreasing soil moisture (SM) induces plant water stress at the point when it limits evapotranspiration, defining a critical SM threshold (θcrit). Better quantification of θcrit is needed for improving future projections of climate and water resources, food production, and ecosystem vulnerability. Here, we combine systematic satellite observations of the diurnal amplitude of land surface temperature (dLST) and SM during dry-downs, corroborated by in-situ data from flux towers, to generate the observation-based global map of θcrit. We find an average global θcrit of 0.19 m3/m3, varying from 0.12 m3/m3 in arid ecosystems to 0.26 m3/m3 in humid ecosystems. θcrit simulated by Earth System Models is overestimated in dry areas and underestimated in wet areas. The global observed pattern of θcrit reflects plant adaptation to soil available water and atmospheric demand. Using explainable machine learning, we show that aridity index, leaf area and soil texture are the most influential drivers. Moreover, we show that the annual fraction of days with water stress, when SM stays below θcrit, has increased in the past four decades. Our results have important implications for understanding the inception of water stress in models and identifying SM tipping points.


Assuntos
Ecossistema , Solo , Água , Solo/química , Água/metabolismo , Temperatura , Transpiração Vegetal/fisiologia , Plantas/metabolismo , Desidratação , Folhas de Planta/fisiologia , Clima , Chuva , Aprendizado de Máquina
20.
Sci Rep ; 14(1): 13076, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844526

RESUMO

Yield multi-location trials associated to geostatistical techniques with environmental covariables can provide a better understanding of G x E interactions and, consequently, adaptation limits of soybean cultivars. Thus, the main objective of this study is understanding the environmental covariables effects on soybean adaptation, as well as predicting the adaptation of soybean under environmental variations and then recommend each soybean cultivar to favorable environments aiming maximize the average yield. The trials were carried out in randomized block design (RBD) with three replicates over three years, in 28 locations. Thirty-two genotypes (commercial and pre-commercial) representing different maturity groups (7.5-8.5) were evaluated in each trial were covering the Edaphoclimatic Region (REC) 401, 402 and 403. The covariables adopted as environmental descriptors were accumulated rainfall, minimum temperature, mean temperature, maximum temperature, photoperiod, relative humidity, soil clay content, soil water avaibility and altitude. After fitting means through Mixed Linear Model, the Regression-Kriging procedure was applied to spacialize the grain yield using environmental covariables as predictors. The covariables explained 32.54% of the GxE interaction, being the soil water avaibility the most important to the adaptation of soybean cultivars, contributing with 7.80%. Yield maps of each cultivar were obtained and, hence, the yield maximization map based on cultivar recommendation was elaborated.


Assuntos
Glycine max , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Brasil , Genótipo , Geografia , Adaptação Fisiológica , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...